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Abstract: Hyper-Kamiokande (Hyper-K) is the next-generation water Cherenkov neutrino experi-
ment, building on the success of its predecessor Super-Kamiokande. To match the increased precision
and reduced statistical errors of the new detectors, improvements to event reconstruction and event
selection are required to suppress backgrounds and minimise systematic errors. Machine learning
has the potential to provide these enhancements, enabling the precision measurements that Hyper-K
aims to perform. This paper provides an overview of the areas where machine learning is being
explored for Hyper-K’s water Cherenkov detectors. Results using various network architectures are
presented, along with comparisons to traditional methods and a discussion of the challenges and
future plans for applying machine learning techniques.
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1. Introduction

Hyper-Kamiokande [1] (HK) is the next-generation neutrino experiment in Japan,
building on the success of Kamiokande, Super-Kamiokande (SK), and T2K. The physics
program includes neutrino oscillation and neutrino astrophysics by observing accelerator,
atmospheric, solar, supernova and other astrophysical neutrinos, as well as probes for
new physics, including proton decay searches and indirect dark matter searches. The
experiment will involve two new water Cherenkov (WC) detectors that are planned to start
operation in 2027.

Construction is underway on the far detector (FD), consisting of a 258 kt total (188 kt
fiducial) volume of water surrounded by a 20% coverage of 50 cm PMTs with an additional
coverage from multi-PMT (mPMT) modules, each consisting of 19 8 cm PMTs. With
8 times the fiducial volume of SK, it will benefit from increased event rates, while the new
photosensor technology will provide improved photo-efficiency and timing resolution.

The huge detector target volume and increased neutrino beam power will provide a
greatly increased event rate of observed oscillated neutrinos, significantly reducing statisti-
cal errors on the measurement of the neutrino oscillation parameters compared to existing
neutrino experiments. To achieve the goals of HK, a corresponding reduction is necessary
in systematic uncertainties compared to those currently achieved in the T2K experiment.
The largest of these uncertainties are in the neutrino cross-sections and interaction models,
the neutrino beam flux, and the detector response [2]. A reduction in these uncertainties
is being achieved through a combination of advances in analysis techniques, improved
detectors, and new measurements of neutrino interactions at the experiment’s near and
intermediate detectors close to the J-PARC neutrino beam.

The Intermediate Water Cherenkov Detector (IWCD), based on the nuPRISM pro-
posal [3], is planned to be constructed ∼1 km from the beam source to measure the flux
and cross-section of neutrinos using the same target and detector technologies as the FD.
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The IWCD will consist of a ∼1 kt water volume with ∼500 mPMT modules that provide
an improved position, direction, and timing information over 50 cm PMTs, allowing the
smaller-sized IWCD to achieve equivalent granularity as the FD. The detector volume of
the IWCD will be able to move vertically within a 50 m tall pit, allowing for measurements
at different off-axis angles to the beam, providing different neutrino energy spectra.

To exploit new detector technologies and capabilities and achieve the goal of reducing
systematic errors, advances in event reconstruction are needed, with challenges posed by
the computational requirements of traditional reconstruction and limitations arising from
approximations in their physics models [4]. New approaches to event reconstruction are
now being explored [5–8], inspired by the success of machine learning techniques in other
particle physics and computer vision tasks [9].

2. Traditional Event Reconstruction for Water Cherenkov Detectors

Traditional event reconstruction for WC detectors determines the properties and
particle types of an observed event by maximising a likelihood or goodness function [10].
This function is based on the probabilities of the observed pattern of hit times and charges
at each of the detector’s PMTs for a given hypothesis of the particles producing Cherenkov
light in the detector. Using this approach and following an algorithm originally developed
for MiniBooNE [11], fiTQun is the likelihood-based reconstruction software package used
for the reconstruction of high-energy events in HK, T2K, and SK [12].

The single-ring reconstruction of fiTQun maximises the likelihood of the observed
hit time and charge at each hit PMT and the likelihood of each unhit PMT, while varying
particle position, direction, and energy for each particle type. The ratio of these maximum
likelihoods can be used to identify the particle producing the Cherenkov ring.

Multi-ring events are reconstructed by fiTQun using likelihoods calculated assuming
contributions from two or more Cherenkov rings. This approach has been successful for
neutral pions and other events producing multiple Cherenkov rings, but a dedicated gamma
hypothesis in fiTQun, assuming two rings from its conversion to an electron–positron pair,
has not been successful. The best performing discriminant for identifying gamma particles
is the likelihood ratio of electron and muon hypotheses, where gammas appear less muon-
like than electrons due to increased variations in the direction of Cherenkov light from the
electromagnetic showers of an electron–positron pair compared to that of a single electron.

Likelihood-based approaches have been successfully used in existing experiments, but
their achievable precision is reaching its limit [8]. Adaptations for the smaller IWCD and
its geometric complexities require the development of more complex likelihood functions.
Improvements require relaxing assumptions used in the likelihoods’ construction, resulting
in an increased computational complexity. Reconstruction is already the most intensive part
of the software chain, for the IWCD single-ring reconstruction with fiTQun takes more than
one minute per event, and even longer for the FD with more PMTs. This is beyond what is
feasible for some future analyses, so alternative methods are now being explored [13].

3. Machine Learning Reconstruction Techniques

Machine learning (ML) has been revolutionary in computer vision and is now becom-
ing common throughout physics applications. ML has the potential to use all information
without making model assumptions beyond those of the simulations used to train networks
(also used to tune fiTQun). Additionally, once trained, these models use far less compu-
tational resources to reconstruct events. The WatChMaL organisation [5] was formed to
facilitate the development of machine learning reconstruction for WC detectors, including
HK’s FD and IWCD. Subsequent studies have reported promising results for identifying
neutron captures using various possible network architectures [6] and for particle-type
identification (PID) using convolutional neural networks (CNNs) [4] and variational au-
toencoders [7]. A hybrid approach has also been explored, where the use of ML techniques
to generate likelihoods could allow for faster and more accurate results compared to
traditional reconstruction methods [8].
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Inspired by the revolutionary success of CNNs in image processing [9], and the ability
of ResNet to classify broad varieties of images with high accuracy [14], a CNN based on
ResNet has been developed to perform classification and regression on events in the IWCD.
The input to the network is an image containing both the barrel and end-caps mPMTs of the
detector, where each pixel corresponds to a single mPMT with 19 channels for the charge
at each of the 19 PMTs. Initial attempts at including an additional 19 channels for the hit
times of the PMTs were not successful at improving results; however, further attempts to
use this additional information are actively being developed.

The cylindrical geometry of the detector provides two circular end-caps, each contain-
ing 88 mPMTs within a 10 × 10 grid. The barrel of the cylinder provides a 40 × 9 grid of
mPMTs. To produce the final 40 × 38 pixel image provided to the CNN, first, the barrel is
unwrapped and the end-caps are placed above and below; then, each part of the image is
duplicated and the layout is reconfigured, as demonstrated in Figure 1. This provides a
double-cover of the image that limits adverse effects due to unwrapping the image, and
provides physically meaningful circular boundary conditions at both vertical and horizon-
tal boundaries of the image. The network architecture is equivalent to ResNet-18 with its
initial 7 × 7 pixel convolution layer replaced by a 1 × 1 pixel (single mPMT) convolution
over the initial 19 channels, corresponding to a convolution of the charges of the 19 PMTs
in each mPMT.

Figure 1. Configuration of the cylindrical detector onto a 2D image for CNN. The layout illustration
on the left demonstrates how the cylinder is unwrapped onto a 2D surface. Shown on the right, the re-
sulting image is divided into sections outlined by dashed lines, then duplicated and reconfigured into
a double cover of the detector surface, with circular boundary conditions indicated by orange arrows.

The use of CNNs requires projecting the detector surface onto a rectangular 2D image
of regular pixels. It may be expected that improved results might be achieved by extracting
the physical information from the PMT hit times and charges using their positions in 3D
space directly. Network architectures acting on point clouds are designed for this task
with the PointNet architecture showing the capability of accurately classifying 3D objects
using point cloud data [15]. PointNet has been adapted to take points (PMTs) in 3D space,
together with features (observations of the PMT) at each point. The input to the network
is then each PMT’s three spacial position dimensions, hit time, and observed charge. An
advantage of this network is that it can be easily adapted to any detector geometry, not
requiring that PMTs be positioned in regular grids. For example, this allows a combination
of individual 50 cm PMTs and mPMTs, as is for the case for HK FD designs.

4. Results

Classification and regression networks based on ResNet and PointNet have been
developed for PID and the reconstruction of initial particle position, direction, and energy.
A simulated dataset of single-particle events was created using the WCSim software
package [16]. The dataset consists of 3 million examples of every electron, muon, and
gamma particle, uniformly randomly distributed in the detector volume with isotropic
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random directions and uniform random energies of 0 to 1 GeV above Cherenkov’s threshold
of the particle or its Cherenkov light-producing products. The dataset is partitioned into
1.5 million examples of each particle type for training, 0.3 million for network validation
during training, and 1.2 million for evaluating the final model performance. For the more
difficult task of separating electrons and gammas, an additional 6 million examples of each
were added to the training dataset. Data augmentation is used by including reflections of
the detector about each 3D axis, to increase the number of unique examples by a factor of 8.

Figure 2 shows the results for PID, where it is seen that the ML-based approaches are
performing well. It should be noted that the traditional fiTQun reconstruction algorithm,
designed for the Super-Kamiokande detector, has had its likelihoods re-tuned for the
IWCD, but would be expected to perform better if the likelihood construction itself were
redesigned to account for complexities of the smaller detector size and mPMT photosensors.
Nonetheless, the significant improvement over fiTQun is notable for both the electron vs.
muon task and electron vs. gamma task. A very high rejection of muons will be important
for the IWCD’s large background from the muon neutrino beam, and a statistical separation
of single gamma events appears potentially possible in a WC detector for the first time.
Of particular note is the reduced performance of fiTQun at low momentum, where events
have fewer hits, while ML-based methods appear able to extract all information from these
hits, allowing for a good efficiency down to lower energies. For discriminating electrons
vs. gammas, ML-based techniques’ performance drops near the edges of the energy range
used to train the network. Additional data extending the range may improve the results at
these edges. It is interesting that while ResNet is outperforming PointNet at electron vs.
muon discrimination, the opposite is the case for electron vs. gamma. This is conjectured to
be due to the PMT hit timing data, which PointNet has been better able to utilise, helping
to extract information from the very start of the electromagnetic shower.

Figure 2. Results of PID using ResNet (red), PointNet (green), and fiTQun (blue), showing the
electron efficiency when requiring 99.9% muon rejection (left) or 80% gamma rejection (right) as a
function of the electron’s true momentum.

Results for the reconstruction of particle position, direction, and energy are shown
in Figure 3. In the case of position, PointNet is currently under-performing with a lower
resolution than ResNet, and lower than fiTQun when the distance from the detector
wall exceeds 125 cm. Improvements over fiTQun are seen when using ResNet for all
reconstructed quantities of position, direction, and energy. Energy and direction see general
improvements by ResNet over fiTQun. Position reconstruction sees overal improvement,
although the position precision of fiTQun meets or exceeds ResNet for distances from the
detector wall greater than 220 cm. Of particular note is ResNet’s improvement in position
reconstruction close to the detector wall. This is expected due to the likelihood functions of
fiTQun being originally designed for a larger detector, where approximations in the physical
model limit performance close to the detector wall. The strong performance of ML-based
methods in the region close to the wall, where fiTQun performance degrades, shows the
potential of ML-based reconstruction to reduce systematic uncertainties that could arise
from misreconstruction, causing the migration of the position across the boundary of the
detector’s fiducial volume.
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Figure 3. Results of reconstruction, showing on the (left), the average position resolution as a
function of distance from the detector wall for ResNet (red), PointNet (green), and fiTQun (blue); in
the (middle), the direction resolution; and on the (right), the energy resolution.

In addition to improved resolutions and PID capabilities of ML methods, there is also
a significant advantage in computational time to perform the reconstruction. Once trained,
these networks can process over 100,000 events per minute on one GPU, representing an
improvement of five orders of magnitude over traditional reconstruction on CPU, even
accounting for processing events through several networks dedicated to different tasks.

Beyond identifying and reconstructing single rings from individual Cherenkov light-
producing particles or electromagnetic showers, there is also a need to handle complex
events involving multiple particles and Cherenkov rings. One approach to this could be to
identify the PMT hit charges in a given event that come from a particular ring, separating
from the charge that comes from another ring. Each ring could then be reconstructed
individually using the networks trained for single-ring reconstruction. In ML terms, this
is a semantic segmentation task, where the image is segmented into pixels belonging to
each ring, achieved by designing a network to provide outputs associated with each pixel
as opposed to outputs associated with the image as a whole. Two network architectures
designed for semantic segmentation based on CNNs, FRRN [17], and U-Net [18] were
adapted for IWCD detector data. As a proof-of-concept, these networks were trained
to segment the hits coming from two electron-like Cherenkov rings, resulting from the
decay of neutral pions. Preliminary results show some promise that the network is able
to correctly segment most hits for some events, as seen in the example given in Figure 4;
however, further development is needed to extend this approach to the varying numbers
and types of particles expected, and to validate the reconstruction of individual rings
after segmentation.

Figure 4. Example segmentation of two Cherenkov rings from gammas of a neutral pion decay,
showing the simulated charge observed in the detector’s PMTs (left), true segmentation (middle),
and reconstructed segmentation using U-Net (right). The true and reconstructed segmentation panels
display PMT hits from one gamma coloured red and the other coloured blue; the reversal of colour
labels identifying the gammas in the reconstructed segmentation occurs by chance due to the network
being trained to segment the rings but not to reproduce their arbitrary ordering.

5. Conclusions

A new approach for event reconstruction in WC detectors has been presented us-
ing deep learning CNN architectures. The results for particle-type identification and
reconstruction of particle energy, position, and direction have shown potential to provide
improvements over existing likelihood-based reconstruction through a greater precision
and reduced computational demands, and the capability to handle multi-ring events by
segmentation has also been demonstrated. Such advances will be necessary as part of the
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progression to the next generation of neutrino experiments. While the capabilities demon-
strated here indicate that the machine learning approach to reconstruction can address
the needs of future experiments, further development is still required before these new
approaches will be ready to use in a running experiment.

The ML reconstruction performance has only been trained and tested on simulated
data. Given the nature of deep learning and concerns about applying a model trained
on imperfect simulation, validating these approaches with real data will be essential.
Additionally, reconstruction tasks that have been performed so far using ML represent only
a subset of those traditionally completed by likelihood methods. To gain the advantage of
reduced computational complexity, ML-based methods will need to be extended to fully
reconstruct complex multi-ring events with additional particle types. Charged pions have
yet to be included, and while segmentation results have shown potential to separate two
rings of neutral pions, this provides only one simplified example of a multi-ring event
topology and has not yet been integrated into a full reconstruction chain. The upcoming
Water Cherenkov Test-beam Experiment [19] will provide an opportunity to address these
remaining challenges with data from a WC detector with a beam of tagged particles.

In summary, traditional maximum likelihood event reconstruction is starting to limit
the analyses that may be possible with future WC detectors. Significantly reduced recon-
struction computation time and potential improvements for reconstruction performance
from ML have been demonstrated as a possible route to overcome the limitations of tradi-
tional methods. While further development is needed to expand the capabilities and test
performance on experimental data, progress is expected to continue towards production-
ready ML-based reconstruction for the next generation of WC neutrino detectors.
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