Open AccessFeature PaperArticle
The Proposal of Magnetic Suspension using Laterally Control Flux-Path Mechanism
Actuators 2017, 6(1), 11; doi:10.3390/act6010011 -
Abstract
A novel flux control magnetic suspension system that places control plates beside the magnetic source (permanent magnet) is proposed. In a conventional flux-path control magnetic suspension system, the control plates were inserted between the magnetic source and the suspended object (floator). In contrast,
[...] Read more.
A novel flux control magnetic suspension system that places control plates beside the magnetic source (permanent magnet) is proposed. In a conventional flux-path control magnetic suspension system, the control plates were inserted between the magnetic source and the suspended object (floator). In contrast, the control plates were placed beside the magnetic source in the proposed system. In such a configuration, the effective gap becomes larger than in the conventional system. Basic characteristics of the proposed magnetic suspension system were studied both numerically and experimentally. The numerical analyses show that the attractive force acting on the floator increases as the position of the lateral ring-shape control plate increases. The variation of the attractive force is sufficient for the stabilization of the suspension system. It is also shown that lateral force can be generated by dividing the plates into halves and moving them differentially. The predicted characteristics are confirmed experimentally in a fabricated apparatus with a three-axis force sensor and a gap adjustment mechanism. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Design, Implementation and Evaluation of a Pump-Controlled Circuit for Single Rod Actuators
Actuators 2017, 6(1), 10; doi:10.3390/act6010010 -
Abstract
Pump-controlled hydraulic circuits are more efficient than valve-controlled circuits, as they eliminate the energy losses due to flow throttling in valves and require less cooling effort. Presently existing pump-controlled solutions for single rod cylinders encounter an undesirable performance during certain operating conditions. This
[...] Read more.
Pump-controlled hydraulic circuits are more efficient than valve-controlled circuits, as they eliminate the energy losses due to flow throttling in valves and require less cooling effort. Presently existing pump-controlled solutions for single rod cylinders encounter an undesirable performance during certain operating conditions. This paper investigates the performance issues in common pump-controlled circuits for the single rod actuators. Detailed analysis is conducted that identifies these regions in a load-velocity plane and the factors affecting them. The findings are validated by experimental results. A new design is then proposed that employs a limited throttling valve alongside two pilot operated check valves for differential flow compensation to improve the performance. The valve is of the flow control type and is chosen to have a throttling effect over critical regions; it has the least throttling over other operating regions, thus maintaining efficiency. Experimental work demonstrates improved performance in a full operating range of the actuator as compared to a circuit that uses only the pilot-operated check valves. This circuit is energy efficient and capable of recuperating energy. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Transpermeance Amplifier Applied to Magnetic Bearings
Actuators 2017, 6(1), 9; doi:10.3390/act6010009 -
Abstract
The most conventional approach of controlling magnetic forces in active magnetic bearings (AMBs) is through current feedback amplifiers: transconductance. This enables the operation of the AMB to be understood in terms of a relatively simple current-based model as has been widely reported on
[...] Read more.
The most conventional approach of controlling magnetic forces in active magnetic bearings (AMBs) is through current feedback amplifiers: transconductance. This enables the operation of the AMB to be understood in terms of a relatively simple current-based model as has been widely reported on in the literature. The alternative notion of using transpermeance amplifiers, which approximate the feedback of gap flux rather than current, has been in commercial use in some form for at least thirty years, however is only recently seeing more widespread acceptance as a commercial standard. This study explores how such alternative amplifiers should be modeled and then examines the differences in behavior between AMBs equipped with transconductance and transpermeance amplifiers. The focus of this study is on two aspects. The first is the influence of rotor displacement on AMB force, commonly modeled as a constant negative equivalent mechanical stiffness, and it is shown that either scheme actually leads to a finite bandwidth effect, but that this bandwidth is much lower when transpermeance is employed. The second aspect is the influence of eddy currents. Using a very simple model of eddy currents (a secondary short-circuited coil), it is demonstrated that transpermeance amplifiers can recover significant actuator bandwidth compared with transconductance, but at the cost of needing increased peak current headroom. Full article
Figures

Figure 1

Open AccessReview
Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives
Actuators 2017, 6(1), 7; doi:10.3390/act6010007 -
Abstract
Piezoelectric inertia motors—also known as stick-slip motors or (smooth) impact drives—use the inertia of a body to drive it in small steps by means of an uninterrupted friction contact. In addition to the typical advantages of piezoelectric motors, they are especially suited for
[...] Read more.
Piezoelectric inertia motors—also known as stick-slip motors or (smooth) impact drives—use the inertia of a body to drive it in small steps by means of an uninterrupted friction contact. In addition to the typical advantages of piezoelectric motors, they are especially suited for miniaturisation due to their simple structure and inherent fine-positioning capability. Originally developed for positioning in microscopy in the 1980s, they have nowadays also found application in mass-produced consumer goods. Recent research results are likely to enable more applications of piezoelectric inertia motors in the future. This contribution gives a critical overview of their historical development, functional principles, and related terminology. The most relevant aspects regarding their design—i.e., friction contact, solid state actuator, and electrical excitation—are discussed, including aspects of control and simulation. The article closes with an outlook on possible future developments and research perspectives. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Applying Standard Industrial Components for Active Magnetic Bearings
Actuators 2017, 6(1), 8; doi:10.3390/act6010008 -
Abstract
With the increasing number of active magnetic bearing applications, satisfying additional requirements is becoming increasingly more important. As for every technology, moving away from being a niche product and achieving a higher level of maturity, these requirements relate to robustness, reliability, availability, safety,
[...] Read more.
With the increasing number of active magnetic bearing applications, satisfying additional requirements is becoming increasingly more important. As for every technology, moving away from being a niche product and achieving a higher level of maturity, these requirements relate to robustness, reliability, availability, safety, security, traceability, certification, handling, flexibility, reporting, costs, and delivery times. Employing standard industrial components, such as those from flexible modular motion control drive systems, is an approach that allows these requirements to be satisfied while achieving rapid technological innovation. In this article, we discuss technical and non-technical aspects of using standard industrial components in magnetic bearing applications. Full article
Figures

Open AccessFeature PaperArticle
A Miniature Pneumatic Bending Rubber Actuator Controlled by Using the PSO-SVR-Based Motion Estimation Method with the Generalized Gaussian Kernel
Actuators 2017, 6(1), 6; doi:10.3390/act6010006 -
Abstract
Soft actuators have been employed in various fields recently. A miniature pneumatic bending rubber actuator is one of the soft actuators. This actuator will be used for medical and biological fields. Its flexibility and high safety are suitable for fragile objects. However, its
[...] Read more.
Soft actuators have been employed in various fields recently. A miniature pneumatic bending rubber actuator is one of the soft actuators. This actuator will be used for medical and biological fields. Its flexibility and high safety are suitable for fragile objects. However, its modeling is difficult due to its nonlinearity. There are no suitable sensors to measure the output of this actuator. In this paper, the particle swarm optimization-support vector regression (PSO-SVR)-based estimation method with the generalized Gaussian kernel is proposed. An experimental result with the operator-based robust nonlinear control system is employed to verify the effectiveness of the proposed method. Full article
Figures

Figure 1

Open AccessArticle
Re-Engineering a High Performance Electrical Series Elastic Actuator for Low-Cost Industrial Applications
Actuators 2017, 6(1), 5; doi:10.3390/act6010005 -
Abstract
Cost is an important consideration when transferring a technology from research to industrial and educational use. In this paper, we introduce the design of an industrial grade series elastic actuator (SEA) performed via re-engineering a research grade version of it. Cost-constrained design requires
[...] Read more.
Cost is an important consideration when transferring a technology from research to industrial and educational use. In this paper, we introduce the design of an industrial grade series elastic actuator (SEA) performed via re-engineering a research grade version of it. Cost-constrained design requires careful consideration of the key performance parameters for an optimal performance-to-cost component selection. To optimize the performance of the new design, we started by matching the capabilities of a high-performance SEA while cutting down its production cost significantly. Our posit was that performing a re-engineering design process on an existing high-end device will significantly reduce the cost without compromising the performance drastically. As a case study of design for manufacturability, we selected the University of Texas Series Elastic Actuator (UT-SEA), a high-performance SEA, for its high power density, compact design, high efficiency and high speed properties. We partnered with an industrial corporation in China to research the best pricing options and to exploit the retail and production facilities provided by the Shenzhen region. We succeeded in producing a low-cost industrial grade actuator at one-third of the cost of the original device by re-engineering the UT-SEA with commercial off-the-shelf components and reducing the number of custom-made parts. Subsequently, we conducted performance tests to demonstrate that the re-engineered product achieves the same high-performance specifications found in the original device. With this paper, we aim to raise awareness in the robotics community on the possibility of low-cost realization of low-volume, high performance, industrial grade research and education hardware. Full article
Figures

Figure 1

Open AccessArticle
Fractional Order PID Control of Rotor Suspension by Active Magnetic Bearings
Actuators 2017, 6(1), 4; doi:10.3390/act6010004 -
Abstract
One of the key issues in control design for Active Magnetic Bearing (AMB) systems is the tradeoff between the simplicity of the controller structure and the performance of the closed-loop system. To achieve this tradeoff, this paper proposes the design of a fractional
[...] Read more.
One of the key issues in control design for Active Magnetic Bearing (AMB) systems is the tradeoff between the simplicity of the controller structure and the performance of the closed-loop system. To achieve this tradeoff, this paper proposes the design of a fractional order Proportional-Integral-Derivative (FOPID) controller. The FOPID controller consists of only two additional parameters in comparison with a conventional PID controller. The feasibility of FOPID for AMB systems is investigated for rotor suspension in both the radial and axial directions. Tuning methods are developed based on the evolutionary algorithms for searching the optimal values of the controller parameters. The resulting FOPID controllers are then tested and compared with a conventional PID controller, as well as with some advanced controllers such as Linear Quadratic Gausian (LQG) and H controllers. The comparison is made in terms of various stability and robustness specifications, as well as the dimensions of the controllers as implemented. Lastly, to validate the proposed method, experimental testing is carried out on a single-stage centrifugal compressor test rig equipped with magnetic bearings. The results show that, with a proper selection of gains and fractional orders, the performance of the resulting FOPID is similar to those of the advanced controllers. Full article
Figures

Figure 1

Open AccessEditorial
Acknowledgement to Reviewers of Actuators in 2016
Actuators 2017, 6(1), 3; doi:10.3390/act6010003 -
Open AccessFeature PaperArticle
A Generalized Unbiased Control Strategy for Radial Magnetic Bearings
Actuators 2017, 6(1), 1; doi:10.3390/act6010001 -
Abstract
The present work extends a method of unbiased control originally developed for three-pole radial magnetic bearings into a generalized unbiased control strategy that encompasses bearings with an arbitrary number of poles. By allowing the control of bearings with more than three poles, the
[...] Read more.
The present work extends a method of unbiased control originally developed for three-pole radial magnetic bearings into a generalized unbiased control strategy that encompasses bearings with an arbitrary number of poles. By allowing the control of bearings with more than three poles, the applicability of the approach is broadened to the case of large rotors. Other ramifications of this generalized unbiased control strategy are fault tolerant unbiased bearings, control of bearings with more than three poles using 3-phase drives, and a novel approach to the unbiased control of eight-pole magnetic bearings. Full article
Figures

Figure 1

Open AccessArticle
Active Magnetic Bearing Online Levitation Recovery through μ-Synthesis Robust Control
Actuators 2017, 6(1), 2; doi:10.3390/act6010002 -
Abstract
A rotor supported on active magnetic bearings (AMBs) is levitated inside an air gap by electromagnets controlled in feedback. In the event of momentary loss of levitation due to an acute exogenous disturbance or external fault, reestablishing levitation may be prevented by unbalanced
[...] Read more.
A rotor supported on active magnetic bearings (AMBs) is levitated inside an air gap by electromagnets controlled in feedback. In the event of momentary loss of levitation due to an acute exogenous disturbance or external fault, reestablishing levitation may be prevented by unbalanced forces, contact forces, and the rotor’s dynamics. A novel robust control strategy is proposed for ensuring levitation recovery. The proposed strategy utilizes model-based μ-synthesis to find the requisite AMB control law with unique provisions to account for the contact forces and to prevent control effort saturation at the large deflections that occur during levitation failure. The proposed strategy is demonstrated experimentally with an AMB test rig. First, rotor drop tests are performed to tune a simple touchdown-bearing model. That model is then used to identify a performance weight, which bounds the contact forces during controller synthesis. Then, levitation recovery trials are conducted at 1000 and 2000 RPM, in which current to the AMB coils is momentarily stopped, representing an external fault. The motor is allowed to drive the rotor on the touchdown bearings until coil current is restored. For both cases, the proposed control strategy shows a marked improvement in relevitation transients. Full article
Figures

Figure 1

Open AccessArticle
MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations
Actuators 2016, 5(4), 27; doi:10.3390/act5040027 -
Abstract
This paper describes a semi-active vibration absorber (SVA) concept based on a real-time controlled magnetorheological damper (MR-SVA) for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency
[...] Read more.
This paper describes a semi-active vibration absorber (SVA) concept based on a real-time controlled magnetorheological damper (MR-SVA) for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD). Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited. Full article
Figures

Figure 1

Open AccessFeature PaperReview
Homopolar Permanent-Magnet-Biased Actuators and Their Application in Rotational Active Magnetic Bearing Systems
Actuators 2016, 5(4), 26; doi:10.3390/act5040026 -
Abstract
Active Magnetic Bearings (AMBs) are already widely used in rotating machinery and continue to gain popularity due to the ever-present push to higher rotational speeds and decreasing prices of associated electronic components. They offer several advantages over conventional mechanical bearings including non-contact rotor
[...] Read more.
Active Magnetic Bearings (AMBs) are already widely used in rotating machinery and continue to gain popularity due to the ever-present push to higher rotational speeds and decreasing prices of associated electronic components. They offer several advantages over conventional mechanical bearings including non-contact rotor support (thus eliminating mechanical wear and the need for lubricants), ability to tune bearing parameters through software for optimum machine performance, remote monitoring and health diagnostic, etc. In some applications, such as in a vacuum or in aggressive environments, they are often the only viable solution. An electromagnetic actuator, along with a position sensor and control electronics, is a key component of AMBs. While there is a variety of actuator designs described in the literature, most of the AMBs built commercially use heteropolar radial electrical actuators in combination with a dedicated electrically-biased axial actuators. On the contrary, since its inception in 1998, Calnetix Technologies mainly uses homopolar permanent magnet (PM)-biased radial actuators along with a homopolar PM-biased combination radial/axial actuators. In this paper, we provide an overview of the research we have done over the last 15 years in this area focusing on the advantages and disadvantages of this approach and explaining why we have made certain design choices. Full article
Figures

Figure 1

Open AccessArticle
Hysteresis Curve Fitting Optimization of Magnetic Controlled Shape Memory Alloy Actuator
Actuators 2016, 5(4), 25; doi:10.3390/act5040025 -
Abstract
As a new actuating material, magnetic controlled shape memory alloys (MSMAs) have excellent characteristics such as a large output strain, fast response, and high energy density. These excellent characteristics are very attractive for precision positioning systems. However, the availability of MSMAs in practical
[...] Read more.
As a new actuating material, magnetic controlled shape memory alloys (MSMAs) have excellent characteristics such as a large output strain, fast response, and high energy density. These excellent characteristics are very attractive for precision positioning systems. However, the availability of MSMAs in practical precision positioning is poor, caused by weak repeatability under a certain stimulus. This problem results from the error of a large magnetic hysteresis in an external magnetic field. A suitable hysteresis modelling method can reduce the error and improve the accuracy of the MSMA actuator. After analyzing the original hysteresis modelling methods, three kinds of hysteresis modelling methods are proposed: least squares method, back propagation (BP) artificial neural network, and BP artificial neural network based on genetic algorithms. Comparing the accuracy and convergence rate of three kinds of hysteresis modelling methods, the results show that the convergence rate of least squares method is the fastest, and the convergence accuracy of BP artificial neural networks based on genetic algorithms is the highest. Full article
Figures

Open AccessAddendum
Addendum: Rivera, I.; Avila, A.; Wang, J. Fourth-Order Contour Mode ZnO-on-SOI Disk Resonators for Mass Sensing Applications. Actuators 2015, 4, 60–76
Actuators 2016, 5(4), 24; doi:10.3390/act5040024 -
Open AccessArticle
A Thermoacoustic Model for High Aspect Ratio Nanostructures
Actuators 2016, 5(4), 23; doi:10.3390/act5040023 -
Abstract
In this paper, we have developed a new thermoacoustic model for predicting the resonance frequency and quality factors of one-dimensional (1D) nanoresonators. Considering a nanoresonator as a fix-free Bernoulli-Euler cantilever, an analytical model has been developed to show the influence of material and
[...] Read more.
In this paper, we have developed a new thermoacoustic model for predicting the resonance frequency and quality factors of one-dimensional (1D) nanoresonators. Considering a nanoresonator as a fix-free Bernoulli-Euler cantilever, an analytical model has been developed to show the influence of material and geometrical properties of 1D nanoresonators on their mechanical response without any damping. Diameter and elastic modulus have a direct relationship and length has an inverse relationship on the strain energy and stress at the clamp end of the nanoresonator. A thermoacoustic multiphysics COMSOL model has been elaborated to simulate the frequency response of vibrating 1D nanoresonators in air. The results are an excellent match with experimental data from independently published literature reports, and the results of this model are consistent with the analytical model. Considering the air and thermal damping in the thermoacoustic model, the quality factor of a nanowire has been estimated and the results show that zinc oxide (ZnO) and silver-gallium (Ag2Ga) nanoresonators are potential candidates as nanoresonators, nanoactuators, and for scanning probe microscopy applications. Full article
Figures

Open AccessArticle
Structural Behavior of a Multi-Layer Based Microbeam Actuator
Actuators 2016, 5(3), 22; doi:10.3390/act5030022 -
Abstract
In this paper, the structural behavior of a micro-electromechanical system (MEMS) composed of two electrically coupled parallel clamped-clamped microbeams is investigated. An Euler Bernoulli beam model is considered along with the nonlinear electric actuating force to get the equation of motion governing the
[...] Read more.
In this paper, the structural behavior of a micro-electromechanical system (MEMS) composed of two electrically coupled parallel clamped-clamped microbeams is investigated. An Euler Bernoulli beam model is considered along with the nonlinear electric actuating force to get the equation of motion governing the structural behavior of the actuator. A reduced-order modeling (ROM) based on the Galerkin expansion technique, while assuming linear undamped mode shapes of a straight fixed-fixed beam as the basis functions, is assumed as a discretization technique of the equations of motion in this investigation. The results showed that the double-microbeam MEMS actuator configuration requires a lower actuation voltage and a lower switching time as compared to the single microbeam actuator. Then, the effects of both microbeams air gap depths were investigated. Finally, the eigenvalue problem was investigated to get the variation of the fundamental natural frequencies of the coupled parallel microbeams with the applied actuating DC load. Full article
Figures

Figure 1

Open AccessArticle
An All-InkJet Printed Bending Actuator with Embedded Sensing Feature and an Electromagnetic Driving Mechanism
Actuators 2016, 5(3), 21; doi:10.3390/act5030021 -
Abstract
Bending actuators are key elements in many application fields. This paper presents an InkJet Printed actuator embedding an electromagnetic driving mechanism and a resistive sensing strategy. The lateral actuation range of the device is in the order of few millimeters, while it can
[...] Read more.
Bending actuators are key elements in many application fields. This paper presents an InkJet Printed actuator embedding an electromagnetic driving mechanism and a resistive sensing strategy. The lateral actuation range of the device is in the order of few millimeters, while it can exert forces in the order up to 375 µN. A deep characterization of the device is presented which reveals good performance of the lab-scale prototype developed both in the static and dynamic regime. In particular, the responsivity is found to be a function of the magnetic field used to actuate the beam. Specifically, responsivities of 43.5 × 10−3 m/A, 28.3 × 10−3 m/A and 19.5 × 10−3 m/A have been estimated in the static condition in the case of magnetic fields of 98.8 mT, 70.6 mT and 37.1 mT, respectively, while at the resonance frequency of 4.1 Hz the responsivity is 51 × 10−3 m/A in case of a magnetic field of 37.1 mT. Full article
Figures

Open AccessArticle
Novel Arrangements for High Performance and Durable Dielectric Elastomer Actuation
Actuators 2016, 5(3), 20; doi:10.3390/act5030020 -
Abstract
This paper advances the design of Rod Pre-strained Dielectric Elastomer Actuators (RP-DEAs) in their capability to generate comparatively large static actuation forces with increased lifetime via optimized electrode arrangements. RP-DEAs utilize thin stiff rods to constrain the expansion of the elastomer and maintain
[...] Read more.
This paper advances the design of Rod Pre-strained Dielectric Elastomer Actuators (RP-DEAs) in their capability to generate comparatively large static actuation forces with increased lifetime via optimized electrode arrangements. RP-DEAs utilize thin stiff rods to constrain the expansion of the elastomer and maintain the in-plane pre-strain in the rod longitudinal direction. The aim is to study both the force output and the durability of the RP-DEA. Initial design of the RP-DEA had poor durability, however, it generated significantly larger force compared with the conventional DEA due to the effects of pre-strain and rod constraints. The durability study identifies the in-electro-active-region (in-AR) lead contact and the non-uniform deformation of the structure as causes of pre-mature failure of the RP-DEA. An optimized AR configuration is proposed to avoid actuating undesired areas in the structure. The results show that with the optimized AR, the RP-DEA can be effectively stabilized and survive operation at least four times longer than with a conventional electrode arrangement. Finally, a Finite Element simulation was also performed to demonstrate that such AR design and optimization can be guided by analyzing the DEA structure in the state of pre-activation. Full article
Figures

Open AccessArticle
Magnetic Actuator with Multiple Vibration Components Arranged at Eccentric Positions for Use in Complex Piping
Actuators 2016, 5(3), 19; doi:10.3390/act5030019 -
Abstract
This paper proposes a magnetic actuator using multiple vibration components to perform locomotion in a complex pipe with a 25 mm inner diameter. Due to the desire to increase the turning moment in a T-junction pipe, two vibration components were attached off-center to
[...] Read more.
This paper proposes a magnetic actuator using multiple vibration components to perform locomotion in a complex pipe with a 25 mm inner diameter. Due to the desire to increase the turning moment in a T-junction pipe, two vibration components were attached off-center to an acrylic plate with an eccentricity of 2 mm. The experimental results show that the magnetic actuator was able to move at 40.6 mm/s while pulling a load mass of 20 g in a pipe with an inner diameter of 25 mm. In addition, this magnetic actuator was able to move stably in U-junction and T-junction pipes. If a micro-camera is implemented in the future, the inspection of small complex pipes can be enabled. The possibility of inspection in pipes with a 25 mm inner diameter was shown by equipping the pipe with a micro-camera. Full article
Figures

Figure 1