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Abstract: We propose a Quantum Neural Network (QNN) for predicting stabilization parameter
for solving Singularly Perturbed Partial Differential Equations (SPDE) using the Streamline Upwind
Petrov Galerkin (SUPG) stabilization technique. SPDE-Q-Net, a QNN, is proposed for approximating
an optimal value of the stabilization parameter for SUPG for 2-dimensional convection-diffusion
problems. Our motivation for this work stems from the recent progress made in quantum computing
and the striking similarities observed between neural networks and quantum circuits. Just like how
weight parameters are adjusted in traditional neural networks, the parameters of the quantum circuit,
specifically the qubits’ degrees of freedom, can be fine-tuned to learn a nonlinear function. The
performance of SPDE-Q-Net is found to be at par with SPDE-Net, a traditional neural network-based
technique for stabilization parameter prediction in terms of the numerical error in the solution. Also,
SPDE-Q-Net is found to be faster than SPDE-Net, which projects the future benefits which can be
earned from the speed-up capabilities of quantum computing.

Keywords: partial differential equations; quantum neural networks

1. Introduction

Quantum computing has the potential to accelerate traditional algorithms in science
and engineering, including the data-driven schemes for solving Partial Differential Equa-
tions (PDEs). Since this research area is quite new, we don’t see much literature available
for speeding up traditional solvers with quantum computing. There are a lot of problems
in the literature on scientific computing which can harness the advantages of quantum
computing. One such possibility is to improve traditional fluid flow simulations as they
are compute-intensive and scale with the size of the problem at hand. To address this,
we propose the development of an approach that leverages the advantages of quantum
computing and deep learning methods for solving PDEs. Our main objective is to develop
a Quantum Neural Network (QNN) for predicting stabilization parameters when solving
SPDEs using the Streamline Upwind Petrov Galerkin (SUPG) technique. We introduce
SPDE-Q-Net, a QNN for approximating the value of the stabilization parameter for SUPG
in 2-dimensional convection-dominated problems. Our results show that the performance
of SPDE-Q-Net is comparable to that of SPDE-Net, a traditional neural network-based
technique for stabilization parameter prediction. This research has the potential to address
a significant challenge in fluid flow simulations by providing stabilized and efficient solu-
tions. By combining quantum computing with neural networks, our approach could lead
to significant improvements in a wide range of fields, including engineering and science.
However, further research is needed to address the complex challenges in this area and to
fully realize the potential of this approach.
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1.1. Neural Networks for Solving PDEs

The development of data-driven PDE solvers has spawned a plethora of studies.
Several data-driven numerical PDE solving techniques exist such as Physics Informed
Neural Networks (PINNs) [1,2], Fourier Neural Operator (FNO) [3,4]. PINNs use a neural
network to approximate the numerical solution by minimizing the strong form of the
residual. Their performance, however, is limited for singularly perturbed partial differential
equations (SPDEs). To solve this issue, Yadav and Ganesan [5] proposed to use a hybrid
scheme to solve SPDEs. This hybrid scheme uses Artificial Neural Networks (ANN) to
predict the stabilization parameter and stabilized FEM for solving the equation. Having a
neural network in the solving pipeline makes the entire process slow, so we proposed to
use a QNN so that we can show a quicker convergence of the proposed neural network. In
this current work, we leverage Quantum Computing to predict the stabilization parameter
for solving SPDEs.

1.2. Quantum Computing

As explained in [6], Quantum computing generally refers to the controlled evolution
of a set of quantum two-level systems of a 2-dimensional Hilbert space (H2) with basis
|0〉 , 〈1|, which are called qubits. This can better be explained with a wavefunction as

|ψ〉 = α |0〉+ β |1〉
|α|2 + |β|2 = 1, α, β ∈ C

(1)

Unitary quantum gates manipulate qubits in the same way logic gates affect conventional
bits in a computer, allowing qubits to evolve through so-called quantum channels. Quan-
tum computers have been proposed as linear algebra accelerators, paving the way for
quantum machine learning (QML). The use of quantum computing devices to do QML is
still in its early phases of development [7–11]. While completely quantum algorithms have
been shown to have an asymptotic advantage, deep protocols are still out of reach of current
QC capabilities. This necessitates new ways based on a hybrid quantum-classical process,
which is primarily motivated by deep learning’s success in scientific computing. Data
embedding circuits (feature maps) [6] and parametrized variational circuits are the building
blocks of variable QML models, which may be trained to execute various unsupervised
tasks [8]. These can very well be used for regression problems [12].

1.3. Quantum Neural Network

The primary idea behind introducing quantum features into classical Neural Networks
is to replace the classical neurons z = {−1, 1} with ‘qurons’ |z〉 with basis {|0〉 , |1〉} [13,14].
It is a parametrized quantum circuit. Quantum feature maps are used to encode the inputs
to the feature space. This feature map is a unitary circuit consisting of x-dependent gates.
When this feature map is applied to any initial state, it transforms them into quantum states.
A variational quantum circuit then processes the quantum states.

A QNN is a machine learning model or algorithm that combines concepts from
quantum computing and ANNs. QNN is used to represent variational or parametrized
quantum circuits. While mathematically somewhat different from the inner workings
of neural networks, the analogy highlights the “modular” nature of quantum gates in a
circuit and the wide use of tricks from training neural networks used in the optimization of
quantum algorithms. We extend the network proposed by [15]. Every input data is stored
in s register, |α〉i, the hidden states will be computing the weighted sum of the inputs and
will represent them as |ψij〉 for jth hidden unit.

1.4. Numerical Methods for Solving SPDEs

Higher-order convection-diffusion equations do not have analytical, closed-form
solutions, and numerical methods are often used to approximate their solution. Mesh-based
methods, such as Finite Difference, FE, and FV, are famous for the numerical simulation of
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such equations. These techniques have a conservative formulation, higher-order accuracy,
and the ability to accommodate complex geometries. Further, many of these methods are
amenable to parallelization. However, solving SPDEs is challenging since it requires the
numerical schemes to carefully treat high-gradient regions (boundary layer/interior layer)
typically associated with such equations to avoid spurious oscillations. The numerical
schemes often use a stabilization term to deal with the singularly perturbed equation.
Several stabilization strategies exist, such as slope limiting, flux limiting, the introduction of
artificial dissipation, etc. In the context of FEM, the SUPG method is a remarkably successful
stabilization scheme that follows the philosophy of artificial dissipation. The scheme has
been widely used to solve SPDEs for problems such as contaminant transport in shallow
water, evolutionary convection-diffusion-reaction equations, arbitrary Lagrangian-Eulerian
framework for time-dependent convection-diffusion equations, linear hyperbolic problems,
and reduced order models among other areas. In addition to the SUPG technique, the
local projection stabilization, edge stabilization, orthogonal subgrid scale, Galerkin least-
squares [16] and continuous interior penalty method are some other popular techniques
used to stabilize numerical methods for simulation of convection-dominated equations.

1.5. Streamline Upwind/Petrov Galerkin

Many techniques exist for solving SPDEs, most of them have some sort of stabiliza-
tion in them. One such popular stabilization technique is the streamline upwind/Petrov
Galerkin technique, generally called SUPG. It was introduced in [16] and is the focus of our
current research work. It provides a nodally correct solution to the 1-d convection-diffusion
problem. The accuracy of the SUPG technique for higher-dimensional problems is limited
as it depends on the appropriate value of the stabilization parameter. This stabilization
parameter is hard to find and is a topic of research for the last few decades.

1.6. On the Choice of Stabilization Parameter for SUPG

The value of the stabilization parameter has a significant impact on the correctness of
the SUPG numerical solution. This parameter specifies how much artificial diffusion should
be used in the equation to achieve a steady result. Artificial diffusion with a high value
can cause the solution to smear, but under-diffusion will not eliminate the false oscillations.
Many approaches for determining the ideal value of the stabilization parameter have
been developed, but each has its own set of restrictions and is difficult to generalize to
higher dimensions.

1.7. SPDE-Net

Many techniques have been proposed for estimating the value of the stabilization
parameters. Yadav and Ganesan [5,17–19] employed a neural network to estimate the
stabilization parameter for the SUPG methodology with finite element methods-based
loss formulation for solving SPDEs. In [5], SPDE-Net is used as an optimizer to estimate
the stabilization parameter (τ) for 1-dimensional problems. The performance of both
supervised and unsupervised approaches is compared and shown to be comparable, im-
plying that unsupervised training can be self-sufficient. Furthermore, the L2 error from
SPDE-Net was significantly lower than that from the state-of-the-art PINN networks. It
suggests that we need to supplement PINN’s loss formulation with a stabilization term for
higher-dimensional challenges.

1.8. Contributions

• We propose a Quantum Neural Network for predicting stabilization parameters for
solving SPDEs using the SUPG stabilization technique

• Developed an unsupervised quantum model for SPDE-Net, based on equation coeffi-
cients and the local gradients based normalization

• Compared the performance of classical neural network (SPDE-Net) and SPDE-Q-Net
in terms of different errors such as L2, H1, L∞, relative l2
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• SPDE-Q-Net has been tested for different mesh refinements to check its generalization
ability

1.9. Organization of the Paper

In Section 1, we provide an introduction to the problem addressed in this research.
Section 2 covers the necessary background and foundational information for the proposed
work. We delve into the specifics of the proposed network architecture in Section 3. The
experimental methodology, along with testing examples, is presented in detail in Section 4.
Finally, we conclude the manuscript in Section 6, summarizing the key findings and
their implications.

2. Preliminaries

In this paper, our focus is on solving the convection-diffusion equation, a fundamental
equation in the field of computational science and engineering. The convection-diffusion
equation arises in various domains, including fluid dynamics, heat transfer, and mass
transport, and plays a crucial role in modeling physical phenomena. It combines the effects
of advection (convection) and diffusion, making it a challenging problem to solve accurately
and efficiently.

2.1. Convection-Diffusion Equation

−ε∆u + b · ∇u = f in Ω and u = ub on ∂Ω. (2)

Here Ω ⊂ R2, is a bounded domain with a polygonal Lipschitz-continuous boundary
∂Ω, n is outward normal vector to the boundary ∂Ω, ε > 0 is the diffusion coefficient,
b = [b1, b2] ∈ W1,∞(Ω)d is the flow velocity, f ∈ L2(Ω) is the external source term, u is
the unknown scalar term and ub ∈ H1/2(∂Ω). First, the variational form of the equation is
derived using the Galerkin technique. It is to find u such that for all v ∈ H1

0(Ω)

a(u, v) = ( f , v) (3)

where the bilinear form a(·, ·) : H1(Ω)× H1
0(Ω)→ R is defined by

a(u, v) =
∫

Ω
ε∇u · ∇vdx +

∫
Ω

b∇uvdx (4)

( f , v) =
∫

Ω
f vdx (5)

(·,·) is the L2(Ω) inner product. Let Th be a family of triangulations of Ω parametrized
by positive parameters h whose only accumulation point is zero. The triangulations Th
are assumed to consist of a finite number of open polygonal subsets K of Ω such that
Ω̄ =

⋃
K∈Th

K̄. The domain Ω is partitioned into Ωh ∈ P2 and the weak formulation for
this discretized domain is to choose a finite-dimensional space Vh ⊂ H1

0(Ω) comprising
continuous piecewise polynomials and find uh ∈ Vh such that for all vh ∈ Vh we have

ah(uh, vh) = ( f , vh)

a(uh, vh) := ε(∇uh,∇vh) + (b · ∇uh, vh)

= ( f , vh) ∀vh ∈ Vh

(6)

The solution of this variational form contains spurious oscillations near the boundary layer,
so a weighted residual term has been added to it as explained in the next subsection.

2.2. SUPG Stabilization

The residual of equation [2] is :

R(u) = −ε∆u + b · ∇u− f
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The term R(u) has been added to the discretized weak formulation given in Equation (6).
Now, modified weak form for domain Ωh, is to find uh ∈ Vh such that ∀vh ∈ Vh:

ah(uh, vh) = fh(vh)∀ vh ∈ Vh

where, ah(uh, vh) = ε(∇uh,∇vh) + (b · ∇uh, vh) + ∑
i∈Ωh

τi(−ε∆uh + b · ∇uh − fh, b · ∇vh)Ωh
(7)

τi ∈ L2(Ω) is a user-chosen non-negative stabilization parameter. Its value plays an
important role in the quality of the approximated solution. A very large value can show
unexpected smearing, whereas a low value will not remove the spurious oscillations. So,
an optimal value of stabilization parameter is required, which can control oscillations and
smearing both. Many studies have established the bounds for τ for the SUPG technique in
order to achieve quasi-optimal numerical convergence. One such widely used expression
is given as follows.

2.3. Standard Stabilization Parameter

There is a standard mathematical expression to calculate the value of the stabilization
parameter and it gives a nodally precise solution for a 1-dimensional problem and simple 2-
dimensional problems. However, it is not generalizable to complex 2-dimensional problems
such as problems with variable coefficients. To make it generalized we are proposing a
NN-based method for predicting the stabilization parameter.

τstd|T =
hT

2|b| ξ0(PeT), PeT =
|b|hT

2ε

where ξ0(α) = coth α− 1
α

,
(8)

We will call it Std. τ for the sake of convenience. We are using a piecewise constant
element to define τ on the mesh. τK will be locally defined for each cell in the mesh.

3. Network Architecture

We predict a single stabilization parameter for the entire mesh and then locally divide
it with the norm of gradients of the Galerkin solution in that cell. This way, we have taken
care of cell-wise stabilization. By dividing with the gradient of the stabilization parameter,
we obtain an adaptive τ. In this research, we use the QNN proposed by [15] and find the
output for each input feature, namely |ψ〉 of size M. The predicted stabilization parameter

can be represented as: τ̂ = ∑M
i=1|ψ〉i

M .

3.1. SPDE-Q-Net

We use QNN for approximating the stabilization parameter τ. In a QNN, we use
initial states and then map them to quantum bits (qubits) using a quantum feature map.
Generally, the feature map consists of a unitary circuit Q̂φ(x), which is a concatenation of
x-dependent gates and performs single qubit rotation. When applied to an initial state |∅〉
(a quantum initial state), the feature map transforms x ∼ PΩ data points into quantum states
|ψ(x)〉 := Q̂φ(x) |∅〉. These quantum states are processed by variational quantum circuit
V̂θ parametrized by parameters θ. Mathematically a QNN can be expressed as follows:

Input : I = {ε, b1, b2, hT}, PeT =
|b|hT

2ε

τstd|T =
hT

2|b| (coth (PeT)−
1

PeT
)

ustd = Solvesupg(τstd)

(9)
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Q̂θ(x) =
R

∏
r=1

(V̂(r)
θ Q̂(r)

θ (x))V̂(0)
θ

τ(θ) = 〈∅| Q̂θ(x)†ĈQ̂θ(x) |∅〉 /(|∇ustd|)

m(s) =

{√
s s > 1

2.5s2 − 1.5s3 otherwise

b⊥ =


(b2,−b1)

|b| when |b| 6= 0

0 when |b| = 0

Loss(θ) = ε(∇uh,∇vh) + (b · ∇uh, vh) + ∑
i∈Ωh

τi(−ε∆uh + b · ∇uh

− fh, b · ∇vh)Ωh − fh(vh) + m(|b⊥ · ∇uh|)
θ∗ = argminLoss(I)

(10)

uh is the SUPG solution of Equation (7), hT is the mesh size, τ is stabilization parameter. We
must learn Q̂ by finding optimal θ∗ through iterative back propagation of loss. SPDE-Q-Net
has R number of layers, and initially, V̂0

θ operates the initial state. τ is the expected value of
the cost operator. Here the cost operator is the weighted sum of Pauli operators, Ĉ = ∑j cj P̂j
or fix cj = constant∀j. SPDE-Q-Net has five input qubits and one output qubit. It has
an Adam optimizer and Sigmoid activation function for six hidden layers with twenty
quorons in each hidden layer.

3.2. Back Propagation in Quantum Neural Network

We discuss the back-propagation pipeline of SPDE-Q-Net here. We have numerically
approximated the gradients of the expected value of cost by finite differences. It is affected
by the quantum measurement noise, so there will be a bias involved in learning the network.
The other way could be to use analytic derivatives of these expressions. Here, we use the
parameter shift rule as described in [6]. Let us take an example case of unitary operator
Û(x) = exp(−ιφ(x)Ĝ/2) generated by a Hermitian operator Ĝ. ψ(x) denotes an extra
function applied to the feature variable, such as a feature non-linearity. Next, let us consider
a simplified quantum model

q(x) = 〈ψ̃| Û†(x)C̃Û(x) |ψ̃〉 (11)

where |ψ̃〉 and C̃ are some generic input states and dressed cost operators that do not
depend on x. The circuit derivative reads

dŨ(x)
dx

= (−ιψ′(x)/2)ĜÛ(x) (12)

and we can differentiate the quantum model as

dq(x)
dx

= (ιψ′(x)/2) 〈ψ̃| Û†(x)[Ĝ, C̃]Û(x) |ψ̃〉 (13)

where [·, ·] denotes a commutator. In the general form, the expression above can be
measured as an overlap between quantum states. However, to simplify the readout,
derivatives of unitaries with a known spectrum of Ĝ can be calculated exactly (without
bias) by evaluating the model at shifted arguments of q(x). Specifically, for unitaries
that Pauli operators generate Ĝ := P̂j (i.e., single qubit rotations at site j), where oper-
ators satisfy involutory property P̂2

j = 1j and have just two unique eigenvalues of ±1.
g′(x) = ψ′(x)[g(x + π/2)− g(x− π/2)]/2.



AppliedMath 2023, 3 558

3.3. SPDE-Net

We compare the performance of SPDE-Q-Net with a classical neural network SPDE-
Net trained for the same task and detailed as below. For a given input data sample,

Input : I = {ε, b1, b2, hT}, PeT =
|b|hT

2ε

τstd|T =
hT

2|b| (coth (PeT)−
1

PeT
)

τ(θ) =
Gθ(PeT)

||∇ustd||2
Loss(θk) = (

∫
Ω
(û(τ̂(θk))− u)dx)

1
2

θ∗ = argminLoss(I, u(τ(θ)))

(14)

where Gθ is θ parameterized SPDE(Net), u(τ(θ)) is the SUPG solution of Equation (7), and
τ(θ) is the predicted stabilization parameter. We have to learn Gθ by finding optimal θ∗ by
back propagating the loss iteratively.

3.4. Error Metrics

Here we discuss the metrics used to quantify the numerical errors in the solution.
Four different error metrics are presented. The first is the L2-error, denoted as |eh|0, which
measures the difference between the computed solution uh and the known analytical
solution u in the L2 norm over the domain Ω. The relative l2-error, denoted as |eh|0, `, is
a sum of the pointwise differences between uh and u normalized by the l2 norm of u at
specific points xi in the domain Ωh. The H1-error, denoted as |eh|1, measures the difference
between the gradients of uh and u in the L2 norm over Ω. Finally, the L∞-error, denoted
as |e|L∞(Ω), represents the essential supremum of the absolute difference between uh
and u over the domain Ω. We use the following metrics to calculate numerical errors in
the solution.

L2-error: ‖eh‖0 = ‖uh − u‖L2(Ω) =

(∫
Ω
(uh − u)2dx

) 1
2

Relative l2-error: ‖eh‖0,` =
N

∑
i=1

‖uh(xi)− u(xi)‖0,`

‖u‖0,`
, xi ∈ Ωh

H1-error: |eh|1 = ‖∇uh −∇u)‖L2(Ω) =

(∫
Ω
(∇uh −∇u)2dx

) 1
2

L∞-error: ‖e‖L∞(Ω) = ess sup{|uh − u| : x ∈ Ω}.

(15)

Here, τ̂ is the predicted stabilization parameter, u is the known analytical solution, uh(τ̂) is
the SUPG solution calculated with τ̂, and Dα is the weak derivative.

3.5. Order of Convergence

Given a sequence of approximations {xn} converging to a true solution x as n ap-
proaches infinity, the order of convergence of a numerical method is defined as follows:

Let {εn} denote the sequence of errors, where εn = |xn − x|. If there exist positive
constants C and p such that

lim
n→∞

εn+1

ε
p
n

= C,

where p is known as the order of convergence, then the numerical method is said to
converge with order p or is p-th order convergent. A higher value of p implies faster
convergence. The value of C can provide additional information about the convergence
behavior. If C = 0, the method is said to have superlinear convergence, whereas C > 0
indicates sublinear convergence. If C = 1, the method exhibits linear convergence, and if C > 1,
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it is superlinearly convergent. The order of convergence provides a measure of how rapidly a
numerical method approaches the true solution as the number of iterations increases.

4. Numerical Experiments

In this section, we consider four different examples of SPDEs based on the location
of interior and boundary layers. For each example, we predict the τ using SPDE-Net,
and SPDE-Q-Net. We compare the performance of different techniques in terms of errors
metrices defined in Section 3.4. All these errors are computed with respect to the analytical
solution. SPDE-Q-Net is optimized by minimizing the weak residual of the equation as
mentioned in [20]. The network training was carried out for different mesh sizes, but here
we only present the mesh results with 40 cells in the x and y-direction. The computation
time taken by different techniques is given in Table 1.

Example 1. We have taken a two-dimensional convection–diffusion problem as given by Equation (2)
with the following data for cheking the performance of SPDE-Q-Net:

ε = 10−8, b = (1, 0), f = 1, Ω = (0, 1)2

u = 0 on ∂Ω
(16)

It has an exponential layer at x = 1 and two parabolic layers at y = 0 and y = 1, respectively.
In the interior domain, the analytical solution u(x, y) is quite close to x. The SPDE-Q-Net captures
the pattern of τ in accordance with the location of the interior/boundary layer region. The L2 error
produced by all the considered techniques is compared in Table 2, and we can see that the L2 error
produced by SPDE-Q-Net is at par with SPDE-Net.

Example 2. Next, we consider Equation (2) with following data:

ε = 10−8, b = (2, 3), Ω = (0, 1)2, u = 0 on ∂Ω

u(x, y) = xy2 − xexp(
(3(y− 1))

ε
)− y2exp(

(2(x− 1))
ε

)

+ exp(
(2(x− 1) + 3(y− 1))

ε
)

(17)

It has two outflow boundary layers and is hence a suitable test case for checking the performance
of the SPDE-Q-Net. We observed the clear pattern of the boundary layers in the heat map of the
predicted τ. In the non-boundary region, the predicted τ is close to 1.0, whereas, in the boundary
region, the value is close to the std. tau value and hence this localized τ ensures enough stabilization
in the areas where it is required the most.

Example 3.

ε = 10−8, θ = −π/3, b = (cos(θ), sin(θ)),

f = 0.0, Ω = (0, 1)2, u = ub on∂Ω, ∂ΩN = φ

ub =

{
0, for x = 1 or y ≤ 0.7
1, otherwise

(18)

This example contains both the exponential and boundary layer. The value of the standard
stabilization parameter τ for this example is 0.0049, whereas all the predicted τ values are more
than 0.01. Both the interior and exponential layers are very well captured by the SPDE-Q-Net and
it is quantitatively shown in terms of different error metrics given in Tables 2–4.
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Table 1. Computational Time: Average of the training time taken by all the four examples in seconds.
Nc is the number of elements used to discretize the domain Ω in x-direction.

Nc 10 20 30 40

SPDE-Net 200 316 473 598
SPDE-Q-Net 40 96 154 189

Table 2. L2 Error.

Examples

1 2 3 4

Std. τ 1.32× 10−5 6.77× 10−6 1.41× 10−5 3.63× 10−6

Std. τ with ||∇u|| 4.04× 10−5 1.63× 10−5 1.76× 10−5 3.85× 10−6

SPDE-Net 7.03× 10−6 5.08× 10−6 1.33× 10−5 3.63× 10−6

SPDE-Q-Net 6.05× 10−6 5.04× 10−6 1.20× 10−5 3.63× 10−6

Table 3. Relative l2 Error.

Examples

1 2 3 4

PINN 4.85× 10−1 4.85× 10+1 8.69× 10−1

Std. 1.17× 10−1 1.36× 10−1 8.02× 10−2 4.63× 10−2

Std. with ||∇u|| 3.35× 10−1 3.06× 10−1 9.68× 10−2 4.90× 10−2

SPDE-Net 6.1× 10−2 9.9× 10−2 6.99× 10−2 4.80× 10−2

SPDE-Q-Net 6.17× 10−2 9.73× 10−2 6.94× 10−2 4.60× 10−2

Table 4. L∞ Error.

Examples

1 2 3 4

Std. τ 9.07× 10−5 7.29× 10−5 1.13× 10−4 7.60× 10−6

Std. τ with ||∇u|| 1.32× 10−4 8.70× 10−5 1.47× 10−4 1.06× 10−5

SPDE-Net 3.99× 10−5 4.45× 10−5 9.08× 10−5 7.96× 10−5

SPDE-Q-Net 3.95× 10−5 4.05× 10−5 9.08× 10−5 7.35× 10−6

Example 4.

ε = 10−8, b = (1, 0)T , u = 0 on

∂ΩD, ∂ΩD = ∂Ω, ∂ΩN = φ

f =

{
0, if |x− 0.5| ≥ 0.25∪ |y− 0.5| ≥ 0.25
−32(x− 0.5), otherwise

u =

{
0, if |x− 0.5| ≥ 0.25 ∪|y− 0.5| ≥ 0.25
−16(x− 0.25)(y− 0.75), otherwise

(19)

This example has two interior characteristic layers in the convection direction. Its location is
between (0.25, 0.25) and (0.25, 0.75). For this example, the solution of both the std. τ and SPDE-Q-
Net has minimal oscillations. For all the 4 testing example we have computed the computational
time taken by both SPDE-Net and SPDE-Q-Net as shown in the Table 1, wherein we can see that
SPDE-Net takes longer time to converge for all the mesh-sizes.

5. Results

Although it is not recommended to compare a classical network with the quantum
neural network, as the network design and training are quite different, we compare the
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two predictions in terms of different errors, such as L2, H1, relative l2, and L∞, as shown
in Tables 2–5. We demonstrate the prediction for different examples from both simulated
SPDE-Q-Net and SPDE-Net. SPDE-Net is implemented as mentioned in [5]. We compare
the computational time taken by SPDE-Net and SPDE-Q-Net in Table 1 and find the
SPDE-Q-Net to be always faster than SPDE-Net.

Table 5. H1 Error.

Examples

1 2 3 4

Std. τ 1.30× 10−3 6.74× 10−4 1.43× 10−3 3.28× 10−4

Std. τ with ||∇u|| 3.65× 10−3 1.51× 10−3 1.72× 10−3 3.69× 10−4

SPDE-Net 6.01× 10−4 4.90× 10−4 1.53× 10−3 4.1× 10−4

SPDE-Q-Net 5.98× 10−4 4.80× 10−4 1.23× 10−3 3.29× 10−4

6. Conclusions

In this study, we have explored the application of Quantum Neural Networks (QNNs)
in predicting stabilization parameters for solving Singularly Perturbed Partial Differential
Equation (SPDEs) using the Streamline-Upwind Petrov-Galerkin (SUPG) technique. The
SUPG technique is commonly used in fluid flow simulations to stabilize numerical solutions
and improve accuracy. By leveraging the capabilities of QNNs, we aim to enhance the
efficiency and accuracy of the SUPG method.

To effectively employ QNNs, we utilize the parameter shift rule, a technique that
enables the calculation of derivatives up to the second order. This rule plays a crucial role in
determining the appropriate stabilization parameters for the SUPG method. By leveraging
quantum computing resources, specifically a simulated quantum circuit provided by Qiskit,
we carry out all the necessary computations and simulations.

Our experiments are designed as a proof of concept, focusing on a basic set of scenar-
ios. These initial experiments demonstrate the feasibility of using QNNs for predicting
stabilization parameters in fluid flow simulations. By successfully calculating derivatives
and optimizing the stabilization parameters using QNNs, we have laid the foundation for
addressing more complex problems in fluid dynamics.

The application of QNNs in fluid flow simulations has significant potential for tackling
larger and more intricate problems. By harnessing the power of quantum computing and
the capabilities of QNNs, we can potentially achieve improved accuracy and computational
efficiency in solving SPDEs with the SUPG technique. These preliminary experiments
provide valuable insights and open up avenues for future research in the field of quantum-
assisted fluid dynamics simulations.
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