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Abstract: We study the sensitivity of stock returns to the tail risk of major equity market indices,
including the G10 countries. We model the sensitivity relationship via extreme downside hedging and
estimate the parameters via a Bayesian graph structural learning method. The empirical application
examines whether downside risk connections among the major stock markets are merely anecdotal
or provide a signal of contagion and the nature of sensitivity among major equity markets during the
global financial crisis and the coronavirus pandemic. The result showed that the COVID-19 crisis
recorded the historically highest spike in the downside risk interconnectedness among the major
equity market indices, suggesting higher financial market vulnerability in the coronavirus pandemic
than during the global financial crisis.
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1. Introduction

Increased interconnectedness among financial institutions and asset markets over
time plays a substantial role in the contagion often observed during turbulent times. One
outcome is that it causes the degree of comovements in asset markets within and across
countries to increase following shocks to a major market or a group of major markets
and the shocks to propagate to markets across countries and regions, with corresponding
impacts on asset prices/returns. Therefore, a clear understanding of the nature of the
networks of interconnectedness among markets is critical since it is a central condition for
potential contagion; see [1–4].

The turn of events in major financial markets across the globe, especially in developed
economies during the ongoing pandemic, is a reminder of how interconnectedness between
markets can influence investors’ decisions in their selection of assets to diversify their
investment. This paper examines the effects of downside risk on stock market performance
in turbulent times to draw comparisons of the novel coronavirus pandemic to previous
crises such as the early 2000s financial market disruptions due to the dotcom bubble and
11 September, the global financial crisis of 2007–2009, and the European sovereign debt
crisis of 2010–2013.

We study the sensitivity of stock market performance to the downside risk of other
major world markets under severe conditions. It is well known that in turbulent times,
some assets/markets usually perform badly, while others have mild reactions. Many assets
that react mildly are often desirable and usually sell at a premium. We formalise the
downside risk reaction via an extreme downside hedge (EDH) model; see [5–7]. The EDH
is a parametric measure of the sensitivity of a stock’s return to downside risk in the market
and/or other competing stocks [6]. We summarise the downside reactions among major
stock markets via a network model—the use of graphs to represent statistical relationships.
The network summarises the complex channels of reactions by using nodes to represent
markets and edges to describe the statistical relationships between pairs of markets. The
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use of network/graphical models has in recent times been applied to deal with over-fitting
issues arising in high-dimensional models; see [8–11].

This paper relates to at least three streams of literature. The first is the application of
network models to summarise contagion channels among financial markets using stock
market data [1,2]. The second contribution relates to research on the impact of tail risk
on asset returns [5–7,12–14] and tail risk financial spillover networks [15–17]. The third
contribution relates to Bayesian graph application for model over-fitting issues [8,10,11]. We
study 20 major stock market indices to examine: whether downside risk interconnectedness
among the markets is merely anecdotal or provides evidence of contagion and the sensitivity
of markets to the downside risk of other major equity markets in crisis times.

The paper is organised as follows: Section 2 introduces the EDH model and the
Bayesian graphical estimation method; Section 3 presents a description of the data; Section 4
reports the results; Section 5 concludes the paper.

2. Methodology
2.1. Extreme Downside Hedge Model

The commonly discussed measure for assessing the riskiness of assets is the conditional
value at risk (CoVaR). The CoVaR, according to [18], is a measure of risk with a conditioning
term (i.e., the value at risk of institution A conditional on B being at its value at risk). On
the contrary, the expected shortfall (ES) (often also called the CVaR) measures the average
of all losses exceeding the value-at-risk, but is not conditional on another variable. In this
paper, we measure the downside risk via the expected shortfalls (ESs).

Let Yt = (Y1,t, . . . , Yn,t) be an n-vector of returns at time t, where n is the total number
of assets/indices. Let VaRα(Yi,t) denote the value-at-risk of Yi,t at tail probability α. The
expected shortfall ESα(Yi,t) is formally defined by:

ESα(Yi,t) = E(−Yi,t|Yi,t ≤ −VaRα(Yi,t)) = −
1
α

∫ α

0
VaRγ(Yi,t)dγ (1)

The closed-form expression for calculating the expected shortfall of Yi at time t under
the assumption of the approximate normality of returns, i.e., Yi,t ∼ N (µi,t, σ2

i,t), is given by:

ESα(Yi,t) = −µi,t + σi,t
φ(Φ−1(α))

α
(2)

where µi,t is the mean of the distribution of Yi,t and σi,t is its standard deviation and φ(·)
and Φ(·) represent the PDF and the CDF of the normal distribution.

The extreme downside hedge (EDH) model measures the sensitivity of stock i’s return
on innovations in the tail risk of other stocks, given by:

Yi,t =
n

∑
i 6=j=1

Bij ∆ESα(Yj,t) + εi,t, i = 1, . . . , n (3)

where ∆ESα(Yj,t) = ESα(Yj,t)− ESα(Yj,t−1), Bij is the sensitivity of the returns of market i
to the downside risk of market j, and εt = (ε1,t, . . . , εn,t) is multivariate normal, N (0, Σε).

2.2. Network (Graphical) Model

A network model is a convenient representation of the relationships among a set of
variables. They are defined by nodes joined by a set of links, describing the statistical
relationships between a pair of variables. The introduction of networks in regression
models helps to interpret the predictor-dependent variable relationships. To analyse (3)
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through networks, we assigned to each coefficient Bij a latent indicator Gij ∈ {0, 1}, such
that for i, j = 1, . . . , n,:

Bij =

{
0 if Gij = 0 =⇒ ∆ESα

j,t 6→ Yi,t

βij ∈ R if Gij = 1 =⇒ ∆ESα
j,t → Yi,t

(4)

where ∆ESα(Yj,t) 6→ Yi,t means that the downside risk of market j does not influence the
returns of market i. Defining a sparse structure on (G, B) induces parsimony to the model
and produces explainable downside risk models.

2.3. Bayesian Estimation of Downside Risk Networks

In modelling downside risk networks, the underlying structure of interactions is often
unknown. To circumvent this problem, we applied the Bayesian graph structural learning
by specifying the prior distribution over (G, B, Σε) as:

[Bij|Gij = 1] ∼ N (0, η), Gij ∼ Ber(πij), Σ−1
ε ∼ W(δ, Λ0) (5)

where η, πij, δ, and Λ0 are hyper-parameters. Bij conditional on Gij follows a normal
distribution with zero mean and variance η; Gij is Bernoulli distributed with πij as the prior
probability; Σ−1

ε is Wishart distributed with prior expectation 1
δ Λ0 and δ > n the degrees

of freedom parameter.
Let Xt = (∆ESα(Y1,t), . . . , ∆ESα(Yn,t)) be an n× 1 vector of innovations in the down-

side risk observations; denote by Y = (Y1, . . . , YN) an N × n matrix collection of all obser-
vations; let X = (X1, . . . , XN) be an N × n matrix collection of Xt. Following the Bayesian
framework of [19], we integrated out the structural parameters analytically to obtain a
marginal likelihood function over graphs. We approximated inference of the parameters
via a collapsed Gibbs sampler such that the algorithm proceeds as follows:

1. Sample via a Metropolis-within-Gibbs [G|Y];
2. Sample from [B, Σε|Y, G] by iterating the following steps:

(a) Sample [Bi,πi |Y, G, Σε] ∼ N (B̂i,πi , Dπi ) where:

B̂i,πi = σ−2
ε,i Dπi X

′
πi

Yi, Dπi = (η−1 Idx + σ−2
ε,i X′πi

Xπi )
−1 (6)

where Xπi ∈ X, which corresponds to (Ĝyi ,xπ = 1), σ2
ε,i is the i-th diagonal

element of Σ̂ε, and dx is the number of covariates in Xπi ;
(b) Sample [Σ−1

ε |Y, G, B] ∼ W(δ + N, ΛN) where:

ΛN = Λ0 + (Y− XB̂′)′(Y− XB̂′) (7)

See [20] for a description of the network sampling algorithm. For our empirical
application, we set the hyper-parameters as follows: πij = 0.5, η = 100, δ = n + 2, and
Λ0 = δIn. We set the number of MCMC iterations to sample 50,000 graphs, and we ensured
that the convergence and mixing of the MCMC chains were tested via the potential scale
reduction factor (PSRF) of [21].

3. Data Description

Our study makes use of daily data from Bloomberg, covering between January 1998 to
December 2021, and includes 20 major stock market indices, including all G10 economies.
The indices considered in this study are based on their market capitalisation and regional
classification. We considered only one index per country, which typically contains the stock
prices of the largest companies listed in the nation’s largest stock exchange. The countries
can be grouped into three regions: the Americas, Asia, and Europe. A description of the
market indices chosen for the selected countries is presented in Table 1.
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Table 1. Detailed description of the stock market indices of countries classified according to regions.

Region No. Country Code Description Index

1 Argentina AR Argentina MERVAL MERVAL
2 Brazil BR Brazil Bovespa IBOV

Americas 3 Canada CA Canada TSX Comp. SPTSX
4 Mexico MX Mexico IPC MEXBOL
5 United States US United States S&P 500 SPX

6 Australia AU Australia ASX 200 AS51
7 China CN China SSE Comp. SHCOMP

Asia-Pacific 8 Hong Kong HK Hong Kong Hang Seng HSI
9 India IN India BSE Sensex SENSEX

10 Japan JP Japan Nikkei 225 NKY
11 Korea KR South Korean KOSPI KOSPI

12 Belgium BE Belgium BEL 20 BEL20
13 France FR France CAC 40 CAC
14 Germany DE Germany DAX 30 DAX
15 Italy IT Italy FTSE MIB FTSEMIB

Europe 16 The Netherlands NL The Netherlands AEX AEX
17 Russia RU Russia MOEX IMOEX
18 Spain ES Spain IBEX 35 IBEX
19 Switzerland CH Switzerland SMI SMI
20 United Kingdom UK U.K. FTSE 100 UKX

We report in Figure 1 the daily series of closing prices on a logarithmic scale. We
scaled the prices to a zero mean and unit variance and added the absolute minimum value
of each series to avoid negative outcomes. This standardises the scale of measurement for
the different series.

The figure shows that over the past two decades, global financial markets have ex-
perienced several catastrophic events within and across different markets. Among these
events are: (1) the dotcom “tech”-induced crisis of 2000–2003, which was fuelled by the
adoption of the Internet in the late 1990s, triggering inflated stock prices that gradually
went downhill and disrupted global market operations; (2) the global financial crisis of
2007–2009, which was triggered by the massive defaults of sub-prime borrowers in the U.S.
mortgage market; (3) the European sovereign debt crisis of 2010–2013, which emanated
from the inability of a cluster of EU member states to repay or refinance their sovereign
debt and bailout heavily leveraged financial institutions without recourse to third-party
assistance; (4) the distress to the world economy and global financial markets caused by
the novel coronavirus pandemic in 2020.

We computed daily log returns as the log differences of successive daily closing prices.
We also computed the daily expected shortfalls at the 5%-quantile following (2) via a 22 d
horizon rolling estimation of daily returns. Table 2 reports a set of summary statistics for
the daily returns and daily change in expected shortfalls over the sample period.

From the summary statistics, almost all returns and daily change in the ES have a
near-zero mean. The returns have a relatively high standard deviation, while the change in
the ES recorded a relatively low standard deviation. The skewness of the returns indicates
that all the indices have fairly symmetric distributions with mostly small, but consistent
positive gains and, occasionally, large negative returns. The kurtosis of the returns and
daily change in the ES indicates leptokurtic behaviours.



FinTech 2022, 1 129

Jan 1998 Jan 2001 Jan 2004 Jan 2007 Jan 2010 Jan 2013 Jan 2016 Jan 2019

0
1

2
3

4
5

AR BR CA MX US

Jan 1998 Jan 2001 Jan 2004 Jan 2007 Jan 2010 Jan 2013 Jan 2016 Jan 2019

0
1

2
3

4
5

6 AU
CN

HK
IN

JP
KR

Jan 1998 Jan 2001 Jan 2004 Jan 2007 Jan 2010 Jan 2013 Jan 2016 Jan 2019

0
1

2
3

4
5

6 BE
FR

DE
IT

NL
RU

ES
CH

UK

Figure 1. Time series of daily equity log prices from January 1998 to December 2021, by regional
classification: Americas (top), Asia-Pacific (middle), and Europe (bottom).

Table 2. Statistics of daily returns and change in the ES for stock markets (March 1998–December 2020).

Daily Returns Daily Log ES

Code Mean SD Skew Kurt Mean SD Skew Kurt

AR 0.0775 2.2776 −1.7342 35.0728 −0.0154 63.4156 −5.9109 820.8923
BR 0.0373 1.9175 0.2348 15.7679 −0.0249 64.1751 −21.0317 1841.0830
CA 0.0182 1.0978 −0.9401 16.8512 −0.0298 21.5994 1.8971 254.6383
MX 0.0384 1.3268 0.1088 6.4837 −0.0678 22.4015 0.3937 74.0335
US 0.0246 1.2155 −0.3997 10.9808 −0.0285 20.8834 −1.4264 133.3279
AU 0.0168 0.9926 −0.6961 8.5250 −0.0150 16.3888 1.4337 138.1182
CN 0.0171 1.4756 −0.3506 5.6949 −0.0557 38.1862 −2.6821 189.0206
HK 0.0136 1.4693 −0.0185 7.1981 −0.0925 25.9796 −0.8570 142.6127
IN 0.0463 1.4532 −0.2802 8.8733 −0.0176 43.0280 −5.6080 812.9438
JP 0.0087 1.4343 −0.3390 6.4696 −0.0055 31.0559 −3.3666 219.1089
KR 0.0284 1.5794 −0.2769 6.4429 −0.0696 29.0712 −0.1575 269.9062
BE 0.0075 1.2404 −0.4001 9.5224 −0.0072 22.4958 1.6991 239.2680
FR 0.0128 1.4137 −0.2117 6.2409 −0.0191 26.2744 −3.4356 280.8779
DE 0.0202 1.4631 −0.1968 5.6709 −0.0334 23.6652 0.0171 143.6197
IT −0.0008 1.5230 −0.5382 8.5133 −0.0058 31.5024 −5.9900 457.8811
NL 0.0096 1.3822 −0.2423 7.0535 −0.0097 21.5194 0.1786 106.0908
RU 0.0648 2.2908 0.2812 19.9011 −0.1418 45.9988 −0.4843 141.6174
ES 0.0014 1.4612 −0.3061 7.6552 −0.0023 33.7401 0.4265 293.9172
CH 0.0095 1.1575 −0.2895 7.5521 −0.0252 21.6889 3.1533 219.5005
UK 0.0044 1.1715 −0.3089 7.5820 −0.0173 18.6884 −0.1894 96.3411

4. Empirical Findings

We studied the dynamics of the downside interconnectedness among the major stock
markets via a yearly rolling window of 52 weeks. This is to capture year-on-year depen-
dence among the markets. We set the increments between successive rolling windows to
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one week. The first window covers March 1998–March 1999 and the last from January
2019–December 2020. In total, we have 1140 windows.

We characterised through numerical summaries the dynamic interconnectedness
among the major stock markets by monitoring the network density against the VIX index—
a measure that reflects the market’s expectation on the monthly volatility based on the S&P
500 index. The network density is given by the number of links in the estimated network
divided by the total number of possible links.

Figure 2 shows the time series of the network density against the VIX. The figure shows
a strong positive relationship between Net-Density and the VIX. Both indices indicate spikes
during the tech-bubble crisis (2000–2003), the global financial crisis (GFC, 2007–2009), the
Eurozone crisis (2010–2013), the oil crisis (2015–2016), and the corona crash (2020). The
spikes in both indices at the onset of crisis periods indicate elevated levels of unusualness
in the equity markets, a rise in financial market risk, and downside risk interconnectedness
among stock markets. The historical highest Net-Density recorded in 2020 shows that the
COVID-19-induced crisis was much greater than any market crisis in the last 20 years.
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Figure 2. Network density and VIX index.

In the interest of analysing the relationship between downside risk interconnectedness
and global market risk, we studied the lead–lag relationship between the Net-Density and
VIX. We stationarised each series via first differencing. Figure 3 presents the results of the
cross-correlation of the first difference of Net-Density and VIX.
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Figure 3. Correlation of ∆Net-Densityt+h with ∆VIXt.

The figure shows that the most significant cross-correlation between the Net-Density
and the VIX occurred at lag zero. We also found evidence that the Net-Density preceded
the VIX by two lags. This suggests that higher levels of downside risk interconnectedness
preceded higher levels of financial market risk. Thus, the above findings show that the
relationship between the network density of stock market downside risk interconnections
and financial market risk is not a mere coincidence, but rather evidence of contagion.
That is, periods of dense stock market downside risk interconnectedness increases global
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market risk. This is in line with the findings of [1,22], among others, for which dense
interconnectedness does amplify financial market risk.

We present in Figure 4 the network topology of the interconnectedness divided into
four sub-periods: pre-global financial crisis (pre-GFC: 29 January 1999–12 September 2008);
the global financial crisis (GFC: 15 September 2008–25 December 2009); pre-COVID-19 (pre-
COVID: 1 January 2010–14 February 2020); the COVID-19 outbreak (COVID: 21 February
2020–31 December 2020).
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Figure 4. Sub-period downside risk transmission network among stock markets. Red nodes represent
the markets of the Americas, blue for Europe, and green for Asia-Pacific. The size of the nodes is
out-degree weighted. Red links denote negative sensitivity and green for positive reactions.

We compared the sub-period networks in terms of average degree, density, cluster-
ing coefficient, and average path length (see Table 3). We noticed that two sub-periods
recorded tranquil conditions (i.e., 3 January 2000–12 September 2008 and 7 July 2009–
20 February 2020), while the other two (15 September 2008–6 July 2009, and 21 February
2020–30 October 2020) experienced stressful conditions. The tranquil periods were char-
acterised by a relatively low average degree of interconnectedness, a lower density and
clustering index, and a relatively high average path length. This suggests a lower degree of
equity market integration before and after the global financial crisis. It also shows that in
the event of a shock to a major market or a group of major markets, these shocks will take a
much longer time to propagate to other markets to cause a systemic breakdown.
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Table 3. The network statistics for sub-period interconnectedness graphs.

No. Sub-Period Average
Degree Density Clustering

Coefficient
Average Path

Length

1 Pre-GFC 1.150 6.053 0.733 1.324
2 GFC 6.550 34.474 0.754 2.211
3 Pre-COVID-19 1.100 5.789 0.814 1.083
4 COVID-19 6.900 36.316 0.787 1.734

Global Financial Crisis vs. COVID-19 Outbreak

We compared the interconnectedness during the GFC and COVID-19 outbreak. To
achieve this, we extracted the intersection and differences between the networks. Figure 5
presents the similarity and difference between the structure of interconnectedness during
the GFC and COVID-19 sub-periods. Figure 5a depicts the network links during the GFC,
but not in the COVID-19 period. Figure 5b displays the network links common to both
periods, and Figure 5c shows only links in the COVID-19 period, but not present during
the GFC.
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Figure 5. Comparing the global financial crisis (GFC) and COVID-19 outbreak network. Red nodes
represent the markets of the Americas, blue for Europe, and green for Asia-Pacific. The size of the
nodes is out-degree weighted. Red links denote negative effects and green for positive interactions.
The number in parenthesis signifies the total links in each network. Note: Ac—complement of A.
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Overall, we found 96 common connections between both networks. The GFC recorded
35 extra links that were not present in the COVID-19 network, and the latter also reported
42 new connections that were not in existence during the financial crisis.

We compared the most critical (or central) market to during what appears to be
the two most-severe equity market crises over the last two decades. Table 4 reports the
summary of the top five most-central markets in the downside risk propagation according
to hub and authority scores over the two crisis sub-periods. The table shows that the top
three transmitters of spillover propagation during the GFC were Germany, Italy, and The
Netherlands, while the top three receivers were France, The Netherlands, and the U.K.
During the COVID-19 outbreak, the most central markets for transmitting shocks were
Switzerland, Russia, and Spain, while The Netherlands, France, and Spain ranked high at
the receiving end of the downside risk. Thus, not only has the structure of the downside
risk interconnectedness changed over the two crises, but the most central markets for
spillover propagation have also changed in recent times.

Table 4. Top 5 centrality ranking during the global financial crisis and COVID-19 pandemic.

Rank
GFC COVID

Hub Auth Hub Auth

1 DE 0.471 FR 0.884 CH 0.411 NL 0.560
2 IT 0.378 NL 0.252 RU 0.335 FR 0.454
3 NL 0.373 UK 0.211 ES 0.330 ES 0.329
4 UK 0.367 IT 0.158 DE 0.308 DE 0.314
5 ES 0.354 ES 0.141 BR 0.294 CA 0.269

5. Conclusions

We studied the sensitivity of stock returns to the tail risk of major equity market
indices via the extreme downside hedge (EDH) model. The EDH model relies on the
argument that in turbulent times, some assets/markets usually perform badly while others
have mild reactions. Any asset that acts as a hedge to the tail risk of other assets/market
indices is often high in demand and usually commands a price premium. The EDH was
estimated by regressing asset returns on the tail risk of other assets/markets. We analysed
the EDH relationship among the major equity indices via a Bayesian graph structural
learning method. The empirical application examined whether downside risk connections
among the major stock markets are merely anecdotal or provide the signal of contagion
and the nature of sensitivity among major equity markets during the global financial crisis
and the coronavirus pandemic.

The result showed strong evidence of tail risk interconnectedness among stock markets
both in the tranquil period and during the crisis and post-crisis periods. We showed that
during crisis periods (when markets are more vulnerable), the degree of interconnectedness
is particularly stronger and more persistent, which implies losses for investors already with
long stock exposures. We also found that the level of downside risk spillovers induced by
COVID-19 recorded the highest network density, suggesting stronger evidence of contagion
in the recent coronavirus pandemic than during the global financial crisis. The evidence
showed that even though the most central equity markets for downside risk propagation
changed over the two crises periods, the majority of the top five transmitters and recipients
were EU-centred markets.
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