Open AccessArticle
Re-Engineering a High Performance Electrical Series Elastic Actuator for Low-Cost Industrial Applications
Actuators 2017, 6(1), 5; doi:10.3390/act6010005 (registering DOI) -
Abstract
Cost is an important consideration when transferring a technology from research to industrial and educational use. In this paper, we introduce the design of an industrial grade series elastic actuator (SEA) performed via re-engineering a research grade version of it. Cost-constrained design requires
[...] Read more.
Cost is an important consideration when transferring a technology from research to industrial and educational use. In this paper, we introduce the design of an industrial grade series elastic actuator (SEA) performed via re-engineering a research grade version of it. Cost-constrained design requires careful consideration of the key performance parameters for an optimal performance-to-cost component selection. To optimize the performance of the new design, we started by matching the capabilities of a high-performance SEA while cutting down its production cost significantly. Our posit was that performing a re-engineering design process on an existing high-end device will significantly reduce the cost without compromising the performance drastically. As a case study of design for manufacturability, we selected the University of Texas Series Elastic Actuator (UT-SEA), a high-performance SEA, for its high power density, compact design, high efficiency and high speed properties. We partnered with an industrial corporation in China to research the best pricing options and to exploit the retail and production facilities provided by the Shenzhen region. We succeeded in producing a low-cost industrial grade actuator at one-third of the cost of the original device by re-engineering the UT-SEA with commercial off-the-shelf components and reducing the number of custom-made parts. Subsequently, we conducted performance tests to demonstrate that the re-engineered product achieves the same high-performance specifications found in the original device. With this paper, we aim to raise awareness in the robotics community on the possibility of low-cost realization of low-volume, high performance, industrial grade research and education hardware. Full article
Figures

Figure 1

Open AccessArticle
Fractional Order PID Control of Rotor Suspension by Active Magnetic Bearings
Actuators 2017, 6(1), 4; doi:10.3390/act6010004 -
Abstract
One of the key issues in control design for Active Magnetic Bearing (AMB) systems is the tradeoff between the simplicity of the controller structure and the performance of the closed-loop system. To achieve this tradeoff, this paper proposes the design of a fractional
[...] Read more.
One of the key issues in control design for Active Magnetic Bearing (AMB) systems is the tradeoff between the simplicity of the controller structure and the performance of the closed-loop system. To achieve this tradeoff, this paper proposes the design of a fractional order Proportional-Integral-Derivative (FOPID) controller. The FOPID controller consists of only two additional parameters in comparison with a conventional PID controller. The feasibility of FOPID for AMB systems is investigated for rotor suspension in both the radial and axial directions. Tuning methods are developed based on the evolutionary algorithms for searching the optimal values of the controller parameters. The resulting FOPID controllers are then tested and compared with a conventional PID controller, as well as with some advanced controllers such as Linear Quadratic Gausian (LQG) and H controllers. The comparison is made in terms of various stability and robustness specifications, as well as the dimensions of the controllers as implemented. Lastly, to validate the proposed method, experimental testing is carried out on a single-stage centrifugal compressor test rig equipped with magnetic bearings. The results show that, with a proper selection of gains and fractional orders, the performance of the resulting FOPID is similar to those of the advanced controllers. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Actuators in 2016
Actuators 2017, 6(1), 3; doi:10.3390/act6010003 -
Open AccessFeature PaperArticle
A Generalized Unbiased Control Strategy for Radial Magnetic Bearings
Actuators 2017, 6(1), 1; doi:10.3390/act6010001 -
Abstract
The present work extends a method of unbiased control originally developed for three-pole radial magnetic bearings into a generalized unbiased control strategy that encompasses bearings with an arbitrary number of poles. By allowing the control of bearings with more than three poles, the
[...] Read more.
The present work extends a method of unbiased control originally developed for three-pole radial magnetic bearings into a generalized unbiased control strategy that encompasses bearings with an arbitrary number of poles. By allowing the control of bearings with more than three poles, the applicability of the approach is broadened to the case of large rotors. Other ramifications of this generalized unbiased control strategy are fault tolerant unbiased bearings, control of bearings with more than three poles using 3-phase drives, and a novel approach to the unbiased control of eight-pole magnetic bearings. Full article
Figures

Figure 1

Open AccessArticle
Active Magnetic Bearing Online Levitation Recovery through μ-Synthesis Robust Control
Actuators 2017, 6(1), 2; doi:10.3390/act6010002 -
Abstract
A rotor supported on active magnetic bearings (AMBs) is levitated inside an air gap by electromagnets controlled in feedback. In the event of momentary loss of levitation due to an acute exogenous disturbance or external fault, reestablishing levitation may be prevented by unbalanced
[...] Read more.
A rotor supported on active magnetic bearings (AMBs) is levitated inside an air gap by electromagnets controlled in feedback. In the event of momentary loss of levitation due to an acute exogenous disturbance or external fault, reestablishing levitation may be prevented by unbalanced forces, contact forces, and the rotor’s dynamics. A novel robust control strategy is proposed for ensuring levitation recovery. The proposed strategy utilizes model-based μ-synthesis to find the requisite AMB control law with unique provisions to account for the contact forces and to prevent control effort saturation at the large deflections that occur during levitation failure. The proposed strategy is demonstrated experimentally with an AMB test rig. First, rotor drop tests are performed to tune a simple touchdown-bearing model. That model is then used to identify a performance weight, which bounds the contact forces during controller synthesis. Then, levitation recovery trials are conducted at 1000 and 2000 RPM, in which current to the AMB coils is momentarily stopped, representing an external fault. The motor is allowed to drive the rotor on the touchdown bearings until coil current is restored. For both cases, the proposed control strategy shows a marked improvement in relevitation transients. Full article
Figures

Figure 1

Open AccessArticle
MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations
Actuators 2016, 5(4), 27; doi:10.3390/act5040027 -
Abstract
This paper describes a semi-active vibration absorber (SVA) concept based on a real-time controlled magnetorheological damper (MR-SVA) for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency
[...] Read more.
This paper describes a semi-active vibration absorber (SVA) concept based on a real-time controlled magnetorheological damper (MR-SVA) for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD). Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Homopolar Permanent-Magnet-Biased Actuators and Their Application in Rotational Active Magnetic Bearing Systems
Actuators 2016, 5(4), 26; doi:10.3390/act5040026 -
Abstract
Active Magnetic Bearings (AMBs) are already widely used in rotating machinery and continue to gain popularity due to the ever-present push to higher rotational speeds and decreasing prices of associated electronic components. They offer several advantages over conventional mechanical bearings including non-contact rotor
[...] Read more.
Active Magnetic Bearings (AMBs) are already widely used in rotating machinery and continue to gain popularity due to the ever-present push to higher rotational speeds and decreasing prices of associated electronic components. They offer several advantages over conventional mechanical bearings including non-contact rotor support (thus eliminating mechanical wear and the need for lubricants), ability to tune bearing parameters through software for optimum machine performance, remote monitoring and health diagnostic, etc. In some applications, such as in a vacuum or in aggressive environments, they are often the only viable solution. An electromagnetic actuator, along with a position sensor and control electronics, is a key component of AMBs. While there is a variety of actuator designs described in the literature, most of the AMBs built commercially use heteropolar radial electrical actuators in combination with a dedicated electrically-biased axial actuators. On the contrary, since its inception in 1998, Calnetix Technologies mainly uses homopolar permanent magnet (PM)-biased radial actuators along with a homopolar PM-biased combination radial/axial actuators. In this paper, we provide an overview of the research we have done over the last 15 years in this area focusing on the advantages and disadvantages of this approach and explaining why we have made certain design choices. Full article
Figures

Figure 1

Open AccessArticle
Hysteresis Curve Fitting Optimization of Magnetic Controlled Shape Memory Alloy Actuator
Actuators 2016, 5(4), 25; doi:10.3390/act5040025 -
Abstract
As a new actuating material, magnetic controlled shape memory alloys (MSMAs) have excellent characteristics such as a large output strain, fast response, and high energy density. These excellent characteristics are very attractive for precision positioning systems. However, the availability of MSMAs in practical
[...] Read more.
As a new actuating material, magnetic controlled shape memory alloys (MSMAs) have excellent characteristics such as a large output strain, fast response, and high energy density. These excellent characteristics are very attractive for precision positioning systems. However, the availability of MSMAs in practical precision positioning is poor, caused by weak repeatability under a certain stimulus. This problem results from the error of a large magnetic hysteresis in an external magnetic field. A suitable hysteresis modelling method can reduce the error and improve the accuracy of the MSMA actuator. After analyzing the original hysteresis modelling methods, three kinds of hysteresis modelling methods are proposed: least squares method, back propagation (BP) artificial neural network, and BP artificial neural network based on genetic algorithms. Comparing the accuracy and convergence rate of three kinds of hysteresis modelling methods, the results show that the convergence rate of least squares method is the fastest, and the convergence accuracy of BP artificial neural networks based on genetic algorithms is the highest. Full article
Figures

Open AccessAddendum
Addendum: Rivera, I.; Avila, A.; Wang, J. Fourth-Order Contour Mode ZnO-on-SOI Disk Resonators for Mass Sensing Applications. Actuators 2015, 4, 60–76
Actuators 2016, 5(4), 24; doi:10.3390/act5040024 -
Open AccessArticle
A Thermoacoustic Model for High Aspect Ratio Nanostructures
Actuators 2016, 5(4), 23; doi:10.3390/act5040023 -
Abstract
In this paper, we have developed a new thermoacoustic model for predicting the resonance frequency and quality factors of one-dimensional (1D) nanoresonators. Considering a nanoresonator as a fix-free Bernoulli-Euler cantilever, an analytical model has been developed to show the influence of material and
[...] Read more.
In this paper, we have developed a new thermoacoustic model for predicting the resonance frequency and quality factors of one-dimensional (1D) nanoresonators. Considering a nanoresonator as a fix-free Bernoulli-Euler cantilever, an analytical model has been developed to show the influence of material and geometrical properties of 1D nanoresonators on their mechanical response without any damping. Diameter and elastic modulus have a direct relationship and length has an inverse relationship on the strain energy and stress at the clamp end of the nanoresonator. A thermoacoustic multiphysics COMSOL model has been elaborated to simulate the frequency response of vibrating 1D nanoresonators in air. The results are an excellent match with experimental data from independently published literature reports, and the results of this model are consistent with the analytical model. Considering the air and thermal damping in the thermoacoustic model, the quality factor of a nanowire has been estimated and the results show that zinc oxide (ZnO) and silver-gallium (Ag2Ga) nanoresonators are potential candidates as nanoresonators, nanoactuators, and for scanning probe microscopy applications. Full article
Figures

Open AccessArticle
Structural Behavior of a Multi-Layer Based Microbeam Actuator
Actuators 2016, 5(3), 22; doi:10.3390/act5030022 -
Abstract
In this paper, the structural behavior of a micro-electromechanical system (MEMS) composed of two electrically coupled parallel clamped-clamped microbeams is investigated. An Euler Bernoulli beam model is considered along with the nonlinear electric actuating force to get the equation of motion governing the
[...] Read more.
In this paper, the structural behavior of a micro-electromechanical system (MEMS) composed of two electrically coupled parallel clamped-clamped microbeams is investigated. An Euler Bernoulli beam model is considered along with the nonlinear electric actuating force to get the equation of motion governing the structural behavior of the actuator. A reduced-order modeling (ROM) based on the Galerkin expansion technique, while assuming linear undamped mode shapes of a straight fixed-fixed beam as the basis functions, is assumed as a discretization technique of the equations of motion in this investigation. The results showed that the double-microbeam MEMS actuator configuration requires a lower actuation voltage and a lower switching time as compared to the single microbeam actuator. Then, the effects of both microbeams air gap depths were investigated. Finally, the eigenvalue problem was investigated to get the variation of the fundamental natural frequencies of the coupled parallel microbeams with the applied actuating DC load. Full article
Figures

Figure 1

Open AccessArticle
An All-InkJet Printed Bending Actuator with Embedded Sensing Feature and an Electromagnetic Driving Mechanism
Actuators 2016, 5(3), 21; doi:10.3390/act5030021 -
Abstract
Bending actuators are key elements in many application fields. This paper presents an InkJet Printed actuator embedding an electromagnetic driving mechanism and a resistive sensing strategy. The lateral actuation range of the device is in the order of few millimeters, while it can
[...] Read more.
Bending actuators are key elements in many application fields. This paper presents an InkJet Printed actuator embedding an electromagnetic driving mechanism and a resistive sensing strategy. The lateral actuation range of the device is in the order of few millimeters, while it can exert forces in the order up to 375 µN. A deep characterization of the device is presented which reveals good performance of the lab-scale prototype developed both in the static and dynamic regime. In particular, the responsivity is found to be a function of the magnetic field used to actuate the beam. Specifically, responsivities of 43.5 × 10−3 m/A, 28.3 × 10−3 m/A and 19.5 × 10−3 m/A have been estimated in the static condition in the case of magnetic fields of 98.8 mT, 70.6 mT and 37.1 mT, respectively, while at the resonance frequency of 4.1 Hz the responsivity is 51 × 10−3 m/A in case of a magnetic field of 37.1 mT. Full article
Figures

Open AccessArticle
Novel Arrangements for High Performance and Durable Dielectric Elastomer Actuation
Actuators 2016, 5(3), 20; doi:10.3390/act5030020 -
Abstract
This paper advances the design of Rod Pre-strained Dielectric Elastomer Actuators (RP-DEAs) in their capability to generate comparatively large static actuation forces with increased lifetime via optimized electrode arrangements. RP-DEAs utilize thin stiff rods to constrain the expansion of the elastomer and maintain
[...] Read more.
This paper advances the design of Rod Pre-strained Dielectric Elastomer Actuators (RP-DEAs) in their capability to generate comparatively large static actuation forces with increased lifetime via optimized electrode arrangements. RP-DEAs utilize thin stiff rods to constrain the expansion of the elastomer and maintain the in-plane pre-strain in the rod longitudinal direction. The aim is to study both the force output and the durability of the RP-DEA. Initial design of the RP-DEA had poor durability, however, it generated significantly larger force compared with the conventional DEA due to the effects of pre-strain and rod constraints. The durability study identifies the in-electro-active-region (in-AR) lead contact and the non-uniform deformation of the structure as causes of pre-mature failure of the RP-DEA. An optimized AR configuration is proposed to avoid actuating undesired areas in the structure. The results show that with the optimized AR, the RP-DEA can be effectively stabilized and survive operation at least four times longer than with a conventional electrode arrangement. Finally, a Finite Element simulation was also performed to demonstrate that such AR design and optimization can be guided by analyzing the DEA structure in the state of pre-activation. Full article
Figures

Open AccessArticle
Magnetic Actuator with Multiple Vibration Components Arranged at Eccentric Positions for Use in Complex Piping
Actuators 2016, 5(3), 19; doi:10.3390/act5030019 -
Abstract
This paper proposes a magnetic actuator using multiple vibration components to perform locomotion in a complex pipe with a 25 mm inner diameter. Due to the desire to increase the turning moment in a T-junction pipe, two vibration components were attached off-center to
[...] Read more.
This paper proposes a magnetic actuator using multiple vibration components to perform locomotion in a complex pipe with a 25 mm inner diameter. Due to the desire to increase the turning moment in a T-junction pipe, two vibration components were attached off-center to an acrylic plate with an eccentricity of 2 mm. The experimental results show that the magnetic actuator was able to move at 40.6 mm/s while pulling a load mass of 20 g in a pipe with an inner diameter of 25 mm. In addition, this magnetic actuator was able to move stably in U-junction and T-junction pipes. If a micro-camera is implemented in the future, the inspection of small complex pipes can be enabled. The possibility of inspection in pipes with a 25 mm inner diameter was shown by equipping the pipe with a micro-camera. Full article
Figures

Figure 1

Open AccessEditorial
High Resolution Actuators
Actuators 2016, 5(2), 18; doi:10.3390/act5020018 -
Abstract Driven by increasing societal, economic, and technological pressures, high-resolution actuators must achieve ever increasing accuracy requirements and functional integration into the system.[...] Full article
Open AccessArticle
Development of a New Backdrivable Actuator for Haptic Interfaces and Collaborative Robots
Actuators 2016, 5(2), 17; doi:10.3390/act5020017 -
Abstract
Industrial robots are most often position controlled and insensitive to external forces. In many robotic applications, however, such as teleoperation, haptics for virtual reality, and collaborative robotics, a close cooperation between humans and robots is required. For such applications, force sensing and control
[...] Read more.
Industrial robots are most often position controlled and insensitive to external forces. In many robotic applications, however, such as teleoperation, haptics for virtual reality, and collaborative robotics, a close cooperation between humans and robots is required. For such applications, force sensing and control capabilities are required for stable interactions with the operator and environment. The robots must also be backdrivable, i.e., the robot must be able to follow user’s induced movements with the least possible resistance. High force efficiency is also desirable. These requirements are different from the design drivers of traditional industrial robots and call for specific actuators and reducers. Many such devices were proposed in the literature. However, they suffer from several drawbacks, offering either a limited reduction ratio or being complex and bulky. This paper introduces a novel solution to this problem. A new differential cable drive reducer is presented. It is backdrivable, has a high efficiency, and a potentially infinite reduction ratio. A prototype actuator using such a reducer has been developed and integrated on a test bench. The experimental characterization of its performance confirms its theoretical advantages. Full article
Figures

Open AccessArticle
Spatially Nonuniform Heating and the Nonlinear Transient Response of Elastomeric Photomechanical Actuators
Actuators 2016, 5(2), 16; doi:10.3390/act5020016 -
Abstract
Recently various nanomaterials, such as carbon nanotubes and graphene, have been added to rubbery elastomers, such as poly dimethyl siloxane (PDMS), to enable generation of stress and displacement in response to remote illumination. While the response is primarily due to heat-induced generation of
[...] Read more.
Recently various nanomaterials, such as carbon nanotubes and graphene, have been added to rubbery elastomers, such as poly dimethyl siloxane (PDMS), to enable generation of stress and displacement in response to remote illumination. While the response is primarily due to heat-induced generation of stress; i.e., the thermoelastic effect in rubbers, illuminated samples have shown unexpected deviations between the transient waveforms of sample temperature and induced stress. In this report we have created a new and simple lumped element model to explain the stress behavior of these photomechanical nanocomposites. The model consists of two parameters that describe the spatially averaged steady state temperature rise due to optical absorption of the structure (typically a long strip of pre-strained elastomer) and the spatially averaged convective cooling rate of the strip, together with a time-varying function that effectively represents the temperature distribution and thermal convection along the length of the strip. The model is used to compare two actuators that each have a thin embedded layer of carbon nanotubes, in which the one film consists of randomly aligned nanotubes and the other has a much more ordered alignment. The model not only fits both transient responses, but the differences between the parameters suggests that the ordered film conducts heat across the strip more rapidly than the disordered film, leading to it more rapidly reaching the steady state level of maximum stress. This model should be helpful in future experimental studies that work to observe, delineate and identify possible nanoscale and molecular contributions to photomechanical stress. Full article
Figures

Open AccessReview
Performance and Applications of L1B2 Ultrasonic Motors
Actuators 2016, 5(2), 15; doi:10.3390/act5020015 -
Abstract
Piezoelectric ultrasonic motors offer important advantages for motion applications where high speed is coupled with high precision. The advances made in the recent decades in the field of ultrasonic motor based motion solutions allow the construction of complete motion platforms in the fields
[...] Read more.
Piezoelectric ultrasonic motors offer important advantages for motion applications where high speed is coupled with high precision. The advances made in the recent decades in the field of ultrasonic motor based motion solutions allow the construction of complete motion platforms in the fields of semiconductors, aerospace and electro-optics. Among the various motor designs, the L1B2 motor type has been successful in industrial applications, offering high precision, effective control and operational robustness. This paper reviews the design of high precision motion solutions based on L1B2 ultrasonic motors—from the basic motor structure to the complete motion solution architecture, including motor drive and control, material considerations and performance envelope. The performance is demonstrated, via constructed motion stages, to exhibit fast move and settle, a repeatability window of tens of nanometers, lifetime into the tens of millions of operational cycles, and compatibility with clean room and aerospace environments. Example stages and modules for semiconductor, aerospace, electro-optical and biomedical applications are presented. The described semiconductor and aerospace solutions are powered by Nanomotion HR type motors, driven by a sine wave up to 80 V/mm rms, having a driving frequency of 39.6 kHz, providing a maximum force up to 4 N per driving element (at 5 W power consumption per element) and a maximum linear velocity above 300 mm/s. The described electro-optical modules are powered by small Nanomotion Edge motors driven by voltages up to 11 V AC, providing stall forces up to 0.35 N (power consumption up to 0.75 W) and maximum linear velocity above 200 mm/s. Full article
Figures

Open AccessArticle
Getting Started with PEAs-Based Flapping-Wing Mechanisms for Micro Aerial Systems
Actuators 2016, 5(2), 14; doi:10.3390/act5020014 -
Abstract
This paper introduces recent advances on flapping-wing Micro and Nano Aerial Vehicles (MAVs and NAVs) based on Piezoelectric Actuators (PEA). Therefore, this work provides essential information to address the development of such bio-inspired aerial robots. PEA are commonly used in micro-robotics and precise
[...] Read more.
This paper introduces recent advances on flapping-wing Micro and Nano Aerial Vehicles (MAVs and NAVs) based on Piezoelectric Actuators (PEA). Therefore, this work provides essential information to address the development of such bio-inspired aerial robots. PEA are commonly used in micro-robotics and precise positioning applications (e.g., micro-positioning and micro-manipulation), whereas within the Unmanned Aerial Vehicles (UAVs) domain, motors are the classical actuators used for rotary or fixed-wing configurations. Therefore, we consider it pertinent to provide essential information regarding the modeling and control of piezoelectric cantilever actuators to accelerate early design and development stages of aerial microrobots based on flapping-wing systems. In addition, the equations describing the aerodynamic behavior of a flapping-wing configuration are presented. Full article
Figures

Open AccessReview
Antiferroelectric Shape Memory Ceramics
Actuators 2016, 5(2), 11; doi:10.3390/act5020011 -
Abstract
Antiferroelectrics (AFE) can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26%) associated with the AFE to Ferroelectric (FE) phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick
[...] Read more.
Antiferroelectrics (AFE) can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26%) associated with the AFE to Ferroelectric (FE) phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms). In the Pb0.99Nb0.02[(Zr0.6Sn0.4)1-yTiy]0.98O3 (PNZST) system, the shape memory function is observed in the intermediate range between high temperature AFE and low temperature FE, or low Ti-concentration AFE and high Ti-concentration FE in the composition. In the AFE multilayer actuators (MLAs), the crack is initiated in the center of a pair of internal electrodes under cyclic electric field, rather than the edge area of the internal electrodes in normal piezoelectric MLAs. The two-sublattice polarization coupling model is proposed to explain: (1) isotropic volume expansion during the AFE-FE transformation; and (2) piezoelectric anisotropy. We introduce latching relays and mechanical clampers as possible unique applications of shape memory ceramics. Full article