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Abstract: Grasslands cover approximately 40% of the Earth’s surface. Thus, they play a pivotal
role in supporting biodiversity, ecosystem services, and human livelihoods. These ecosystems
provide crucial habitats for specialized plant and animal species, act as carbon sinks to mitigate
climate change, and are vital for agriculture and pastoralism. However, grasslands face ongoing
threats from certain factors, like land use changes, overgrazing, and climate change. Geospatial
technologies have become indispensable to manage and protect these valuable ecosystems. This
review focuses on the application of Google Earth Engine (GEE) in grasslands. The study presents a
bibliometric analysis of research conducted between 2016–2023. Findings from the analysis reveal
a significant growth in the use of GEE and different remote sensing products for grassland studies.
Most authors reported grassland degradation in most countries. Additionally, China leads in research
contributions, followed by the United States and Brazil. However, the analysis highlights the need for
greater involvement from developing countries, particularly in Africa. Furthermore, it highlights the
global distribution of research efforts, emphasizes the need for broader international participation.
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1. Introduction

Grasslands cover a vast expanse of the Earth’s surface; they play a critical role in
supporting biodiversity, ecosystem services, and human livelihoods. These ecosystems
provide essential habitats for a wide range of plants, wildlife, and domestic animal species,
some of which are highly specialized and have high economic value, such as in eco-
tourism [1,2]. Moreover, grasslands serve as carbon sinks, helping to mitigate the impacts
of climate change by sequestering carbon dioxide from the atmosphere [3]. They are also
important for agriculture and pastoralism, supplying food and livelihoods to millions
worldwide [4,5]. Despite their importance, grasslands are under constant threats from
various anthropogenic factors, including bush encroachment, land use change, overgrazing,
and climate change [6,7]. It is estimated that the global cost of grassland degradation on
livestock was USD 6.8 billion between 2001 and 2011 [7]. Yan et al. [8] reported Africa as the
leading continent in terms of grassland degradation, while Asia was leading in grassland
improvements. Climate change and human activities were identified as the main driving
factors in both cases. Understanding the significance and dynamics of grasslands is vital
for exploring their sustainable management through geospatial tools and research.

While geospatial technologies have significantly advanced our understanding of grass-
land ecosystems, it is essential to acknowledge their inherent challenges and limitations
during data acquisition and processing. Geospatial analysis relies heavily on data, and
access to high-quality, near-real-time data can be a challenge in some regions. Obtaining
high-resolution satellite imagery and other geospatial data can be costly and such data
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may not always be readily available. Additionally, analyzing and storing large geospa-
tial datasets can be computationally intensive and requires substantial infrastructure and
expertise. When data from multiple sources (e.g., satellite imagery, field measurements,
and climate data) are utilized, they can present challenges due to differences in spatial
and temporal resolutions, formats, and coordinate systems [9–11]. During data analysis,
classification can be more complex due to the variations in the grassland ecosystem. Dis-
tinguishing between grassland types and assessing biodiversity from remote sensing data
can be challenging, especially with the use of low-resolution satellite data. The explo-
ration of next-generation technologies is necessary to improve grassland research with
geospatial data.

Google Earth Engine (GEE) is a cloud-based repository which archives satellite im-
agery and has tools to handle big data. The platform eases data processing, offering
researchers and land managers the ability to monitor grasslands at unprecedented scales
and frequencies. It allows for real-time tracking of land cover changes, vegetation dynam-
ics, and even the impacts of climate change and land use practices [12,13]. The platform
has the capacity to access and process a wealth of remote sensing data and apply cus-
tom algorithms, GEE has enabled the rapid identification of disturbances, such as urban
encroachment, agriculture expansion, and wildfire events, which threaten grassland in-
tegrity [7,14]. Furthermore, GEE facilitates the quantification of key ecological parameters,
such as biomass, carbon sequestration, and habitat fragmentation, providing essential
insights for conservation and sustainable land management [15,16].

Remote sensing techniques have been widely used for grassland studies. These
techniques are beneficial for deriving biophysical parameters, large area coverage, and
assessing long term changes in grasslands [17–20]. For example, the study by Liu et al. [17]
used change detection to find that natural surfaces, such as woodland, grassland, cultivated
land, and water, were converted into human settlements and bare land at an annual change
rate of 1.53% in Deging County (China). Tarantino et al. [18] used Landsat time series
data to study grassland loss evolution in and around protected areas in Murgia Alta. The
authors documented that grassland was degrading in non-protected areas. Wang et al. [19]
used remote sensing data to study land cover change in China; their results indicated that
grasslands had been converted to croplands. Xoxo et al. [20] used remote sensing-based
approach to study the grassland biome in South Africa; they highlighted that woody
encroachment, and the spread of invasive alien plants are the main drivers for grassland
degradation for the period covering 2000–2018.

Literature reviews of the use of remote sensing data for grasslands have been carried
out extensively [7,21–25]. However, these studies have not focused on the practical use
of the remote sensing data in GEE for grasslands. To this end, the current study uses
bibliometrics to provide a comprehensive review on the use of remote sensing data from
GEE for grasslands. Bibliometric studies are useful for identifying trends, gaps, and
directions of research in this area. The advantage of this technique is that it gives objective
results, and this aids in understanding the subject area’s impact and significance in terms of
the publications’ evolution [26]. The recent bibliometric review by Pérez-Cutillas et al. [27]
focused on the utilization of GEE and its impact on the scientific community. Findings from
the study reported that GEE is becoming more widely used for water resource applications
in comparison to other research areas, and grasslands were not covered. The review by
Velastegui-Montoya et al. [28] indicated an increase in studies using GEE for vegetation.
Given the importance of grasslands, this study aims to conduct a bibliometric analysis on
the use of GEE for grasslands.

2. Materials and Methods

Electronic databases play a crucial role in providing platforms to carry out systematic
reviews of emerging trends, identifying research gaps and challenges. To conduct the
bibliometric analysis, the Scopus and Web of Science (WOS) databases were utilized.
Table A1 in Appendix A lists search terms that were used to retrieve the documents of
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grasslands and GEE studies. The search included the article title, abstract, and keywords
ranging from 2010 to 2023, because GEE was established in 2010. However, the search
yielded publication records between 2016 and 2023. The search was limited to reviewed
articles, conference papers, book chapters, and data papers returned in the English language.
Documents were processed for data cleaning, and duplicates were removed using R-
software (R version 4.1.2), resulting in a total of 323 documents. Furthermore, Zotero was
used for screening the final 323 documents. Bibliometric analysis results were carried
out using R-Studio (v4.0.4) with interactive biblioshiny to retrieve WOS and Scopus data
descriptions, annual scientific production, the most productive countries, a geographical
spatial distribution map, journal analysis, and the most globally cited published articles.
VOSviewer software (v1.6.16) was used to produce an authors’ keywords’ co-occurrence
network analysis [29,30]. Biblioshiny and VOSviewer software products enable loading
and exporting information from many sources and the visualization of bibliometric analysis
results [31]. The authors’ keywords and co-occurrence network analysis was performed.
Figure 1 illustrates the workflow and the process followed.
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3. Results
3.1. WOS and Scopus Retrieved Data Description

The WOS and Scopus research results produced 323 documents. The time span ranged
from 2016 to 2023. An annual growth rate of 73.59% was observed during this period. Most
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of the documents retrieved were articles. In total, 1418 authors have participated in the
research area. Table 1 lists the summary of the descriptive statistics as derived from WOS
and Scopus.

Table 1. Data description of WOS and Scopus on grasslands and GEE studies.

Description Results

Timespan 2016–2023
Documents 323
Sources (journals, books, etc.) 111
Keywords plus 1937
Author’s keywords 1006
Average citations per document 23
Authors 1418
Co-authors per document 5.75
Annual growth rate (%) 73.59
Document type
Articles 290
Conference papers 20
Review 4
Book chapters 3
Data paper 6

3.2. Annual Scientific Production Trends per Document of Grasslands and GEE Studies

The GEE platform was made available to the scientific community in 2010. The
application of GEE for grassland research was first recorded in 2016. The period between
2016 and 2019 is marked by a low frequency of less than 20 published studies based on GEE.
Since then, the period of 2020 and 2023 indicates significant progress that has been attained
in detecting, mapping, and monitoring grasslands using remotely sensed data. A typical
exponential growth rate (73.59%) can be observed with the red dotted line (Figure 2), with
a rapid increase starting in 2020. This indicates that most scientists continue to adopt GEE
to monitor, map, and model grasslands.
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3.3. Geographical Spatial Distribution and Most Globally Cited Scientific Research Contributions
per Country

Table 2 lists the top 10 most productive countries, articles, total citations, average
article citations, single country publications, and multiple country publications. China
has contributed 101 documents, accounting for 31.3%, followed by the USA (United States
of America) with 44 documents, accounting for 13.6%, while the lowest contributors
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are Canada and the UK (United Kingdom) at 1.9%, with just 6 documents each during
the analysis period from 2016 to 2023. The top four most cited articles are from China
(TC = 3238, AAC = 32.10), USA (TC = 1660, AAC = 37.70), Brazil (TC = 1165, AAC = 36.40),
and Italy (TC = 191, AAC = 27.30).

Table 2. Top 10 most productive countries and cited per average article citation on grasslands and
GEE studies from 2016–2023.

Rank Country TCP * (%) Articles TC * AAC * SCP * MCP *

1 China 31.3% 101 3238 32.10 99 2
2 USA 13.6% 44 1660 37.70 44 0
3 Brazil 9.9% 32 1165 36.40 31 1
4 South Africa 3.1% 10 113 11.30 10 0
5 Australia 2.8% 9 172 19.10 8 1
6 India 2.8% 9 43 4.80 9 0
7 Germany 2.2% 7 26 3.70 7 0
8 Italy 2.2% 7 191 27.30 7 0
9 Canada 1.9% 6 112 18.70 6 0
10 United Kingdom 1.9% 6 64 10.70 6 0

* Total scientific production (TCP); articles; total Citations (TC); average article citations (AAC); single country
publications (SCP); multiple country publications (MCP).

Figure 3 illustrates the spatial distribution of countries that contributed to grasslands
and GEE research between 2016 and 2023. Most of the articles were from China (101),
followed by the United States (USA) (44), Brazil (32), and South Africa (10). Additionally,
other countries, such as Australia (9) India (9), Germany (7), Italy (7), Canada (6), and
the United Kingdom (6), had notable contributions. Furthermore, Indonesia (4), Iran (4),
Kenya (3), Morroco (3), and New Zealand each contributed a moderate number of articles.
Other countries had two publications (Algeria, Argentina, Austria, Botswana, Ethiopia,
Finland, Japan, Peru, Portugal, Slovakia, Sweden, Switzerland, Togo, Turkey, and Ukraine)
or one publication.
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3.4. Journals Analysis

Table 3 lists the top 10 journals on grasslands and GEE for the surveyed period from
2016–2023. The journals are ranked based on the number of articles published during the
surveyed period. The top 10 journals have contributed 155 (47.9%) publications. Most
authors published in the Remote Sensing journal with 66 (20.4%) articles, followed by Remote
Sensing Environment, which has 22 (6.8%) articles and Land which has 16 (4.9%) articles.

Table 3. Top 10 journals on grasslands and GEE studies from 2016–2023.

Rank Sources Articles Impact Factor

1 Remote Sensing 66 5.0
2 Remote Sensing Environment 22 13.5
3 Land 16 3.9
4 Ecological Indicators 11 6.9
5 Remote Sensing Applications: Society and Environment 9 4.7
6 Environmental Monitoring and Assessment 7 3.0
7 Geocarto International 7 3.8
8 International Journals of Applied Earth Observation and Geoinformation 7 7.5
9 Earth System Science Data 5 11.4
10 Environmental Research Letters 5 6.7

3.5. Top Globally Cited Published Documents on Grasslands and GEE Research

Table 4 lists the top 10 globally cited articles on grasslands and GEE application. Souza
Jr et al. [32] is one of the top cited articles, and the authors used Landsat-5/7/8 data
and a GEE random forest algorithm to generate annual land use and land cover (LULC)
information in all Brazilian biomes between 1985 and 2017. They obtained an overall
accuracy ranging from 73% to 95%. The 33 years of LULC change data series revealed
that Brazil lost 71 Mha of natural vegetation; this was mainly due to cattle ranching and
agricultural activities. Alencar et al. [33] used Landsat data to explore the dynamics of the
Brazilian Cerrado biome; the classification maps from the study had an average overall
accuracy of 71 to 87%. The study also found that native vegetation in the Cerrado biome
declined at an average rate of 0.5% per year (748,687 ha yr−1), mostly affecting forests
and savannas.

Yang et al. [34] used Landsat and Shuttle Radar Topography Mission (SRTM) datasets
in the GEE platform to generate annual land cover at a 30 m spatial resolution. The resulting
product achieved a 79.31% classification accuracy. The authors were able to characterize the
different land cover changes and found that grasslands had decreased by 3.29%, compared
to other regions. The changes were attributed to rapid urbanization during the analysis
period from 1990 to 2019. Huang et al. [35] used Landsat-5/7/8 to derive normalized
difference vegetation index (NDVI) time series data. The data were used to study the
dynamics of vegetation cover in Beijing, where spatial patterns of vegetation loss were
mapped with an average overall accuracy of 86.61%. The study also found that 918.36 km2

of land was revegetated to cropland, shrub land, forest, and grassland.
Lui et al. [36] used global land surface satellite products, which included the NDVI,

leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR),
evapotranspiration (ET), gross primary production (GPP), broadband emissivity (BBE),
white-sky albedo, and the Global Multi-resolution Terrain Elevation Data 2010 to map the
global landscape between 1985 and 2015. The derived product had an overall accuracy of
82% and the results indicated that global grassland land cover had decreased at a rate of
−136.6 (103 km2/yr). Additionally, the study found that the average human impact level in
areas of significant land use change is about 25.49 %. Zurqani et al. [12] utilized Landsat-5/8,
the National Land Cover Database (NCLCD), the National Agriculture Imagery Program
(NAIP), and digital elevation model (DEM) datasets to perform land use change detection
with supervised random forest classification in a savannah environment. In addition,
the study found an overall accuracy of 76% to 79%, with major changes attributed to
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deforestation and reforestation of forest areas during the study period. Jones et al. [37]
investigated long term monitoring of rangelands between 1984 and 2017 using a random
forest method to predict changes with Landsat 5 TM, 7 ETM+, and 8 OLI data. The annual
maps generated were able to guide improvements in rangeland conservation, monitoring,
and management.

Liu et al. [38] used a dense time stacking of the multi-temporal Landsat and a random
forest algorithm to study LULC in Gannan Prefecture, China, and found that grassland
area decreased between 2000 and 2018. However, Liu et al. [39] produced global land
cover maps (GCL) using 30 m resolution global land cover (GLC) products within the cloud
computing functions of GEE platforms. These generated GCL maps had poor agreement to
present grassland, shrub, and tree vegetation classes in transition zones. Yin et al. [40] used
Landsat-4/5/7/8 time series data to monitor abandoned croplands with a random forest
classifier. The cropland abandonment was accurately classified and separated from other
classes with more than 75% overall accuracy.

The studies reveal that through using the GEE platform, researchers were able to map
large areas using multi-decade large datasets. Previously, it would have been challenging
to carry out such a computation at these large scales. High-performance cloud computing
platforms, such as GEE, have supported these types of research. The global scale geospatial
analysis platform has greatly improved natural resource monitoring, management, and
understanding of Earth’s surface dynamics that impact on a variety of societal issues, such
as climate change, food security, ecosystem services, and the Sustainable Development
Goals (SDGs) [41].

Table 4. Top 10 globally cited published articles on grasslands and GEE studies from 2016–2023.

Rank Articles Title TC TC per Year Data Used Reference

1 The 30 m annual land cover dataset and its
dynamics in China from 1990 to 2019 686 171.50 Landsat-5/7/8 [34]

2
Reconstructing three decades of land use and land
cover changes in brazilian biomes with landsat
archive and earth engine

603 120.60 Landsat-5/7/8, SRTM [32]

3 Mapping major land cover dynamics in Beijing
using all Landsat images in Google Earth Engine 324 40.50 Landsat-5/7/8 [35]

4 Annual dynamics of global land cover and its
long-term changes from 1982 to 2015 184 36.40 Global Land Surface

Satellite Products [36]

5 Geospatial analysis of land use change in the
Savannah River Basin using Google Earth Engine 163 23.29 Landsat-5/7/8 [12]

6
Innovation in rangeland monitoring: annual, 30 m,
plant functional type percent cover maps for
US rangelands

140 20.00 Landsat-5/7/8 [37]

7
Mapping three decades of changes in the brazilian
savanna native vegetation using landsat data
processed in the Google Earth Engine platform

123 24.60 Landsat-5/7/8 [33]

8

Land use/land cover changes and their driving
factors in the Northeastern Tibetan Plateau based
on Geographical Detectors and Google Earth
Engine: A case study in Gannan Prefecture

99 19.80 Landsat TM and OLI [38]

9
Finer-resolution mapping of global land cover:
Recent developments, consistency analysis,
and prospects

98 24.50 Landsat-5/7/8 [39]

10 Monitoring cropland abandonment with Landsat
time series 98 19.60 Landsat-4/5/7/8 [40]
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3.6. Remote Sensing Data from GEE Used in Grassland Research

Most of the publications analyzed used Landsat data (189), followed by Sentinel-2
(71) and MODIS (63) for grassland research in GEE (Figure 4). The other top platforms
include climate platforms (e.g., the Climate Hazards Group InfraRed Precipitation with
Station Data (CHIRPS) and the Coupled Model Intercomparison Project Phase 5 (CIMP5))
(29), Sentinel-1 (24), the Shuttle Radar Topography Mission (SRTM) (18), and the Advanced
Land Observing Satellite (ALOS) (15). Other platforms had a moderate usage, such as the
Visible Infrared Radiometer Suite (VIIRS) (7), Light Detection and Ranging (Lidar) (4), the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (3), and Planet
Scope (3). Both the Project for On-Board Autonomy-Vegetation (PROBA-V) (2) and Advanced
Very High-Resolution Radiometer (AVHRR) (1) had the lowest number of publications.
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3.7. Application Areas

The commonly used categories for grassland research are summarized in Figure 5. The
most dominant application areas are in the land cover/use (149) and agriculture/pasture/
rangelands (63) research areas. Both degradation (21) and fires (21) have an equal number
of publications. Other application areas, such as biomass (17), ecology (15), wetlands (15),
and water (13), had fewer publications. The fewest publications were in forest (7), drought
(6), evapotranspiration (6) and soil (3) research areas.
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3.8. Authors’ Keywords and Co-Occurrence Network on Grasslands and GEE Research

The authors’ keywords in the top 60 studies were classified into 3 clusters of related
focal research themes in different colors as depicted in Figure 6. The authors’ keywords and
focal research themes are characterized by nodes. Bigger nodes indicate the frequency of
occurrence, and lines between nodes show their relationship strength. As such, keywords,
such as Landsat, MODIS, and Sentinel-2, were the predominant remote sensing platforms
that helped in the mapping of land use change using Google Earth Engine cloud computing
in grasslands. Furthermore, fires, deforestation, land degradation, and climate change
keywords are among the driving factors for land cover dynamics in savanna. Other growing
focal research themes in keywords include the use of machine learning, the vegetation
index, time series analysis, and conservation to improve decision making in environmental
protection for biodiversity and ecology.
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4. Discussion

The bibliometric analysis presented in this study provides a global overview on
the utilization of GEE for monitoring grasslands. Our analysis reveals a growth in the
application of GEE for grassland research. The exponential increase in publications since
the first recorded use of GEE in 2016 demonstrates its rapid adoption within the scientific
community. This trend reflects the platform’s ability to overcome data acquisition and
processing challenges, enabling researchers to explore grassland dynamics comprehensively.
The surge in research after 2019 highlights the growing recognition of GEE’s potential in
grassland applications.

The global distribution of research contributions revealed that China is the leading
contributor to grassland and GEE research, with 31.3% of the total publications. This domi-
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nance may be attributed to China’s substantial grassland ecosystems and its investments
in Earth observation technology. The United States, Brazil, and South Africa also made
significant contributions, emphasizing the global relevance of GEE in diverse grassland set-
tings. Notably, the analysis indicates a lack of participation from certain regions, especially
in Africa. This gap may result from limited access to infrastructure, including computing
resources and advanced Internet of Things resources for processing big data, preventing re-
searchers in these regions from engaging with the GEE platform. This has been observed by
Kumar et al. [42] and Vijayakumar et al. [43]. The research further found that GEE continent
publications stood at 4% for Oceania, 5% for Africa, 19% for Europe, 25% for America, and
47% for Asia. Addressing this disparity is crucial, as grasslands in developing countries
face unique challenges and require effective monitoring and management strategies.

Most articles fall within the thematic scope of the “Remote Sensing” and “Remote Sensing
Environment” journals with regards to publishing grassland and GEE research. Similar
findings have revealed that Remote Sensing and Remote Sensing of Environment have been
leading journals in terms of publication outputs within the Google Earth Engine and remote
sensing applications research field [44,45]. Journals, such as “Remote Sensing Environment”,
are instrumental in disseminating research findings and facilitating knowledge exchange
among scientists and practitioners for grassland research. These journals provide a platform
for robust peer-reviewed research, ensuring the credibility of the GEE-based grassland
studies. Several studies emerged as influential in the field of grassland and GEE research.
For example, the article by Souza Jr et al. [32] stands out as the most cited article. This
study demonstrated the power of GEE combined with Landsat data to monitor land cover
changes in Brazilian biomes over a 30-year period, emphasizing the platform’s capacity for
long-term analyses. Other impactful studies, such as Yang et al. [34] and Huang et al. [35],
showcased the ability of GEE to monitor land cover changes in China and vegetation
dynamics in Beijing, respectively. These studies highlight GEE’s role in assessing the
impacts of urbanization and environmental changes on grasslands. Similarly, research by
Liu et al. [36] and Alencar et al. [34] provided valuable insights into land cover changes
in the Brazilian savannah, reaffirming GEE’s importance in understanding ecosystem
transformations.

The GEE platform with its planetary-scale datasets has allowed researchers from a
variety of fields to apply the GEE platform for different applications [42]. Based on our
analysis, land cover/use was the most common application. Different authors have indi-
cated increased or decreased rates of different land cover/use types e.g., grasslands, forest,
shrubs, and bare soil, by using mainly Landsat datasets for their areas. For example, Feng
et al. [46] found that grassland was the dominant land cover type with both progressive and
retrogressive interactions with other classes in the Tibetan Plateau. Liu et al. [38] reported
in 2020 that grassland area decreased using the analysis period from 2000–2018 in the
area of Gannan Prefecture. Souza et al. [32] found that the 33 years of the land cover/use
change data series revealed that Brazil lost 71 Mha of natural vegetation, while pasture and
agricultural activities increased during this period.

Research on grasslands was the second most dominant research. Parente et al. [47]
has shown that pasture area has increased by about 60 Mha over a 33 year period. These
changes came at the expense of natural vegetation and forest. Other areas of application
include, but are not limited, to fires, ecological biomass, and degradation. All of these
were addressed using the GEE platform. Globally, grasslands have been reported to be
degrading and in need of restoration to protect the socioeconomic, cultural, and ecological
benefits provided by the grasslands [2,48]. The factors affecting grasslands have been
attributed to cattle ranching and agriculture activities [32], climate change, overgrazing,
and soil erosion [2,49].

Landsat datasets have been widely exploited to understand the long term trends
and changes with respect to time compared to other datasets (e.g., Majdaldin et al. [50],
Pereira et al. [51]). The legacy data starting from 1970s with Landsat-1 to the more recent
Landsat-9 (https://landsat.gsfc.nasa.gov/satellites/timeline/ (accessed on 9 February

https://landsat.gsfc.nasa.gov/satellites/timeline/
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2024)) make it possible to study land cover dynamics, including vegetation. The per-pixel
analysis approach within the GEE platform allows for time series analysis algorithms to
be applied. Sentinel-2 and MODIS data were the second and third most-used data, while
climate and Sentinel-1 data had similar numbers of usage. We also noted that most authors
fused the different datasets within their analysis. e.g., Wang et al. [52] used S-1, S-2 and
Landsat-8 images to estimate the leaf area index and aboveground biomass on grazing
pastures and obtained acceptable results. Nasiri et al. [53] used the S-2 and Landsat-8
to map land cover, and Dehghan-Shoar et al. [54] used Landsat-7, Landsat-8, and S2 to
monitor grassland nitrogen concentration. Generally, data fusion is considered to increase
the accuracy of the estimates. Other datasets, such as Lidar, are not widely available at
global scale, except for NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission
with a 1 km resolution (https://www.earthdata.nasa.gov/technology/lidar (accessed on 9
February 2024)). As more data become available globally, more researchers will be able to
use them for different applications, such as for grassland research.

There are other cloud-based platforms for big Earth Observation data management
and analysis. These include the Open Data cube (ODC—https://www.opendatacube.
org/ (accessed on 4 April 2024)) [55], Sentinel Hub (SH—https://www.sentinel-hub.com/
(accessed on 4 April 2024)) [56], Open Earth Observation (OpenEO—https://openeo.
org/ (accessed on 4 April 2024)) [57], and the System for Earth Observation Data Access,
Processing, and Analysis for Land Monitoring (SEPAL—https://sepal.io/ (accessed on
4 April 2024)) [58]. These platforms utilize different programming languages to interact
with the data, including Java scripting for GEE. Python and R for SEPAL and OpenEO, and
Python for ODC. These platforms were developed to encourage different communities to
utilize and adopt geospatial solutions and to promote data democratization. They all offer
relatively easy access to geospatial analysis. Different countries, such as Uganda, Equatorial
Guinea, and Ethiopia, in Africa, have adopted the SEPAL system to monitor degradation in
dry and humid tropical forest [58]. Gomes et al. [59] has comprehensively compared seven
big Earth Observation data management and analysis platforms. The authors highlighted
the importance of open access systems, such as openEO. However, other systems, such as
GEE and SH, were found to be very easy to use in comparison to the other systems, and the
researchers concluded that the ODC approach to big Earth observation data management
and analysis was more suitable. Kumar et al. [42] have shown that GEE had increased in
usage from its inception to the year 2017, with a total of about 300 peer-reviewed papers
published in different areas of applications. This number can be expected to have increased
between 2018 and 2023.

The use of GEE is an indispensable tool for grassland research. However, the use
of GEE has limitations, as outlined in Amani et al. [60]. For example, GEE relies on the
availability of remote sensing data, and the data coverage may be limited in certain regions
or for specific time periods. The availability and quality of data can impact the effectiveness
of analyses. Some datasets in GEE may have a latency, meaning that they are not available
in near real-time. This can be a limitation for applications requiring up-to-date information.
Effective use of GEE relies on a stable and relatively high-speed Internet connection, which
may not be readily available in all regions. Another limitation of the study was the fact that
we had a limited scope in terms of research materials from the Scopus and Web of Science
databases. The application of GEE worldwide on grasslands has not been well explored,
with few studies in Africa, South America, and Asia. The identified research gaps and
disparities in regional contributions highlights the need for capacity-building initiatives,
particularly in regions with underrepresented grassland ecosystems. Collaboration between
countries, institutions, and researchers should aim to bridge these gaps, ensuring a more
comprehensive understanding of global grassland dynamics. Future studies can focus
on refining and expanding the applications of GEE for grassland monitoring. There is
a need for more fine-scale monitoring of grassland dynamics, especially in regions with
high spatiotemporal variability. GEE can help bridge this gap by providing frequent,
high-resolution satellite imagery. There is a gap in long-term monitoring and analysis

https://www.earthdata.nasa.gov/technology/lidar
https://www.opendatacube.org/
https://www.opendatacube.org/
https://www.sentinel-hub.com/
https://openeo.org/
https://openeo.org/
https://sepal.io/
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of grassland changes over decades, which GEE can cover. Additionally, GEE can assist
countries to achieve key targets of biodiversity agendas and support SDGs, specifically
SDG 15. Furthermore, based on the findings of this study, future studies can focus on
the use of remote sensing data and modeling techniques to estimate carbon stocks, fluxes,
and ecosystem service values across different grassland types and management practices.
Studies can explore the impacts of climate change on grassland ecosystems and adaptability
to environmental pressures. More studies can focus on the use of Sentinel data with the
application of machine learning models for grassland extent mapping in GEE, due to its
improved spatial resolution in comparison to Landsat, which has a medium resolution.

5. Conclusions

Overall, this bibliometric analysis highlights the growing importance of GEE in ad-
vancing our understanding of grassland ecosystems. The study emphasizes the need for
continued research and collaboration to address the challenges facing grasslands, such as
land degradation, biodiversity loss, and climate change. The increasing adoption of GEE
and the wealth of available data hold great promise for improving grassland management
practices, promoting sustainable land use, and ensuring food security, particularly in de-
veloping countries. This study contributes to the body of knowledge on grassland and
GEE research by providing insights into the global trends, key contributors, and research
directions. It emphasizes the critical role of GEE in monitoring and managing grasslands,
highlighting its potential for addressing pressing environmental and societal issues. As
grasslands continue to face threats from various anthropogenic factors, the use of advanced
geospatial technologies, like GEE, will be essential in monitoring the grassland ecosystem.
This enables researchers, policymakers, and land managers to assess the state of grassland
ecosystems, track changes over time, and inform evidence-based decision-making.
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Appendix A

Table A1. Search terms results on the WOS and Scopus databases. * Indicates complete search term.

Description Scopus Wos

“ Grassland*” AND “Google Earth Engine*” 168 142
“Prairie*” AND “Google Earth Engine*” 9 9
“Steppe*” AND “Google Earth Engine*” 11 7
“Savanna*” AND “Google Earth Engine*” 38 33
“Rangeland*” AND “Google Earth Engine*” 26 30
“Meadow*” AND “Google Earth Engine*” 25 20
“Pampas*” AND “Google Earth Engine*” 2 1
“Veld*” AND “Google Earth Engine*” 0 0
“Pasture*” AND “Google Earth Engine*” 44 38
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Table A1. Cont.

Description Scopus Wos

“Heath*” AND “Google Earth Engine*” 1 0
“Scrubland*” AND “Google Earth Engine*” 1 1
“Tundra*” OR “Arctic grasslands*” AND “Google Earth Engine*” 20 16
“Fernland*” AND “Google Earth Engine*” 0 0
“Fescue grassland*” AND “Google Earth Engine*” 0 0
“Bromegrass*” AND “Google Earth Engine*” 0 0
“Sward*” AND “Google Earth Engine*” 0 0
“Wild grass*” AND “Google Earth Engine*” 0 0
“Cereal pasture*” AND “Google Earth Engine*” 0 0
“Herbaceous cover*” AND “Google Earth Engine*” 0 0
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