Open AccessArticle
The Effect of Tillage on Organic Carbon Stabilization in Microaggregates in Different Climatic Zones of European Russia
Agriculture 2016, 6(4), 63; doi:10.3390/agriculture6040063 (registering DOI) -
Abstract
Tillage may affect the microstructural organization of soil, including the distribution of microaggregates with different mechanical strengths. We quantified the impact of tillage treatment on the amount and distribution of free organic matter, microaggregates (unstable and stable under low intensity sonification) and their
[...] Read more.
Tillage may affect the microstructural organization of soil, including the distribution of microaggregates with different mechanical strengths. We quantified the impact of tillage treatment on the amount and distribution of free organic matter, microaggregates (unstable and stable under low intensity sonification) and their components, in the upper horizons of zonal soils of the Center of the Russian Plain. Under plowing, the carbon content decreases, both in unstable and stable microaggregates. The loss of carbon in unstable microaggregates was ~24%, whereas in stable microaggregates, it was ~37%, relative to native soils. The carbon content of organic (LFoc) and organo-clay (Clayrd) fractions in unstable microaggregates (CLFoc/CClayrd) was almost identical in the upper horizons of native soils: the ratio of these components is for Albeluvisols (1.1), Phaeozem (0.8) and Chernozems (1.0). Under plowing, these decrease to: Albeluvisols and Chernozems (0.6) and Phaeozem (0.5). The shares of carbon accumulated within the unstable and stable microaggregates (Cunstable/Cstable) are constant under equilibrium conditions and show a tendency to decrease from north to south on the order of: Albeluvisols and Phaeozem (2.2) > Chernozems (1.0). Under plowing, they increase to: Albeluvisols (3.0) and Phaeozem (3.2) > Chernozems (1.5). Full article
Figures

Figure 1

Open AccessArticle
Sustaining Chili Pepper Production in Afghanistan through Better Irrigation Practices and Management
Agriculture 2016, 6(4), 62; doi:10.3390/agriculture6040062 -
Abstract
Water management and utilization is an ongoing problem in developing countries with semi-arid to arid climates such as Afghanistan. The lack of effective irrigation systems are oftentimes the most limiting factor for maximizing agricultural productivity in these countries. In Afghanistan, the most widely
[...] Read more.
Water management and utilization is an ongoing problem in developing countries with semi-arid to arid climates such as Afghanistan. The lack of effective irrigation systems are oftentimes the most limiting factor for maximizing agricultural productivity in these countries. In Afghanistan, the most widely used irrigation methods are basin/border for cereal crops and furrow for vegetables and grapes, although drip irrigation is a technology that could be used to significantly improve water use efficiency (WUE) in horticultural crop production. Therefore, three irrigation methods (basin, furrow, and drip) were evaluated for their influences on chili pepper production and WUE at the Afghanistan Ministry of Agriculture, Irrigation and Livestock (MAIL) Badam Bagh Agricultural Research and Demonstration Farm in Kabul over the 2009 and 2010 growing seasons. Results from this study indicated that both drip and furrow irrigation provided similar high chili pepper plant growth and yield responses compared to the low amounts provided by basin irrigation (p ≤ 0.05). The drip and furrow irrigation methods provided a similar low incidence of Phytophthora blight disease, as 4% and 7% of chili pepper plants were visually afflicted by this disease, respectively, while an astounding 69% of chili peppers grown with basin irrigation had symptoms of this disease. Drip irrigation resulted in the best overall WUE (p ≤ 0.05), as this water delivery method utilized the least amount of water and provided the highest chili pepper yield. Furrow irrigation provided a lower WUE compared to drip, but was greater than that of basin irrigation. Although this study indicated that drip irrigation had the greatest WUE for chili pepper production, furrow irrigation is still the method of choice by farmers in Afghanistan to provide water to this crop. The associated costs with pressurized drip irrigation systems are too expensive for farmers to purchase and maintain, which has led to the widespread use of surface irrigation. Moreover, the resistance of growers to change to newer and more advanced technologies is commonplace in many developing countries, and without some type of improvement to current water management practices at the farm level, there is a bleak outlook to maximize agricultural productivity in these areas of the world with limited rainfall and minimal water resources. Although it is essential to sustain this important resource through better irrigation management practices, on-farm agricultural economics are often more important than the needs of future generations and the environment. Full article
Figures

Figure 1

Open AccessArticle
Nested Markets, Food Networks, and New Pathways for Rural Development in Brazil
Agriculture 2016, 6(4), 61; doi:10.3390/agriculture6040061 -
Abstract
This paper applies the frameworks of nested markets and alternative food networks to two empirical cases in the state of Rio Grande do Sul, Brazil, aiming to analyse the construction and dynamics of these markets in order to demonstrate how their dimensions of
[...] Read more.
This paper applies the frameworks of nested markets and alternative food networks to two empirical cases in the state of Rio Grande do Sul, Brazil, aiming to analyse the construction and dynamics of these markets in order to demonstrate how their dimensions of quality, location, and nature are built and sustained, especially with regard to their interface with broader markets and their contributions to rural development practices, policies, and processes. The paper focuses on the study of rural tourism in Caminhos de Pedra Route, in the municipality of Bento Gonçalves, and the Farmers’ Market, in the municipality of Passo Fundo. Both cases represent alternative practices and processes of rural development and bear features that associate them to the nested markets. It is noteworthy that the influence of conventional food markets in these cases shows that nested markets do not operate in isolation but coexist and are continuously in connection with broader agri-food markets. In this sense, despite being subject to criticism and showing limitations, nested markets constitute increasingly robust strategies for rural development practices, processes, and policies, being able to create opportunities for families’ livelihood in rural areas. Full article
Figures

Figure 1

Open AccessArticle
Frequency Domain Probe Design for High Frequency Sensing of Soil Moisture
Agriculture 2016, 6(4), 60; doi:10.3390/agriculture6040060 -
Abstract
Accurate moisture sensing is an important need for many research programs as well as in control of industrial processes. This paper describes the development of a high accuracy frequency domain sensing probe for use in obtaining dielectric measurements of materials suitable for work
[...] Read more.
Accurate moisture sensing is an important need for many research programs as well as in control of industrial processes. This paper describes the development of a high accuracy frequency domain sensing probe for use in obtaining dielectric measurements of materials suitable for work ranging from 300 MHz to 1 GHz. The probe was developed to accommodate a wide range of permittivity’s ranging from εr = 2.5 to elevated permittivity’s as high as εr = 40. The design provides a well-matched interface between the soil and the interconnecting cables. A key advantage of the frequency domain approach is that a change of salt concentration has a significantly reduced effect on ε′, versus the traditional time-domain reflectometry, TDR, measured apparent permittivity, Ka. Full article
Figures

Figure 1

Open AccessArticle
Seasonal Canopy Temperatures for Normal and Okra Leaf Cotton under Variable Irrigation in the Field
Agriculture 2016, 6(4), 58; doi:10.3390/agriculture6040058 -
Abstract
Temperature affects a number of physiological factors in plants and is related to water use, yield and quality in many crop species. Seasonal canopy temperature, measured with infrared thermometers, is often used in conjunction with environmental factors (e.g., air temperature, humidity, solar radiation)
[...] Read more.
Temperature affects a number of physiological factors in plants and is related to water use, yield and quality in many crop species. Seasonal canopy temperature, measured with infrared thermometers, is often used in conjunction with environmental factors (e.g., air temperature, humidity, solar radiation) to assess crop stress and management actions in cotton. Normal and okra leaf shapes in cotton have been associated with differences in water use and canopy temperature. The okra leaf shape in cotton is generally expected to result in lower water use and lower canopy temperatures, relative to normal leaf, under water deficits. In this study canopy temperatures were monitored in okra and normal leaf varieties for a growing season at four irrigation levels. Differences in canopy temperature (<2 °C) were measured between the two leaf shapes. As irrigation levels increased, canopy temperature differences between the leaf shapes declined. At the lowest irrigation level, when differences in sensible energy exchanges due to the okra leaf shape would be enhanced, the canopy temperature of the okra leaf was warmer than the normal leaf. This suggests that varietal differences that are not related to leaf shape may have more than compensated for leaf shape differences in the canopy temperature. Full article
Figures

Figure 1

Open AccessArticle
From Short Food Supply Chains to Sustainable Agriculture in Urban Food Systems: Food Democracy as a Vector of Transition
Agriculture 2016, 6(4), 57; doi:10.3390/agriculture6040057 -
Abstract
In industrialized nations, local food networks have generally been analyzed through alternative food systems, in spite of the fact that they are much more diverse than this would imply. In France, ‘short food chains’ are both a continuation of a long tradition and
[...] Read more.
In industrialized nations, local food networks have generally been analyzed through alternative food systems, in spite of the fact that they are much more diverse than this would imply. In France, ‘short food chains’ are both a continuation of a long tradition and a recent trend which now extends beyond activists, to consumers and producers as well. This paper will explore the conditions under which these chains can change the practices and knowledge of ordinary actors in urban food systems, from producers to urban consumers and policy-makers, in the area of agriculture and sustainability. It will consider the case study of the creation and development of an urban open-air market which has been analyzed using intervention research with input from economic sociology. We will highlight how personal relations, which are encouraged by a participatory context, support the evolution of practices and knowledge. We will also illustrate how a system of produce labelling has emerged as a mediation resource, and has increased changes as well as participation within the re-territorialization of the urban food system. By describing a concrete expression of food democracy which is spreading in France via a free collective trademark, and by showing its role in the transition of ‘ordinary’ actors towards a more sustainable agriculture, this paper will shine new light onto local food chains as well as traditional short food chains, and will call for more research on the subject. Full article
Figures

Figure 1

Open AccessArticle
Detection and Differentiation between Laurel Wilt Disease, Phytophthora Disease, and Salinity Damage Using a Hyperspectral Sensing Technique
Agriculture 2016, 6(4), 56; doi:10.3390/agriculture6040056 -
Abstract
Laurel wilt (Lw) is a fatal disease. It is a vascular pathogen and is considered a major threat to the avocado industry in Florida. Many of the symptoms of Lw resemble those that are caused by other diseases or stress factors. In this
[...] Read more.
Laurel wilt (Lw) is a fatal disease. It is a vascular pathogen and is considered a major threat to the avocado industry in Florida. Many of the symptoms of Lw resemble those that are caused by other diseases or stress factors. In this study, the best wavelengths with which to discriminate plants affected by Lw from stress factors were determined and classified. Visible-near infrared (400–950 nm) spectral data from healthy trees and those with Lw, Phytophthora, or salinity damage were collected using a handheld spectroradiometer. The total number of wavelengths was averaged in two ranges: 10 nm and 40 nm. Three classification methods, stepwise discriminant (STEPDISC) analysis, multilayer perceptron (MLP), and radial basis function (RBF), were applied in the early stage of Lw infestation. The classification results obtained for MLP, with percent accuracy of classification as high as 98% were better than STEPDISC and RBF. The MLP neural network selected certain wavelengths that were crucial for correctly classifying healthy trees from those with stress trees. The results showed that there were sufficient spectral differences between laurel wilt, healthy trees, and trees that have other diseases; therefore, a remote sensing technique could diagnose Lw in the early stage of infestation. Full article
Figures

Figure 1

Open AccessArticle
Determinants of the Use of Certified Seed Potato among Smallholder Farmers: The Case of Potato Growers in Central and Eastern Kenya
Agriculture 2016, 6(4), 55; doi:10.3390/agriculture6040055 -
Abstract
Potato yields in sub-Saharan Africa remain very low compared with those of developed countries. Yet potato is major food staple and source of income to the predominantly smallholder growing households in the tropical highlands of this region. A major cause of the low
[...] Read more.
Potato yields in sub-Saharan Africa remain very low compared with those of developed countries. Yet potato is major food staple and source of income to the predominantly smallholder growing households in the tropical highlands of this region. A major cause of the low potato yields is the use of poor quality seed potato. This paper examines the factors determining the decision to use certified seed potato (CSP), as well as the intensity of its use, among potato growers with access to it. We focused on potato growers in the central highlands of Kenya and used regression analysis to test hypotheses relating to potential impediments of CSP use. The study found that the distance to the market (a proxy for transaction costs), household food insecurity, and asset endowment affect the decision to use CSP. However, the effect of the intensity of use of CSP depends on how the intensity variable is defined. Several other control variables also affect the decision and extent of CSP use. The study concludes that transaction costs, asset endowment, and household food insecurity play a major role in the decision by smallholder potato farmers to use CSP and the extent to which they do so. We also discuss the policy implications of the findings. Full article
Open AccessArticle
PDO as a Mechanism for Reterritorialisation and Agri-Food Governance: A Comparative Analysis of Cheese Products in the UK and Switzerland
Agriculture 2016, 6(4), 54; doi:10.3390/agriculture6040054 -
Abstract
The protection of geographical indications (European regulation 1151/2012) is arguably the most significant initiative, certainly within Europe, that promotes foods with territorial associations and reorganises agri-food chain governance through a strategy of reterritorialisation. Research on Protected Designation of Origins (PDOs) and Protected Geographical
[...] Read more.
The protection of geographical indications (European regulation 1151/2012) is arguably the most significant initiative, certainly within Europe, that promotes foods with territorial associations and reorganises agri-food chain governance through a strategy of reterritorialisation. Research on Protected Designation of Origins (PDOs) and Protected Geographical Indications (PGIs) suggests that they generate significant economic value at an EU-level, especially in certain countries. They can also help to deliver territorial rural development policy and develop new food markets. In this paper we examine the way the PDO scheme has been developed and applied in one commodity sector (cheese) in two countries (Switzerland and the UK), where the uptake of PDOs is variable. We adopt a food chain approach and examine specific cheese product case studies (at micro and meso levels) in both countries to better understand how the PDO scheme (as a territorialisation and respacing strategy) is implemented. L’Etivaz and Le Gruyère are examined in Switzerland. Single Gloucester and West Country cheddar are examined in the UK. The PDO scheme is an important governance strategy and regulatory system, but despite strict guidelines regarding implementation and geographical infrastructure there are notable differences between the UK and Switzerland in terms of how the label is used to organise and respatialise food chains: it is framed as a strategy to protect the rural economy in Switzerland but is promoted more as a mechanism to communicate and reconnect with consumers in the UK. Full article
Open AccessArticle
How Much Meteorological Information Is Necessary to Achieve Reliable Accuracy for Rainfall Estimations?
Agriculture 2016, 6(4), 53; doi:10.3390/agriculture6040053 -
Abstract
This paper reports the study of the effect of the length of the recorded data used for monthly rainfall forecasting. Monthly rainfall data for three periods of 5, 10, and 49 years were collected from Kermanshah, Mashhad, Ahvaz, and Babolsar stations and used
[...] Read more.
This paper reports the study of the effect of the length of the recorded data used for monthly rainfall forecasting. Monthly rainfall data for three periods of 5, 10, and 49 years were collected from Kermanshah, Mashhad, Ahvaz, and Babolsar stations and used for calibration time series models. Then, the accuracy of the forecasting models was investigated by the following year’s data. The following was concluded: In temperate and semi-arid climates, 60 observation data is sufficient for the following year’s rainfall forecasting. The accuracy of the time series models increased with increasing amounts of observation data of arid and humid climates. Time series models are appropriate tools for forecasting monthly rainfall forecasting in semi-arid climates. Determining the most critical rainfall month in each climate condition for agriculture schedules is a recommended aim for future studies. Full article
Figures

Open AccessArticle
Gradual Accumulation of Heavy Metals in an Industrial Wheat Crop from Uranium Mine Soil and the Potential Use of the Herbage
Agriculture 2016, 6(4), 51; doi:10.3390/agriculture6040051 -
Abstract
Testing the quality of heavy-metal (HM) excluder plants from non-remediable metalliferous soils could help to meet the growing demands for food, forage, and industrial crops. Field cultures of the winter wheat cv. JB Asano were therefore established on re-cultivated uranium mine soil (A)
[...] Read more.
Testing the quality of heavy-metal (HM) excluder plants from non-remediable metalliferous soils could help to meet the growing demands for food, forage, and industrial crops. Field cultures of the winter wheat cv. JB Asano were therefore established on re-cultivated uranium mine soil (A) and the adjacent non-contaminated soil (C). Twenty elements were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) from soils and plant sections of post-winter seedlings, anthesis-state, and mature plants to record within-plant levels of essential and toxic minerals during ripening and to estimate the (re)use of the soil-A herbage in husbandry and in HM-sensitive fermentations. Non-permissible HM loads (mg∙kg−1∙DW) of soil A in Cd, Cu, and Zn of 40.4, 261, and 2890, respectively, initiated the corresponding phytotoxic concentrations in roots and of Zn in shoots from the seedling state to maturity as well as of Cd in the foliage of seedlings. At anthesis, shoot concentrations in Ca, Cd, Fe, Mg, Mn, and Zn and in As, Cr, Pb, and U had fallen to a mean of 20% to increase to 46% during maturation. The respective shoot concentrations in C-grown plants diminished from anthesis (50%) to maturity (27%). They were drastically up/down-regulated at the rachis-grain interface to compose the genetically determined metallome of the grain during mineral relocations from adjacent sink tissues. Soil A caused yield losses of straw and grain down to 47.7% and 39.5%, respectively. Nevertheless, pronounced HM excluder properties made Cd concentrations of 1.6–3.08 in straw and 1.2 in grains the only factors that violated hygiene guidelines of forage (1). It is estimated that grains and the less-contaminated green herbage from soil A may serve as forage supplement. Applying soil A grains up to 3 and 12 in Cd and Cu, respectively, and the mature straw as bioenergy feedstock could impair the efficacy of ethanol fermentation by Saccharomyces cerevisiae. Full article
Figures

Figure 1

Open AccessArticle
Feature Selection as a Time and Cost-Saving Approach for Land Suitability Classification (Case Study of Shavur Plain, Iran)
Agriculture 2016, 6(4), 52; doi:10.3390/agriculture6040052 -
Abstract
Land suitability classification is important in planning and managing sustainable land use. Most approaches to land suitability analysis combine a large number of land and soil parameters, and are time-consuming and costly. In this study, a potentially useful technique (combined feature selection and
[...] Read more.
Land suitability classification is important in planning and managing sustainable land use. Most approaches to land suitability analysis combine a large number of land and soil parameters, and are time-consuming and costly. In this study, a potentially useful technique (combined feature selection and fuzzy-AHP method) to increase the efficiency of land suitability analysis was presented. To this end, three different feature selection algorithms—random search, best search and genetic methods—were used to determine the most effective parameters for land suitability classification for the cultivation of barely in the Shavur Plain, southwest Iran. Next, land suitability classes were calculated for all methods by using the fuzzy-AHP approach. Salinity (electrical conductivity (EC)), alkalinity (exchangeable sodium percentage (ESP)), wetness and soil texture were selected using the random search method. Gypsum, EC, ESP, and soil texture were selected using both the best search and genetic methods. The result shows a strong agreement between the standard fuzzy-AHP methods and methods presented in this study. The values of Kappa coefficients were 0.82, 0.79 and 0.79 for the random search, best search and genetic methods, respectively, compared with the standard fuzzy-AHP method. Our results indicate that EC, ESP, soil texture and wetness are the most effective features for evaluating land suitability classification for the cultivation of barely in the study area, and uses of these parameters, together with their appropriate weights as obtained from fuzzy-AHP, can perform good results for land suitability classification. So, the combined feature selection presented and the fuzzy-AHP approach has the potential to save time and money for land suitability classification. Full article
Figures

Figure 1

Open AccessReview
Current Advances in Genomics and Breeding of Leaf Chicory (Cichorium intybus L.)
Agriculture 2016, 6(4), 50; doi:10.3390/agriculture6040050 -
Abstract
This review gives an overview of agricultural topics on a non-model species, in other words, leaf chicory. Often classified as a minor crop, “Radicchio”, the Italian name of leaf chicory, is assuming a very important role at both a local and national level,
[...] Read more.
This review gives an overview of agricultural topics on a non-model species, in other words, leaf chicory. Often classified as a minor crop, “Radicchio”, the Italian name of leaf chicory, is assuming a very important role at both a local and national level, as it characterizes a high proportion of the agricultural income of suited areas. Botanical classification along the genus Cichorium is reported and a detailed description of the most important cultivated biotypes typical of northern Italy is presented. A special consideration is reserved to breeding aspects, from molecular marker-assisted selection to the implementation of the first genome draft and leaf transcriptomes. Sexual barriers, for example, self-incompatibility or male-sterility, are described in great detail with the aim to be utilized for breeding purposes. The main aspects of seed production are also critically presented. In conclusion, the present work is a sort of handbook to better understand this orphan crop and it is mainly directed to breeders and seed producers dealing with leaf chicory. Full article
Figures

Figure 1

Open AccessArticle
Combining Multifunctionality and Ecosystem Services into a Win-Win Solution. The Case Study of the Serchio River Basin (Tuscany—Italy)
Agriculture 2016, 6(4), 49; doi:10.3390/agriculture6040049 -
Abstract
Post-war development—characterized by intensive processes of urbanization, concentration of agriculture on the most fertile lands, and abandonment of mountainous and marginal areas—brought about negative environmental and socio-economic consequences. They have been particularly severe in terms of increase of hydrogeological risk, which is high
[...] Read more.
Post-war development—characterized by intensive processes of urbanization, concentration of agriculture on the most fertile lands, and abandonment of mountainous and marginal areas—brought about negative environmental and socio-economic consequences. They have been particularly severe in terms of increase of hydrogeological risk, which is high in most Italian regions. Over time, there has been an increasing awareness of the multiple functions played by agriculture in terms of provision of Ecosystem Services (ES), which contribute fundamentally to human well-being. In particular, some ES provided by farmers may help to reduce the hydrogeological risk of territories prone to landslides and floods. In this framework, the paper presents as a case study the project “Farmers as Custodians of a Territory.” This project was implemented in the Serchio River basin, Tuscany (Italy), and combines a multifunctional farm strategy of diversification with the provision of Ecosystem Services related to the hydraulic and hydrogeological protection of the river-basin territory. Although this case study should be read within the framework of the theories of agricultural multifunctionality and ES provision, it nevertheless took a very pragmatic and innovative approach, which differentiates it from most of the case studies given in the literature. Results of our analysis show that, by involving farmers as custodians of the territory, it is possible to reach a “win-win” solution characterized, on the one hand, by better services for the community at a lower cost for the Land Reclamation Consortia involved with hydrogeological risk prevention, thus improving the effectiveness and efficiency of ES provision; and on the other hand, by improving the economic situation and survival chances of local farms. Full article
Figures

Figure 1

Open AccessArticle
How Can Multifunctional Agriculture Support a Transition to a Green Economy in Africa? Lessons from the COMACO Model in Zambia
Agriculture 2016, 6(3), 48; doi:10.3390/agriculture6030048 -
Abstract
This paper examines the link between the green economy and multifunctional agriculture. In particular, the paper uses the case of the Community Markets for Conservation (COMACO) initiative, an agro-based enterprise promoting a multifunctional agriculture model in Eastern Zambia, to examine how the potential
[...] Read more.
This paper examines the link between the green economy and multifunctional agriculture. In particular, the paper uses the case of the Community Markets for Conservation (COMACO) initiative, an agro-based enterprise promoting a multifunctional agriculture model in Eastern Zambia, to examine how the potential of smallholder farmers can be harnessed to support a transition towards the green economy. The empirical data on which the paper is based were collected through questionnaire surveys and in-depth interviews conducted with farmers and other actors in the agricultural sector. The results of the study show that a number of elements underpinning the COMACO model including sustainable land management practices, conservation outreach, community markets, value addition, and conservation dividends have great potential to deliver benefits related to the green economy. However, to truly foster a transition towards a green economy, a number of constraints need to be overcome. These include lack of a supportive policy and institutional framework, technological backwardness, and lack of consumer awareness of environmental information instruments such as eco-labelling. Full article
Figures

Figure 1

Open AccessArticle
Projecting Future Change in Growing Degree Days for Winter Wheat
Agriculture 2016, 6(3), 47; doi:10.3390/agriculture6030047 -
Abstract
Southwest Oklahoma is one of the most productive regions in the Great Plains (USA) where winter wheat is produced. To assess the effect of climate change on the growing degree days (GDD) available for winter wheat production, we selected from the CMIP5 archive,
[...] Read more.
Southwest Oklahoma is one of the most productive regions in the Great Plains (USA) where winter wheat is produced. To assess the effect of climate change on the growing degree days (GDD) available for winter wheat production, we selected from the CMIP5 archive, two of the best performing Global Climate Models (GCMs) for the region (MIROC5 and CCSM4) to project the future change in GDD under the Representative Concentration Pathways (RCP) 8.5 and 4.5 future trajectories for greenhouse gas concentrations. Two quantile mapping methods were applied to both GCMs to obtain local scale projections. The local scale outputs were applied to a GDD formula to show the GDD changes between the historical period (1961–2004) and the future period (2006–2098) in terms of mean differences. The results show that at the end of the 2098 growing season, the increase in GDD is expected to be between 440 °C and 1300 °C, for RCP 4.5, and between 700 °C and 1350 °C for RCP 8.5. This increase in GDD might cause a decrease in the number of days required to reach crop maturity, as all the GCM/statistical post-processing combinations showed a decreasing trend of those timings during the 21st century. Furthermore, we conclude, that when looking at the influence of the selected GCMs and the quantile mapping methods on the GDD calculation, the GCMs differences originated from the significant spatial and temporal variations of GDD over the region and not the statistical methods tested. Full article
Figures

Figure 1

Open AccessArticle
The Food For Life Catering Mark: Implementing the Sustainability Transition in University Food Procurement
Agriculture 2016, 6(3), 46; doi:10.3390/agriculture6030046 -
Abstract
This article presents a case study of the application of the Soil Association’s Food For Life Catering Mark at two universities in England: Nottingham Trent University and University of the Arts London. This procurement initiative has had noteworthy success in the U.K., with
[...] Read more.
This article presents a case study of the application of the Soil Association’s Food For Life Catering Mark at two universities in England: Nottingham Trent University and University of the Arts London. This procurement initiative has had noteworthy success in the U.K., with more than 1.6 million Catering Mark meals served each weekday. This article, based on 31 in-depth interviews conducted in 2015, is the first to examine its impact and significance at the university level. In particular, this article tests the concepts of the niche, regime and landscape in the multi-level perspective (MLP), a prominent theoretical approach to sustainability transition, against the experience of the Food For Life Catering Mark. The article confirms the importance of the landscape level of the MLP in the food sustainability transition, while adding additional considerations that need to be specified when applying the MLP to the food sector. By highlighting the essential role of civil society organizations (CSOs), public institutions and many champions, this article proposes that more room must be made within the MLP for the explicit role of agency, champions and the implementation process itself. Indeed, this article argues that implementation, the daily practice, is deserving of both increased recognition and theory. Full article
Open AccessArticle
Feasibility Assessment of Converting Sugar Mills to Bioenergy Production in Africa
Agriculture 2016, 6(3), 45; doi:10.3390/agriculture6030045 -
Abstract
World sugar production has consistently overrun demand in the past five years. Moreover, in 2017 the European Sugar Regime will expire, ending the quota system and preferential sugar prices, largely affecting small producers, particularly in Africa. Diversification emerges as an option for sugar-oriented
[...] Read more.
World sugar production has consistently overrun demand in the past five years. Moreover, in 2017 the European Sugar Regime will expire, ending the quota system and preferential sugar prices, largely affecting small producers, particularly in Africa. Diversification emerges as an option for sugar-oriented mills. Two evident alternatives are ethanol and electricity production that allow better use of molasses and cane fibers, respectively. Molasses is the cheapest feedstock for ethanol production, while the cane fibers—in the form of bagasse—are readily available at the mill. The transition from sugar to sugar, ethanol and electricity may require substantial investment capital, yet our results show that significant progress can start at relatively small cost. In this work, we use simulations to explore the impact of ethanol and electricity production in an existing sugar mill in Mozambique. In spite of the large amounts of energy obtained from ambitious scenarios, such as Ethanol-2 and Ethanol/EE, molasses-based ethanol (Ethanol-1 scenario) seems more attractive in economical and infrastructural terms. High opportunity costs for molasses, low oil prices and enabling institutional conditions, such as mandatory blending mandates, to promote bioenergy remain a challenge. Full article
Figures

Figure 1

Open AccessArticle
Sustainable and Inclusive Food Systems through the Lenses of a Complex System Thinking Approach—A Bibliometric Review
Agriculture 2016, 6(3), 44; doi:10.3390/agriculture6030044 -
Abstract
The multidimensionality and complexity of assuring food security in a sustainable and inclusive way requires us to think in systems. Yet, sector specific models or agricultural productivity models are not able by construction to represent the non-linearity and time-dependent nature of the relations
[...] Read more.
The multidimensionality and complexity of assuring food security in a sustainable and inclusive way requires us to think in systems. Yet, sector specific models or agricultural productivity models are not able by construction to represent the non-linearity and time-dependent nature of the relations underpinning the agri-food system. Two alternative modelling approaches, i.e., System Dynamics (SD) and Agent Based Models (ABM), gained increasing attention in particular after the food commodities prices spikes in 2007 thanks to the conceptual and structural advantages that they provide to the study of food system complexity. In this paper, we develop a first, rigorous bibliometric analysis based on pattern recognition analysis reviewing the peer review journal publications focused on agri-food systems. Using the ISIWeb of Science dataset provided by Thomson Reuters, we apply citation/co-citation semantic metrics to analyse publications from 1970 to 2016 in the field of agricultural models divided in two categories that we define as: (i) agricultural complex systems modelling (ACSM) that includes SD and ABM modelling exercised; and (ii) agricultural modelling (AM) that includes traditional approaches to agri-food systems modelling rooted on the neoclassical approach (e.g., Computable General Equilibrium Models and Partial Equilibrium Models). The publications are identified by applying a filter of specific keywords to the search. We then compare how both approaches appear in the literature looking at the number of publications and citations by scientific journals, identifying key authors and journals, their frequency, the impact factor and citations, and looking at their trend through time. Results show the prevalence of AM approaches for the analysis of the agri-food sector on one side, and the smaller but growing contribution of the ACSM community and literature on the other. We conclude by remarking the need for more systematic analyses on the contribution of the two approaches to the analysis of the complex dynamics and behaviour of agri-food systems to inform evidence-based policies for sustainable and inclusive agriculture. Full article
Figures

Figure 1

Open AccessArticle
Irrigation Analysis Based on Long-Term Weather Data
Agriculture 2016, 6(3), 42; doi:10.3390/agriculture6030042 -
Abstract
Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994, an ET-network was established in the Texas High Plains to
[...] Read more.
Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc) for irrigation. Thirty years (1975–2004) of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline. Full article
Figures

Figure 1