
Citation: Klein, R. A Straightforward

Approach to Drawing

Temperature-Dependent I–V Curves of

Solar Cell Models. Solar 2022, 2,

509–518. https://doi.org/10.3390/

solar2040030

Academic Editor: Vincenzo

d’Alessandro

Received: 9 October 2022

Accepted: 2 November 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Straightforward Approach to Drawing Temperature-Dependent
I–V Curves of Solar Cell Models
Rolf Klein

Institute of Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany;
rolf.u.klein@uni-bonn.de or rolf.u.klein@gmail.com; Tel.: +49-(0)1743241953

Abstract: Equivalent circuit models of solar cells are important for understanding the behavior of
photovoltaic systems under different weather conditions. They provide an equation F(V, I) = 0
that expresses the correspondence between voltage V and current I a cell can deliver. The perfor-
mance of a cell, and, therefore, the parameters of equation F, depend on the cell’s temperature
and on the incoming light’s energy and angle. One would like to simulate and visualize these
dependencies in real time. Given a fixed set of parameters, no elementary solution s(V) = I of
Equation F(V, I) = 0 is known. Hence, circuit simulation systems employ numerical methods to
solve this equation and to approximate the circuit’s I–V curve, CIV . In this note, we propose a simpler
approach. Instead of expressing I as a function of V, we represent both as elementary functions
V(u) and I(u) of a real parameter u. In this way, the I–V curve CIV is obtained as the image of the
mapping m(u) = (V(u), I(u)) from a u-interval to the VI-plane. Our approach offers both a precise
mathematical description of CIV and an easy way to draw it. This allows us to study the influence
of environmental changes on CIV by smooth animations, and yet with rather simple means. In this
paper, we consider temperature dependence as an example; changes in irradiance or angle could be
incorporated as well. Using formulae suggested in the literature that describe how the parameters
in equation F(V, I) = 0 depend on temperature, it takes only a few lines of code to generate an
interactive worksheet that shows how CIV , the location of the maximum power point MPP and the
maximum power change as the circuit’s temperature, is altered on a slider. Such a worksheet and its
location will be presented in this paper.

Keywords: solar cell; equivalent circuit; single-diode model; closed-form I–V curve; temperature;
electrothermal modeling

1. Introduction

Solar energy is of great importance to help us reduce, and finally eliminate, the use
of fossil energy. As an increasing number of photovoltaic systems are appearing in public
and in private installations, knowledge of their basic properties should be made easily
accessible. On this note, we attempt to take a step in this direction. Before we get started,
let us look at some background information first.

Both voltage V and current I generated by a photovoltaic cell depend on the load L it
has to feed. In order to compute the maximum power V · I the cell can deliver to suitable L,
one needs to know the mutual dependency of V and I; that is, the I–V curve CIV . To this
end, different models of solar cells have been suggested.

Figure 1 shows the widely used single-diode model. Here, current I delivered to load
L is given by

I = Iph − ID − Ish (1)
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A photogenetic current Iph is supposed to be provided by the solar generator. Both
diode current ID and the current Ish through shunt resistor Rsh depend on the voltage Vph
at the generator, which is related to V by

Vph = V + I · Rs, (2)

taking the voltage drop at resistor Rs into account. Using the Shockley diode equation to
obtain ID, Equation (1) implies the well-known formula

I = Iph − I0 ·
(

exp
(

V + I · Rs

n ·VT

)
− 1

)
− V + I · Rs

Rsh
. (3)

Here, I0 denotes the reverse saturation current of the diode, n equals the diode’s ideality
factor, and VT stands for the thermal voltage.

Rs
I

Iph ID Ish

Rsh VVph

I

L

Figure 1. The single-diode model of a solar cell. Iph denotes the photogenetic current provided by
the solar generator. One part of it, ID, passes through the diode in a forward direction. Another part,
Ish, runs through shunt resistor Rsh; it models losses via leakage in the cell. The remaining current I
passes through series resistor Rs, which represents losses caused by imperfect contacts. The values of
I, voltage V and generator voltage Vph depend on the load L at the cell’s terminals.

Even when the values of VT , Iph, I0, n, Rs and Rsh are known, the challenge is in
expressing I as a function of V, or vice versa. To this end, one can rewrite (3) as equation

0 = F(V, I) = Iph − I0 ·
(

exp
(

V + I · Rs

n ·VT

)
− 1

)
− V + I · Rs

Rsh
− I. (4)

The implicit function theorem [1] implies that there exist local solutions I = s(V)
satisfying F(V, s(V)) = 0 in a neighborhood of each value of V, but an explicit expression
for s(V) by elementary functions (functions such as polynomials, roots, exp and ln, trigono-
metric functions and their inverses, and finite combinations of these are usually called
elementary or of closed form) is not known. Thus, one has to resort to numerical methods.

In [2], it has been shown how to use Newton’s method to approximate, for a given
voltage V, the associated current I, satisfying F(V, I) = 0. The Newton method is a
universal iterative algorithm for finding zeroes of smooth real-valued functions. For a
sequence of V-values Vj, it can be used to approximate the associated values Ij satisfying
F(Vj, Ij) = 0, with an accuracy depending on the number of iterations. Processing the
values Vj one by one leads to a sequence of points (Vj, Ij) arbitrarily close to CIV , but it
does not provide us with a global solution I = s(V) of equation F(V, I) = 0 or, vice versa,
a solution V = r(I).

Then, in [3], such a solution r(I) for V has been given in terms of the Lambert
W-function,

W(z) · exp(W(z)) = z. (5)

More precisely, the authors succeeded in separating the two variables V and I in (3) by
providing an equation of type

V = r(I) = a(I, W(b(I))) (6)
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with elementary functions a and b that involve the parameters of F(V, I) but neither V
nor I. Lambert function W itself is known to be not elementary, so that, again, it takes the
Newton method or some other iterative algorithm to approximate it. However, because
the W function occurs so frequently, efficient implementations of W(z) are available in
advanced math systems that can be used in commercial circuit simulators. They allow
CIV curves to be drawn by a plot command that triggers numerous computations of W in
the background.

The purpose of this paper is twofold. As a theoretical contribution, we present, in
Section 3.1, an exact description of I–V curves by elementary functions. Instead of writing I
as a function of V, we express both as functions V(u) and I(u) of a real parameter u. In this
way, CIV is obtained as the image of the mapping m(u) = (V(u), I(u)) from an u-interval
into the VI-plane. V(u) and I(u) are directly implied by Equation (3). This approach will
be described for the single-diode model; it can easily be generalized to the double-diode
model and to Bishop’s model [2].

Then, in Section 3.2, we derive practical benefit from our parameterization. We
demonstrate that it can be used to implement, by a few lines of code, interactive tools for
studying the influence of environmental parameters on CIV curves. Even on a hand-held
device, one can observe how a CIV curve, the location of its maximum power point MPP,
and the maximum power smoothly change as the circuit’s temperature is altered on a slider.
The influence of variable irradiance or angle could be incorporated as well.

Such tools allow research questions to be investigated using simple means. For
example, there seems to be a discussion in the community as to whether the value of
series resistor Rs should be modeled to grow with increasing temperature [4], or whether it
could be considered constant [5]. For the parameters of a real PV module studied in [4],
our simulation shows that the difference is surprisingly small. At 100 ◦C, power at MPP
computed for increasing Rs equals 182.54 W; if Rs remains constant, peak power is larger
by only 80 mW. A closer inspection of Equation (3) confirms this finding directly.

Some technical facts will be needed below. In practice, not only single cells are being
considered, but also photovoltaic modules consisting of a number N of identical cells in a
series circuit. Here, the single-diode model can also be applied if all cells are subjected to
identical environmental parameters. In this case, thermal voltage VT must be multiplied by
N in Equation (3).

Given a real solar cell or module, one can measure its I–V curve experimentally. In [6],
the authors review different types of variable loads L that can be used to this end. Typically,
such measurements are being taken under standard test conditions (STC), where the cell is
operated at a temperature of 25◦ Celsius and receives an irradiance of 1000 W/m2, of light
whose spectrum corresponds to an incoming angle of 48.2◦. Of the parameters mentioned
above, the thermal voltage is thus fixed to

VT =
k
q
· T = 25.7 mV, (7)

where k = 1.381 · 10−23J ·K−1 is the Boltzmann constant, q = 1.602 · 10−19C denotes the
elementary charge, and T = 25 + 273.15 states the absolute temperature in Kelvin.

Several methods for extracting the missing parameters Iph, I0, n, Rs and Rsh from
measurements have been reviewed in [7]. The analytic approach of [8,9] makes use of
information supplied by manufacturers’ data sheets, namely the values, under STC, of
the open circuit voltage Voc, shortcut current Isc, and the maximum power point MPP.
They already provide three points, (0, Isc), (Vm, Im) and (Voc, 0) on the curve CIV to be
constructed. Additionally, its tangent at MPP (Vm, Im) is known to be of slope −Im/Vm,
since the derivative of V · I by V must vanish at MPP. In addition, the tangent slopes of
the measured curve at (0, Isc) and (Voc, 0) can be taken. Based on these data, a satisfactory
presentation of CIV can be obtained [5]. In this note, we assume that the parameters at STC
are given.
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2. Electrothermal Modeling

The performance of solar cells is strongly influenced by temperature and irradiation.
While irradiance measures the total radiant energy of light per unit area of a solar module,
the module’s performance also depends on the spectrum of the light, which is influenced
by the length of the light’s path through the atmosphere of Earth. The relative length of this
path corresponds to the angle between this path and the line perpendicular to the Earth’s
surface. At STC, this angle is assumed to equal 48.2◦.

In this paper, we focus on the influence of temperature on the power generated,
assuming all other parameters are constant. To make accurate predictions, one needs to
know how the parameters in (3) depend on temperature T. Then, for any given value T,
curve CIV,T can be computed without taking new measurements.

The behavior of the thermal voltage has already been established in (7). In [5], the
authors investigate how the other five parameters of the single-diode model depend on
temperature and irradiance. They are using the analytic approach and perform extensive
experiments with 27 PV modules at different temperature levels. The results indicate that,
for constant irradiance at STC and increasing temperature T,

1. Diode ideality factor n can be considered constant;
2. The value of parasite resistor Rsh can be considered constant;
3. The value of parasite resistor Rs can be considered constant;
4. Photogenic current Iph,T increases linearly with T,

Iph,T = Iph,TSTC · (1 + α · (T − TSTC)), (8)

proportionally to the α coefficient specified in the data sheet;
5. Reverse saturation current I0,t increases exponentially, as suggested in [10],

I0,T = I0,TSTC ·
(

T
TSTC

)3

· exp
(

1
k
·
(

Eg,TSTC

TSTC
− Eg,T

T

))
where (9)

Eg,T = Eg,TSTC ·
(

1− 0.0002677(T − TSTC)

)
. (10)

Here, Eg denotes the—also temperature dependent—energy gap; for silicon, one assumes
Eg,TSTC = 1.12 eV. In [5], the authors point out that there is still discussion in the literature
concerning points 1., 2., and 3., while 4. and 5. seem to be accepted. In fact, in a recent
paper [4] the authors assume that Rs grows linearly with temperature T,

3.’

Rs,T = Rs,TSTC ·
T

TSTC
. (11)

In Section 3.2, we will discuss how the I–V curve of the module studied in [4] is
influenced by choosing alternative 3. or 3.’.

3. Results
3.1. Analysis

In this subsection, we develop a mathematically precise and straightforward descrip-
tion of I–V curves that allows them to be drawn quite easily. To this end, let us start with a
fixed temperature and take another look at Formula (3). The function

f (u) := Iph − I0 ·
(

exp
(

u
n ·VT

)
− 1

)
− u

Rsh
(12)
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is defined for every real-value u. For arguments u of special type u = V + I · Rs, where
(V, I) represents a point on the circuit’s I–V curve, f (u) becomes the right-hand side of (3),
so that we obtain

f (u) = f (V + I · Rs) = I, and therefore (13)

u− f (u) · Rs = (V + I · Rs)− I · Rs = V, which implies (14)

(u− f (u) · Rs, f (u)) = (V, I). (15)

This means that we can obtain each point (V, I) on CIV as (u− f (u) · Rs, f (u)) for
parameter u = V + I · Rs which equals Vph, by (2). Hence, the appropriate range for
parameter u starts with IscRs, corresponding to point (0, Isc) on CIV , and goes up to Voc
corresponding to (Voc, 0). This leads to the following result.

Theorem 1. For the single-diode model of solar cells, the mapping

m : [Isc Rs, Voc] → R2 (16)

u 7→ (V(u), I(u)) = (u− f (u)Rs, f (u)) (17)

is a bijective parameterization of the I–V curve CIV in the first quadrant.

The same approach works for the double-diode model [9], whose equation reads

I = Iph − I0,1

(
exp

(
V + IRs

2VT

)
− 1

)
− I0,2

(
exp

(
V + IRs

VT

)
− 1

)
− V + IRs

Rsh
(18)

and for Bishop’s circuit model, which aims at modeling a cell under negative voltages by
adding a second generator to the single- or double-diode model [2] (2.48). Formula (18) is
then extended by another additive term

−b (V + IRs)

(
1− V + IRs

Vbr

)−a

,

where b is a constant, Vbr denotes the diode’s breakthrough voltage, and a is called the
breakthrough avalanche exponent.

Theorem 1 could be generalized to more complicated circuits, in which equation V
and I are “encoded” into a single number g(V, I) more complex than V + IRs. As long as
there exist decoding functions f and h that satisfy

f (g(V, I)) = I (19)

h(g(V, I), I) = V, (20)

we can still obtain the following result.

Theorem 2. If functions f , g, h are continuous and if C is connected, then
g(C) = {g(V, I); (V, I) ∈ C} is an interval, C is a curve, and the mapping

m : g(C) → C (21)

u 7→ (h(u, f (u)), f (u)) (22)

is a bijective parameterization of C.

Proof. The image of the connected set C under the continuous function g is again connected,
hence an interval in R. Mapping m is surjective because for each (V, I) in C, we know that
g(V, I) lies in g(C) and that u = g(V, I) is mapped to (V, I) by m. The injectivity of m
follows from the decoding property. Since m is also continuous, C must be a curve.
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In Theorem 1, the set C equals CIV and h denotes the function h(x, y) = x− yRs. We
have g(V, I) = V + I Rs and g(C) = [Isc Rs, Voc].

If temperature is variable, we can simply replace the constant values of VT , Iph and I0
in the definition of f in (12) with expressions depending on T such as those discussed in
Section 2 and (7), and obtain I–V curves CIV,T . In the same way, dependency of irradiance
or angle can be incorporated. The only condition is that neither I nor V occur in these
expressions other than as V + IRS.

3.2. Examples

Let us start with a fixed set of parameters taken from Table 2.4 in [2],

Iph = 1.28 A; I0 = 0.1659 µA; n = 1.375; Rs = 22 mΩ; Rsh = 20 Ω; VT = 25, 7 mV.

Even without knowing Isc or Voc, we can use any plotting tool to draw mapping m
mentioned in Theorem 1. For a large enough range of parameter u, the output looks like
the curve displayed in Figure 2. Within the first quadrant, this curve equals CIV , as shown
in Figure 2.5 of [2], while the rest of the curve should be ignored.

Figure 2. Curve CIV is situated in the first quadrant.

Next, we consider the PV module studied in [4]. It consists of 60 cells, and its data
sheet specifies

Iph ≈ Isc,TSTC = 10.82 A; α = 0.04 %/◦C.

In their experiments, by combining numerical with analytical methods, the authors found

I0,TSTC = 4.17 · 10−8 A; Rs,TSTC = 0.0037 Ω; Rsh = 112.1 Ω.

We picked the constant value n = 1.375 for the diode ideality factor from a somewhat
scattered cloud of measurements.

In addition to the declarations of these parameters, twelve lines of code are sufficient
to generate an interactive worksheet in GeoGebra (We picked GeoGebra because it allows
to manipulate dynamic geometric and algebraic objects in a very intuitive way. It is widely
used in geometry research and teaching. Maple or Mathematica would be good alternatives)
that draws the parameterized curve CIV,t depicted in Figures 3 and 4, computes its MPP and
the maximum power, Pt; some technical details are given in the Appendix A. The dashed
(blue) curve is the hyperbola I = h(V) = Pt

V consisting of all points (V, I) in the plane for
which V · I equals maximum power; it touches CIV,t at MPP from the right-hand side.
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In this example, it appears that the curvatures of CIV and h at MPP are, up to their
opposite signs, closer at high temperature than at STC. This observation raises the ques-
tion of whether errors in determining the exact MPP on CIV are more detrimental at
lower temperature.

Figure 3. The slider allows temperature t to be changed between 0◦ and 100 ◦C.

Figure 4. One can observe how curve CIV and its MPP change; number Pt denotes the power at MPP.

Finally, we want to explore what difference it makes to have Rs linearly grow with T
as opposed to fixing it at Rs,TSTC .

Figure 5 depicts the curves C = CIV,t for temperature-dependent resistor Rs, and
D = DIV,TSTC for the constant value Rs,TSTC . One has to zoom in considerably to separate
the two curves. Their maximum power values are quite close: 182.54 W for C and 182.62 W
for D.
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Figure 5. Curve D = DIV,t results from using constant series resistor Rs,TSTC , rather than having its
value increase with factor T

TSTC
, as with C = CIV,t.

This can be explained by the following observation. Let (VC, I) denote a point on C.
Then, VC and I satisfy Equation (3) with series resistor value Rs. Now, let us move this
point a distance of I · (Rs − Rs,TSTC ) to the right, as sketched in Figure 6, resulting in point
(VD, I). Because of

VC + I · Rs = VD + I · Rs,TSTC (23)

the new point also fulfills (3), but for resistor Rs,TSTC . Therefore, it must be situated on curve
D. Consequently, the point on D to the right of MPPC in Figure 5 is just

9.645 · (100 + 273.15
25 + 273.15

− 1) · 0.0037 = 0.0089 (V) (24)

away!

I

ICsc

IDsc

V C V D V C
oc = V D

oc

D

C

I · (Rs −Rs,TSTC
)

Figure 6. A sketch of two I–V curves C, D in the single-diode model for series resistors Rs > Rs,TSTC ,
respectively, and identical parameters otherwise.

4. Discussion

We have introduced a new way to describe, in parameterized form, I–V curves for the
single-diode, double-diode, and Bishop’s equivalent circuit models. The parameterization
makes it possible to visualize I–V curves and their dependence on temperature interactively,
using rather simple means. Extending this method to include variable irradiance or angle
would be straightforward. We expect that our approach will help to provide new insights
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for the photovoltaic research community. As a side result, it could be beneficial for teaching
solar systems at academic level.
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Appendix A

The GeoGebra software was created by Markus Hohenwarter at Linz University. It is
free of charge for non-commercial use. The tool is versatile and quite powerful, and still,
it is rather easy to work with. In the design of the worksheets displayed above we have
made use of the following features.

First, we have specified a slider for temperature t in ◦C. Its value can be used in
defining algebraic objects, such as the parameterizing function m, and graphic objects such
as the resulting curve; any change in t will be immediately effective in both. Clicking on
the curve’s points of intersection with the coordinate axes creates two new point objects,
A and B. They will move along the coordinate axes as we alter the temperature. We can
access their coordinates,

y(A) = Isc,t and x(B) = Voc,t, (A1)

and use them in defining new objects, such as the proper interval [Isc,t Rs, Voc,t] for parame-
ter u, to ensure that CIV,t stays in the first quadrant; see Theorem 1.

To locate MPP on CIV,t, we need the maximum of the parameterized function
P(u) = V(u) · I(u). GeoGebra can determine the max of functions over an interval, but not
that of parameterized curves. As a workaround, we define a function Q(x) = V(x) · I(x)
and determine the maximum point mQ on its graph. Then, y(mQ) equals the maximum
power and MPP has coordinates (V(x(mQ)), I(x(mQ)). This can be illustrated by dis-
playing how the hyperbola h(x) = y(mQ)/x, the locus of all points (x, y) satisfying
x · y = y(mQ), touches CIV,t at MPP. This hyperbola dynamically changes with temper-
ature t. The worksheet can be opened and run at: (https://www.geogebra.org/search/
visualisierung%20kennlinien, accessed on 2 November 2022) without downloading the
GeoGebra system before. Individual changes to the worksheet will not overwrite the
version kept on the server.

References
1. De Oliveira, O. The implicit and inverse function theorems: Easy proofs. Real Anal. Exch. 2014, 39, 207–218. [CrossRef]
2. Quaschning, V. Simulation der Abschattungsverluste bei Solarelektrischen Systemen; Verlag Dr. Köster: Berlin, Germany, 1996;

pp. 28–57. Available online: https://www.volker-quaschning.de/downloads/abschattungsverluste.pdf (accessed on 2
November 2022).

3. Jain, A.; Kapoor, A. Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Sol. Energy Mater.
Sol. Cells 2004, 81, 269–277. [CrossRef]

4. Spertino, F.; Malgaroli, G.; Amato, A.; Qureshi, M.A.E.; Ciocia, A.; Siddiqui, H. An Innovative technique for energy assessment of
a highly efficient photovoltaic module. Solar 2022, 2, 321–333. [CrossRef]

5. Ruschel, S.R.; Gasparin, F.P.; Krenzinger, A. Experimental analysis of the single diode model parameters dependence on irradiance
and temperature. Sol. Energy 2021, 217, 134–144. [CrossRef]

6. Durán, E.; Piliougine, M.; Sidrach-de-Cardona, M.; Galán, J.; Andújar, J.M. Different methods to obtain the I–V curve of PV
modules: A review. In Proceedings of the IEEE Photovoltaic Conference, San Diego, CA, USA, 11–16 May 2008.

https://www.geogebra.org/search/visualisierung%20kennlinien
https://www.geogebra.org/search/visualisierung%20kennlinien
http://doi.org/10.14321/realanalexch.39.1.0207
https://www.volker-quaschning.de/downloads/abschattungsverluste.pdf
http://dx.doi.org/10.1016/j.solmat.2003.11.018
http://dx.doi.org/10.3390/solar2020018
http://dx.doi.org/10.1016/j.solener.2021.01.067


Solar 2022, 2 518

7. Humada, A.M.; Hojabri, M.; Mekhilef, S.; Hamada, H.M. Solar sell parameters extraction based on single and double-diode
models: A review. Renew. Sustain. Energy Rev. 2016, 56, 494–509. [CrossRef]

8. Phang, J.C.H.; Chan, D.S.H.; Philips, J.R. Accurate analytical method for the extraction of solar cell parameters. Electron. Lett.
1984, 20, 406–408. [CrossRef]

9. Chan, D.S.H.; Phang, J.C.H. Analytical methods for the extraction of solar-cell single- and double-diode model parameters from
I–V characteristics. IEEE Trans. Electron Devices 1987, 34, 286–293. [CrossRef]

10. De Soto, W.; Klein, S.A.; Beckman, W.A. Improvement and validation of a model for photovoltaic array performance. Sol. Energy
2006, 80, 78–88. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2015.11.051
http://dx.doi.org/10.1049/el:19840281
http://dx.doi.org/10.1109/T-ED.1987.22920
http://dx.doi.org/10.1016/j.solener.2005.06.010

	Introduction
	Electrothermal Modeling
	Results
	Analysis
	Examples

	Discussion
	Appendix A
	References

