Open AccessArticle
On Multirate GARK Schemes with Adaptive Micro Step Sizes for Fluid–Structure Interaction: Order Conditions and Preservation of the Geometric Conservation Law
Aerospace 2017, 4(1), 8; doi:10.3390/aerospace4010008 -
Abstract
The application of partitioned schemes to fluid–structure interaction (FSI) allows the use of already developed solvers specifically designed for the efficient solution of the corresponding subproblems. In this work, we propose and describe a loosely coupled partitioned scheme based on the recently introduced
[...] Read more.
The application of partitioned schemes to fluid–structure interaction (FSI) allows the use of already developed solvers specifically designed for the efficient solution of the corresponding subproblems. In this work, we propose and describe a loosely coupled partitioned scheme based on the recently introduced generalized-structure additively partitioned Runge-Kutta (GARK) framework. The resulting scheme combines implicit-explicit (IMEX) and multirate approaches while coupling of the subproblems is realized both on the level of the discrete time steps and at the level of interior Runge-Kutta stages. Specifically, we allow for varying micro step sizes for the fluid subproblem and therefore extend the multirate GARK framework based on constant micro steps. Furthermore, we derive the order conditions for this extension allowing for coupled time integration schemes of up to third order and discuss specific choices of the Runge-Kutta coefficients complying with the geometric conservation law. Finally, numerical experiments are carried out for uniform flow on a moving grid as well as the classical FSI test case of a moving piston. Full article
Figures

Open AccessArticle
Parametric Approach to Assessing Performance of High-Lift Device Active Flow Control Architectures
Aerospace 2017, 4(1), 6; doi:10.3390/aerospace4010006 -
Abstract
Active Flow Control is at present an area of considerable research, with multiple potential aircraft applications. While the majority of research has focused on the performance of the actuators themselves, a system-level perspective is necessary to assess the viability of proposed solutions. This
[...] Read more.
Active Flow Control is at present an area of considerable research, with multiple potential aircraft applications. While the majority of research has focused on the performance of the actuators themselves, a system-level perspective is necessary to assess the viability of proposed solutions. This paper demonstrates such an approach, in which major system components are sized based on system flow and redundancy considerations, with the impacts linked directly to the mission performance of the aircraft. Considering the case of a large twin-aisle aircraft, four distinct active flow control architectures that facilitate the simplification of the high-lift mechanism are investigated using the demonstrated approach. The analysis indicates a very strong influence of system total mass flow requirement on architecture performance, both for a typical mission and also over the entire payload-range envelope of the aircraft. Full article
Figures

Open AccessArticle
Electromagnetic Simulation and Alignment of Dual-Polarized Array Antennas in Multi-Mission Phased Array Radars
Aerospace 2017, 4(1), 7; doi:10.3390/aerospace4010007 -
Abstract
Electromagnetic (EM) simulation of dual-polarized antennas is necessary for precise initial alignments, calibration and performance predictions of multi-function phased array radar systems. To achieve the required flexibility and scalability, a novel Finite-Difference Time-Domain (FDTD) solution is developed for rectangular, cylindrical and non-orthogonal coordinate
[...] Read more.
Electromagnetic (EM) simulation of dual-polarized antennas is necessary for precise initial alignments, calibration and performance predictions of multi-function phased array radar systems. To achieve the required flexibility and scalability, a novel Finite-Difference Time-Domain (FDTD) solution is developed for rectangular, cylindrical and non-orthogonal coordinate systems to simulate various types of array antenna manifolds. Scalable array pattern predictions and beam generations are obtained by combining the FDTD simulation solutions with the Near-Field (NF) chamber measurements. The effectiveness and accuracy of this approach are validated by comparing different simulations and comparing simulations with measurements. Full article
Figures

Open AccessArticle
A New Gaskinetic Model to Analyze Background Flow Effects on Weak Gaseous Jet Flows from Electric Propulsion Devices
Aerospace 2017, 4(1), 5; doi:10.3390/aerospace4010005 -
Abstract
Recent work on studying rarefied background and jet flow interactions is reported. A new gaskinetic method is developed to investigate two closely related problems. The first problem is how a collisionless background flow can affect a highly rarefied jet flow. The rarefied jet
[...] Read more.
Recent work on studying rarefied background and jet flow interactions is reported. A new gaskinetic method is developed to investigate two closely related problems. The first problem is how a collisionless background flow can affect a highly rarefied jet flow. The rarefied jet and background flow conditions are assumed available and described with seven parameters. Gaskinetic theories are applied and formulas are obtained for the mixture properties. Simulations are performed to validate these expressions, and excellent agreement is obtained. The second problem is to recover the collisionless background and jet flow parameters with limited measurements. A group of linearized equations are derived for the flowfield properties. The solving process includes initial estimations on the seven parameters, followed with iterations. Numerical tests are performed and the results indicate the procedure is accurate and efficient. The new method and expressions can reduce the amount of experimental work and numerical simulations to analyze facility effects. Parameter studies with particle simulations may require several months; however, the new methods may require minutes. These methods can be used to quantify and predict jet performance, vacuum chamber designs and optimization. Applications may be for many societies using vacuum conditions. Full article
Figures

Figure 1

Open AccessArticle
SMA-Based System for Environmental Sensors Released from an Unmanned Aerial Vehicle
Aerospace 2017, 4(1), 4; doi:10.3390/aerospace4010004 -
Abstract
In the work at hand, a shape memory alloy (SMA)-based system is presented. The system, conceived for releasing environmental sensors from ground or small unmanned aerial vehicles, UAV (often named UAS, unmanned aerial system), is made of a door, integrated into the bottom
[...] Read more.
In the work at hand, a shape memory alloy (SMA)-based system is presented. The system, conceived for releasing environmental sensors from ground or small unmanned aerial vehicles, UAV (often named UAS, unmanned aerial system), is made of a door, integrated into the bottom of the fuselage, a device distributor, operated by a couple of antagonistic SMA springs, and a kinematic chain, to synchronize the deployment operation with the system movement. On the basis of the specifications (weight, available space, energy supply, sensors size, etc.), the system design was addressed. After having identified the main system characteristics, a representative mock-up was manufactured, featuring the bottom part of the reference fuselage. Functionality tests were performed to prove the system capability to release the sensors; a detailed characterization was finally carried out, mainly finalized at correlating the kinematic chain displacement with the SMA spring temperature and the supplied electrical power. A comparison between theoretical predictions and experimental outcomes showed good agreement. Full article
Figures

Open AccessArticle
Trajectory Tracking of a Tri-Rotor Aerial Vehicle Using an MRAC-Based Robust Hybrid Control Algorithm
Aerospace 2017, 4(1), 3; doi:10.3390/aerospace4010003 -
Abstract
In this paper, a novel Model Reference Adaptive Control (MRAC)-based hybrid control algorithm is presented for the trajectory tracking of a tri-rotor Unmanned Aerial Vehicle (UAV). The mathematical model of the tri-rotor is based on the Newton–Euler formula, whereas the MRAC-based hybrid controller
[...] Read more.
In this paper, a novel Model Reference Adaptive Control (MRAC)-based hybrid control algorithm is presented for the trajectory tracking of a tri-rotor Unmanned Aerial Vehicle (UAV). The mathematical model of the tri-rotor is based on the Newton–Euler formula, whereas the MRAC-based hybrid controller consists of Fuzzy Proportional Integral Derivative (F-PID) and Fuzzy Proportional Derivative (F-PD) controllers. MRAC is used as the main controller for the dynamics, while the parameters of the adaptive controller are fine-tuned by the F-PD controller for the altitude control subsystem and the F-PID controller for the attitude control subsystem of the UAV. The stability of the system is ensured and proven by Lyapunov stability analysis. The proposed control algorithm is tested and verified using computer simulations for the trajectory tracking of the desired path as an input. The effectiveness of our proposed algorithm is compared with F-PID and the Fuzzy Logic Controller (FLC). Our proposed controller exhibits much less steady state error, quick error convergence in the presence of disturbance or noise, and model uncertainties. Full article
Figures

Figure 1

Open AccessArticle
Manganese and Zinc Spinel Ferrites Blended with Multi-Walled Carbon Nanotubes as Microwave Absorbing Materials
Aerospace 2017, 4(1), 2; doi:10.3390/aerospace4010002 -
Abstract
Magnetic and dielectric materials can be blended to enhance absorption properties at microwave frequencies, although the materials may have relatively weak attenuation capabilities by themselves. The specific goal of this work is to enhance microwave absorption properties of materials with interesting dielectric behavior
[...] Read more.
Magnetic and dielectric materials can be blended to enhance absorption properties at microwave frequencies, although the materials may have relatively weak attenuation capabilities by themselves. The specific goal of this work is to enhance microwave absorption properties of materials with interesting dielectric behavior by blending them with magnetic materials based on transition metals. The synthesized Mn1−xZnxFe2O4 (x = 0.0 and 1.0) spinel ferrite nanoparticles (MZF NPs) were blended with commercial multi-walled carbon nanotubes (MWCNTs) in various proportions with a binder matrix of paraffin. This simple and efficient process did not cause a significant variation in the energy states of MWCNTs. MZF NPs were synthesized with a citric acid assisted sol–gel method. Their electromagnetic characteristics and microwave absorption properties were investigated. These properties were derived from the microwave scattering parameters measured via the transmission line technique by using a vector network analyzer (VNA) in conjunction with an X band waveguide system. The return loss (RL) values of the samples were obtained from the electromagnetic constitutive parameters (permittivity and permeability). The results indicate that the minimum RL value and the bandwidth change significantly with the amount of ferrite material in the blend. These results encourage further development of MWCNTs blended with ferrite nanoparticles for broadband microwave applications. Full article
Figures

Open AccessEditorial
Acknowledgement to Reviewers of Aerospace in 2016
Aerospace 2017, 4(1), 1; doi:10.3390/aerospace4010001 -
Abstract The editors of Aerospace would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
Open AccessCorrection
Correction: Iemma, U. Theoretical and Numerical Modeling of Acoustic Metamaterials for Aeroacoustic Applications. Aerospace 2016, 3, 15
Aerospace 2016, 3(4), 46; doi:10.3390/aerospace3040046 -
Abstract The author regrets that this paper [1] contains a typographical error in Equation (1) [...]
Full article
Open AccessArticle
A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †
Aerospace 2016, 3(4), 45; doi:10.3390/aerospace3040045 -
Abstract
hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD) solver that has previously been validated for zero-dimensional test cases. It aims at (1) giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2) providing a foundation for
[...] Read more.
hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD) solver that has previously been validated for zero-dimensional test cases. It aims at (1) giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2) providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo) code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes the different models implemented. In conjunction with employing the coupled vibration-dissociation-vibration (CVDV) chemistry–vibration model, novel use is made of the quantum-kinetic (QK) rates in a CFD solver. hy2Foam has been shown to produce results in good agreement with previously published data for a Mach 11 nitrogen flow over a blunted cone and with the dsmcFoam code for a Mach 20 cylinder flow for a binary reacting mixture. This latter case scenario provides a useful basis for other codes to compare against. Full article
Figures

Open AccessArticle
Continuation Methods for Nonlinear Flutter
Aerospace 2016, 3(4), 44; doi:10.3390/aerospace3040044 -
Abstract
Continuation methods are presented that are capable of treating frequency domain flutter equations, including multiple nonlinearities represented by describing functions. A small problem demonstrates how a series of continuation processes can find all limit-cycle oscillations within a specified region with a reasonable degree
[...] Read more.
Continuation methods are presented that are capable of treating frequency domain flutter equations, including multiple nonlinearities represented by describing functions. A small problem demonstrates how a series of continuation processes can find all limit-cycle oscillations within a specified region with a reasonable degree of confidence. Curves of the limit-cycle amplitude variation with velocity, indicating regions of stability and instability with colors, give a compact view of the nonlinear behavior throughout the flight regime. A continuation technique for reducing limit-cycle amplitudes by adjusting various system parameters is presented. These processes are economical enough to be a routine part of aircraft design and certification. Full article
Figures

Open AccessArticle
Gaskinetic Modeling on Dilute Gaseous Plume Impingement Flows
Aerospace 2016, 3(4), 43; doi:10.3390/aerospace3040043 -
Abstract
This paper briefly reviews recent work on gaseous plume impingement flows. As the major part of this paper, also included are new comprehensive studies on high-speed, collisionless, gaseous, circular jet impinging on a three-dimensional, inclined, diffuse or specular flat plate. Gaskinetic theories are
[...] Read more.
This paper briefly reviews recent work on gaseous plume impingement flows. As the major part of this paper, also included are new comprehensive studies on high-speed, collisionless, gaseous, circular jet impinging on a three-dimensional, inclined, diffuse or specular flat plate. Gaskinetic theories are adopted to study the problems, and several crucial geometry-location and velocity-direction relations are used. The final complete results include impingement surface properties such as pressure, shear stress, and heat flux. From these surface properties, averaged coefficients of pressure, friction, heat flux, moment over the entire flat plate, and the distance from the moment center to the flat plate center are obtained. The final results include accurate integrations involving the geometry and specific speed ratios, inclination angle, and the temperature ratio. Several numerical simulations with the direct simulation Monte Carlo method validate these analytical results, and the results are essentially identical. The gaskinetic method and processes are heuristic and can be used to investigate other external high Knudsen (Kn) number impingement flow problems, including the flow field and surface properties for a high Knudsen number jet from an exit and flat plate of arbitrary shapes. The results are expected to find many engineering applications, especially in aerospace and space engineering. Full article
Figures

Figure 1

Open AccessArticle
Analysis of Pilot-Induced-Oscillation and Pilot Vehicle System Stability Using UAS Flight Experiments
Aerospace 2016, 3(4), 42; doi:10.3390/aerospace3040042 -
Abstract
This paper reports the results of a Pilot-Induced Oscillation (PIO) and human pilot control characterization study performed using flight data collected with a Remotely Controlled (R/C) unmanned research aircraft. The study was carried out on the longitudinal axis of the aircraft. Several existing
[...] Read more.
This paper reports the results of a Pilot-Induced Oscillation (PIO) and human pilot control characterization study performed using flight data collected with a Remotely Controlled (R/C) unmanned research aircraft. The study was carried out on the longitudinal axis of the aircraft. Several existing Category 1 and Category 2 PIO criteria developed for manned aircraft are first surveyed and their effectiveness for predicting the PIO susceptibility for the R/C unmanned aircraft is evaluated using several flight experiments. It was found that the Bandwidth/Pitch rate overshoot and open loop onset point (OLOP) criteria prediction results matched flight test observations. However, other criteria failed to provide accurate prediction results. To further characterize the human pilot control behavior during these experiments, a quasi-linear pilot model is used. The parameters of the pilot model estimated using data obtained from flight tests are then used to obtain information about the stability of the Pilot Vehicle System (PVS) for Category 1 PIOs occurred during straight and level flights. The batch estimation technique used to estimate the parameters of the quasi-linear pilot model failed to completely capture the compatibility nature of the human pilot. The estimation results however provided valuable insights into the frequency characteristics of the human pilot commands. Additionally, stability analysis of the Category 2 PIOs for elevator actuator rate limiting is carried out using simulations and the results are compared with actual flight results. Full article
Figures

Open AccessFeature PaperArticle
On the Importance of Morphing Deformation Scheduling for Actuation Force and Energy
Aerospace 2016, 3(4), 41; doi:10.3390/aerospace3040041 -
Abstract
Morphing aircraft offer superior properties as compared to non-morphing aircraft. They can achieve this by adapting their shape depending on the requirements of various conflicting flight conditions. These shape changes are often associated with large deformations and strains, and hence dedicated morphing concepts
[...] Read more.
Morphing aircraft offer superior properties as compared to non-morphing aircraft. They can achieve this by adapting their shape depending on the requirements of various conflicting flight conditions. These shape changes are often associated with large deformations and strains, and hence dedicated morphing concepts are developed to carry out the required changes in shape. Such intricate mechanisms are often heavy, which reduces, or even completely cancels, the performance increase of the morphing aircraft. Part of this weight penalty is determined by the required actuators and associated batteries, which are mainly driven by the required actuation force and energy. Two underexposed influences on the actuation force and energy are the flight condition at which morphing should take place and the order of the morphing manoeuvres, also called morphing scheduling. This paper aims at highlighting the importance of both influences by using a small Unmanned Aerial Vehicle (UAV) with different morphing mechanisms as an example. The results in this paper are generated using a morphing aircraft analysis and design code that was developed at the Delft University of Technology. The importance of the flight condition and a proper morphing schedule is demonstrated by investigating the required actuation forces for various flight conditions and morphing sequences. More importantly, the results show that there is not necessarily one optimal flight condition or morphing schedule and a tradeoff needs to be made. Full article
Figures

Figure 1

Open AccessEditorial
Recent Advances in Aeroacoustics
Aerospace 2016, 3(4), 40; doi:10.3390/aerospace3040040 -
Abstract Acoustics is one of the oldest examples of applied research, long before the term was even coined: [...]
Full article
Open AccessCommunication
Effect of Leading-Edge Slats at Low Reynolds Numbers
Aerospace 2016, 3(4), 39; doi:10.3390/aerospace3040039 -
Abstract
One of the most commonly implemented devices for stall control on wings and airfoils is a leading-edge slat. While functioning of slats at high Reynolds number is well documented, this is not the case at the low Reynolds numbers common for small unmanned
[...] Read more.
One of the most commonly implemented devices for stall control on wings and airfoils is a leading-edge slat. While functioning of slats at high Reynolds number is well documented, this is not the case at the low Reynolds numbers common for small unmanned aerial vehicles. Consequently, a low-speed wind tunnel investigation was undertaken to elucidate the performance of a slat at Re = 250,000. Force balance measurements accompanied by surface flow visualization images are presented. The slat extension and rotation was varied and documented. The results indicate that for small slat extensions, slat rotation is deleterious to performance, but is required for larger slat extensions for effective lift augmentation. Deployment of the slat was accompanied by a significant drag penalty due to premature localized flow separation. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Climate-Compatible Air Transport System—Climate Impact Mitigation Potential for Actual and Future Aircraft
Aerospace 2016, 3(4), 38; doi:10.3390/aerospace3040038 -
Abstract
Aviation guarantees mobility, but its emissions also contribute considerably to climate change. Therefore, climate impact mitigation strategies have to be developed based on comprehensive assessments of the different impacting factors. We quantify the climate impact mitigation potential and related costs resulting from changes
[...] Read more.
Aviation guarantees mobility, but its emissions also contribute considerably to climate change. Therefore, climate impact mitigation strategies have to be developed based on comprehensive assessments of the different impacting factors. We quantify the climate impact mitigation potential and related costs resulting from changes in aircraft operations and design using a multi-disciplinary model workflow. We first analyze the climate impact mitigation potential and cash operating cost changes of altered cruise altitudes and speeds for all flights globally operated by the Airbus A330-200 fleet in the year 2006. We find that this globally can lead to a 42% reduction in temperature response at a 10% cash operating cost increase. Based on this analysis, new design criteria are derived for future aircraft that are optimized for cruise conditions with reduced climate impact. The newly-optimized aircraft is re-assessed with the developed model workflow. We obtain additional climate mitigation potential with small to moderate cash operating cost changes due to the aircraft design changes of, e.g., a 32% and 54% temperature response reduction for a 0% and 10% cash operating cost increase. Hence, replacing the entire A330-200 fleet by this redesigned aircraft (Macr = 0.72 and initial cruise altitude (ICA) = 8000 m) could reduce the climate impact by 32% without an increase of cash operating cost. Full article
Figures

Open AccessArticle
Results of Long-Duration Simulation of Distant Retrograde Orbits
Aerospace 2016, 3(4), 37; doi:10.3390/aerospace3040037 -
Abstract
Distant Retrograde Orbits in the Earth–Moon system are gaining in popularity as stable “parking” orbits for various conceptual missions. To investigate the stability of potential Distant Retrograde Orbits, simulations were executed, with propagation running over a thirty-year period. Initial conditions for the vehicle
[...] Read more.
Distant Retrograde Orbits in the Earth–Moon system are gaining in popularity as stable “parking” orbits for various conceptual missions. To investigate the stability of potential Distant Retrograde Orbits, simulations were executed, with propagation running over a thirty-year period. Initial conditions for the vehicle state were limited such that the position and velocity vectors were in the Earth–Moon orbital plane, with the velocity oriented such that it would produce retrograde motion about Moon. The resulting trajectories were investigated for stability in an environment that included the eccentric motion of Moon, non-spherical gravity of Earth and Moon, gravitational perturbations from Sun, Jupiter, and Venus, and the effects of radiation pressure. The results indicate that stability may be enhanced at certain resonant states within the Earth–Moon system. Full article
Figures

Open AccessArticle
Numerical Investigation of Effect of Parameters on Hovering Efficiency of an Annular Lift Fan Aircraft
Aerospace 2016, 3(4), 35; doi:10.3390/aerospace3040035 -
Abstract
The effects of various parameters on the hovering performance of an annular lift fan aircraft are investigated by using numerical scheme. The pitch angle, thickness, aspect ratio (chord length), number of blades, and radius of duct inlet lip are explored to optimize the
[...] Read more.
The effects of various parameters on the hovering performance of an annular lift fan aircraft are investigated by using numerical scheme. The pitch angle, thickness, aspect ratio (chord length), number of blades, and radius of duct inlet lip are explored to optimize the figure of merit. The annular lift fan is also compared with a conventional circular lift fan of the same features with the same disc loading and similar geometry. The simulation results show that the pitch angle of 27°, the thickness of 4% chord length, the aspect ratio of 3.5~4.0, 32 blades, and the radius of inlet lip of 4.7% generate the maximum figure of merit of 0.733. The optimized configuration can be used for further studies of the annular lift fan aircraft. Full article
Figures

Figure 1

Open AccessArticle
Wing Tip Drag Reduction at Nominal Take-Off Mach Number: An Approach to Local Active Flow Control with a Highly Robust Actuator System
Aerospace 2016, 3(4), 36; doi:10.3390/aerospace3040036 -
Abstract
This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between
[...] Read more.
This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than cμ=0.6% suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow. Full article
Figures

Figure 1