Special Issue "Air Transportation—Operations and Management"

A special issue of Aerospace (ISSN 2226-4310).

Deadline for manuscript submissions: 31 January 2018

Special Issue Editors

Guest Editor
Dr. Michael Schultz

Department of Air Transportation, Institute of Flight Guidance, German Aerospace Center (DLR), 38108 Braunschweig, Germany
Website | E-Mail
Interests: air transport; ATM; integrated airport management; complexity; pedestrian dynamics
Guest Editor
Dr. Judith Rosenow

Institute of Logistics and Aviation, Technische Universität Dresden, 01062 Dresden, Germany
Website | E-Mail
Interests: contrails; ATM; air traffic; trajectory optimization; flight performance

Special Issue Information

Dear Colleagues,

Future air traffic demand requires air traffic providers, operators, and researchers, implementing new procedures and technologies to handle the dense air traffic network. The bottlenecks in capacity, which are already partly present, challenge air traffic control on landside, ground, and airside. The economic pressure further forces air traffic stakeholders to sustainably increase the transport efficiency considering upcoming societal and environmental issues without a deterioration of the safety level. Inefficiencies indicating a high improvement potential have been identified in the time-based operations of aircraft, of interdependencies aircraft and passenger trajectories, economic and ecology impact of air traffic, network operations and handling of uncertainties, disturbances, and disruptions in the aviation system. Current approaches will provide solutions, such as resilient air transport network management, green airport taxi procedures, optimal control of scarce resources (e.g., slots, runway or apron capacity, fleet allocation), and mitigation of impact of severe weather conditions. Focusing aircraft operations, new optimization algorithms deal with time based trajectory management considering conflicting goals of increased efficiency and environmental awareness, noise abatement strategies, efficient air space design and increased target levels of safety. This collection invites papers that present solutions for the areas of air traffic operations and economics. Of interest are papers that address solutions to deal with challenges of all air traffic stakeholders. In particular, the Special Issue wants to focus on dynamic airspace management, flight centered operations, turnaround management, air transport performance (e.g., new metrics, inter-airport coordination), trajectory management, eco-efficient aircraft operations (e.g., formation flight, contrail avoidance), airport management (e.g., integrated approaches, pre-tactical planning), delay mitigation in the transport network, and holistic optimization approaches. Innovative solutions are being sought to enable versatile investigations of the air transport domain and provide multi-disciplinary approaches.

Dr. Michael Schultz
Dr. Judith Rosenow
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) is waived for well-prepared manuscripts submitted to this issue. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aviation
  • transportation
  • airport
  • air space
  • traffic management
  • operations

Published Papers (3 papers)

View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Open AccessArticle Comparative Study of Aircraft Boarding Strategies Using Cellular Discrete Event Simulation
Aerospace 2017, 4(4), 57; doi:10.3390/aerospace4040057
Received: 6 November 2017 / Revised: 23 November 2017 / Accepted: 25 November 2017 / Published: 28 November 2017
PDF Full-text (6553 KB) | HTML Full-text | XML Full-text
Abstract
Time is crucial in the airlines industry. Among all factors contributing to an aircraft turnaround time; passenger boarding delays is the most challenging one. Airlines do not have control over the behavior of passengers; thus, focusing their effort on reducing passenger boarding time
[...] Read more.
Time is crucial in the airlines industry. Among all factors contributing to an aircraft turnaround time; passenger boarding delays is the most challenging one. Airlines do not have control over the behavior of passengers; thus, focusing their effort on reducing passenger boarding time through implementing efficient boarding strategies. In this work, we attempt to use cellular Discrete-Event System Specification (Cell-DEVS) modeling and simulation to provide a comprehensive evaluation of aircraft boarding strategies. We have developed a simulation benchmark consisting of eight boarding strategies including Back-to-Front; Window Middle Aisle; Random; Zone Rotate; Reverse Pyramid; Optimal; Optimal Practical; and Efficient. Our simulation models are scalable and adaptive; providing a powerful analysis apparatus for investigating any existing or yet to be discovered boarding strategy. We explain the details of our models and present the results both visually and numerically to evaluate the eight implemented boarding strategies. We also compare our results with other studies that have used different modeling techniques; reporting nearly identical performance results. The simulations revealed that Window Middle Aisle provides the least boarding delay; with a small fraction of time difference compared to the optimal strategy. The results of this work could highly benefit the commercial airlines industry by optimizing and reducing passenger boarding delays. Full article
(This article belongs to the Special Issue Air Transportation—Operations and Management)
Figures

Figure 1

Open AccessArticle An Efficient Application of the MOEA/D Algorithm for Designing Noise Abatement Departure Trajectories
Aerospace 2017, 4(4), 54; doi:10.3390/aerospace4040054
Received: 2 October 2017 / Revised: 24 October 2017 / Accepted: 27 October 2017 / Published: 1 November 2017
PDF Full-text (3885 KB) | HTML Full-text | XML Full-text
Abstract
In an effort to allow to increase the number of aircraft and airport operations while mitigating their negative impacts (e.g., noise and pollutant emission) on near-airport communities, the optimal design of new departure routes with less noise and fuel consumption becomes more important.
[...] Read more.
In an effort to allow to increase the number of aircraft and airport operations while mitigating their negative impacts (e.g., noise and pollutant emission) on near-airport communities, the optimal design of new departure routes with less noise and fuel consumption becomes more important. In this paper, a multi-objective evolutionary algorithm based on decomposition (MOEA/D), which recently emerged as a potential method for solving multi-objective optimization problems (MOPs), is developed for this kind of problem. First, to minimize aircraft noise for departure routes while taking into account the interests of various stakeholders, bi-objective optimization problems involving noise and fuel consumption are formulated where both the ground track and vertical profile of a departure route are optimized simultaneously. Second, in order to make the design space of vertical profiles feasible during the optimization process, a trajectory parameterization technique recently proposed is employed. Furthermore, some modifications to MOEA/D that are aimed at significantly reducing the computational cost are also introduced. Two different examples of departure routes at Schiphol Airport in the Netherlands are shown to demonstrate the applicability and reliability of the proposed method. The simulation results reveal that the proposed method is an effective and efficient approach for solving this kind of problem. Full article
(This article belongs to the Special Issue Air Transportation—Operations and Management)
Figures

Figure 1

Open AccessArticle Optimization of Air Traffic Control Training at the Federal Aviation Administration Academy
Aerospace 2017, 4(4), 50; doi:10.3390/aerospace4040050
Received: 23 September 2017 / Revised: 15 October 2017 / Accepted: 25 October 2017 / Published: 28 October 2017
PDF Full-text (522 KB) | HTML Full-text | XML Full-text
Abstract
This paper investigates current and future uses of simulation in the Federal Aviation Administration (FAA) Academy’s Air Traffic Control (ATC) training program to identify potential improvement areas in the areas of simulation technologies and course content. Once identified, recommendations for changes to the
[...] Read more.
This paper investigates current and future uses of simulation in the Federal Aviation Administration (FAA) Academy’s Air Traffic Control (ATC) training program to identify potential improvement areas in the areas of simulation technologies and course content. Once identified, recommendations for changes to the current training program are made. A literature review of the current training techniques used at the FAA Academy and training centers was conducted. In addition, interviews were held and surveys were distributed to collect data regarding a variety of ATC training interest areas, such as virtual reality, current maintenance schedules, and simulator features. Finally, a cost-benefit analysis was conducted to determine the potential improvement areas with the highest feasibility for implementation and the highest potential to reduce training costs and/or time. The primary findings of this research revealed three feasible improvement areas to the current training process and simulation technologies: (1) reducing the dependence on instructors during simulation training, (2) utilizing web-based training methods, and (3) updating current simulator systems to include new features, such as recording and playback features. These changes were recommended to be implemented first, with voice recognition and virtual reality improvement areas being recommended as priority focus areas for future studies and/or implementation. Full article
(This article belongs to the Special Issue Air Transportation—Operations and Management)
Figures

Figure 1

Back to Top