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Abstract: Microplastics (MPs) represent small plastic particles with sizes between 1 µm and 5 mm, are
insoluble in water, andclassified as primary (these are originally produced in small sizes) or secondary
(the result of the degradation of plastic) types. MPs accumulate in all ecosystems, including freshwater
environments, where they are subjected to degradation processes. Due to their ubiquitous nature,
freshwater ecosystems, which have a vital importance in human life, are permanently subjected to
these small plastic particles. In this context, MPs pollution is considered to be a global issue, and
it is associated with toxic effects on all the elements of the freshwater environment. In this review,
we present, in detail, the main physical (density, size, color, shape, and crystallinity) and chemical
(chemical composition and modification of the MPs’ surface) properties of MPs, the mechanism of
biodegradation, and the consequences of autotrophic organisms and fauna exposure by focusing on
the freshwater environment. The toxicity mechanisms triggered by MPs are related to the critical
parameters of the particles: size, concentration, type, and form, but they are also dependent on
species exposed to MPs and the exposure route.
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1. Introduction

Plastic production has had an explosive expansion since the end of World War II,
which has led to an increased accumulation of plastic particles in the environment. On
account of the increased production of plastics (approximately 400 million tonnes per
year) and the fact that not all of them can be completely biological and chemical degraded,
plastics can remain in nature for extended periods. These topics are studied as ones of the
most important and global issues of the future due to their potentially disturbing effects on
nature and human homeostasis [1].

From the chemical composition point of view, there can be many types of plastics, but
the ones that are most prone to quickly decomposing into small plastic particles are pho-
todegradable bioplastics, bio-based bioplastics, compostable bioplastics, and biodegradable
bioplastics [2].

Based on the size of the particles present in nature, plastic can be grouped into five
main categories: nanoplastics (<1 µm), microplastics (≥1 µm to <5 mm), mesoplastics
(≥5 mm to 5 cm), macroplastics (>5 to 50 cm), and megaplastics (>50 cm) [3]. Among
these, significant interest is paid to microplastics (MPs), small solid plastic particles with
dimensions that are smaller than 5 mm, which are products of plastic pollution and can
be harmful to the environment and humans as well [4]. Considering the origin of MPs,
they can be classified into primary and secondary MPs. Primary MPs groups include
particles of a small size that are originally produced (remnants of cosmetics, care products,
and drugs) [5,6], while secondary MPs represent fragments or particles resulting from the
physical, chemical, or biological degradation of plastic products (bags, bottles, and food
containers, etc.) [6,7].
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In recent years, the use of plastic in important and numerous applications has gener-
ated a high number of literature studies focused on the potentially toxic effects induced by
MPs, especially in marine ecosystems [8–12]. However, the research regarding freshwater
pollution with MPs is still limited compared to that of marine environment. Freshwater
has a vital importance in our life and survival: it represents the source of drinking water
and has a critical role in agriculture [13], erosion prevention, food supply, and tourism [14].
Moreover, as an essential resource for human life, freshwater has no substitutes, and un-
fortunately, it is continuously changed by various factors, including: climate, hydrologic
factors, land-use, chemical inputs, or invasion of aquatic species [15]. Besides these, the con-
tamination with MPs represents another changing factor of a real concern for autotrophic
organisms, fauna, and humans. A first step to prevent the contamination of freshwaters
with MPs is to pay attention to the circuit of plastic in nature, to reduce the plastic use,
and to introduce plastic collection for the recycling process in daily activities. Through
this review, we intend to highlight and update the most important implications of MPs
for autotrophic organisms and fauna present in freshwaters. The literature research was
performed using specific keywords of the topic and associations with different keywords
(e.g., freshwater, microplastics, freshwater organisms, microplastics color, microplastics
shape, microplastics degradation, freshwater flora, and microplastics toxicity, etc.).

2. Physico-Chemical Properties of Microplastics

The main properties of MPs can be identified from their definition and general char-
acterization: MPs are solid particles, with dimensions that are smaller than 5 mm, and
they are insoluble in water, non-degradable, and composed of synthetic materials with a
high content of polymers [16]. However, for a deeper characterization and understanding,
the features of MPs are grouped by their physical and chemical properties. The physical
properties are represented by the density, color, shape, size, and crystalline structure of
the particles [17]. The chemical properties refer mainly to the chemical composition and
surface chemistry [18].

2.1. Physical Properties

Density is a key parameter in MPs’ spatial distribution over the column of freshwa-
ter [19,20], and particles with a lower density than the water float on the surface of the water
or are suspended. The density range is a specific characteristic of every plastic type. Thus,
the densities of polyvinyl chloride, polyethylene terephthalate, polycarbonate, polystyrene,
polyethylene, and polypropylene are in the ranges of 1.38–1.51 g/cm3, 1.38–1.41 g/cm3,
1.20–1.22 g/cm3, 1.04–1.08 g/cm3, 0.89–0.98 g/cm3, and 0.85–0.91 g/cm3, respectively [21].

Color. MPs can have various colors: blue, black, red, orange, yellow, and white [22],
and this is an essential characteristic to be considered when one is evaluating the toxicity
of MPs.

Regarding the spreading of them in freshwaters, the color of the MPs depends on the
region. Transparent, white, black, and colored (e.g., red, blue, green, and gray) MPs were
most frequently identified in China [23], while in the Central Pomeranian Region, Poland
(Słupia and Łupawa rivers), the dominant color of the MPs was similar with that of the
ecosystem elements (food, water, and sediments) [24].

Additionally, those in the Maozhou River (within Guangdong-Hong Kong-Macao
Greater Bay Area) were transparent, white, black, yellow, and blue MPs, with transparent
MPs representing the dominant type, which was followed by the other ones [25]. Regarding
the color preferences for the intake of MPs, freshwater fishes (Japanese medaka and zebrafish)
have a higher preference for ingesting red, yellow, and green MPs compared to gray and
blue ones [26].

Shape. MPs are often classified in three main shape categories: spherical, irregular, and
fibrous [27]. However, the MPs can be also found in other variable shapes, including films,
foams, fragments [28,29], flakes or pellets [17], line, filament and foil [30].



Microplastics 2023, 2 41

Originally, MPs in the form of beads and pellets were considered to be primary or
native, while the other shapes, resulting from the photochemical, mechanical, and biological
degradation processes in the marine habitat, were categorized as secondary MPs [31].

MPs with different forms have been distributed in freshwater ecosystems all over the
world. Fragment, fiber, and film MPs were identified as the most common shape in the
Brisbane River in Australia [32], whilst in the Nakdong River in South Korea, MPs were
discovered with fragment, fiber, and sphere shapes [33]. Microbeads MPs were detected in
the Rhine River in Germany [34], and pellet MPs (together with foam, fiber, and fragment
particles) were identified in the Wen-Rui Tang River, China [35].

Size. MPs have sizes that are between 1 µm and 5 mm, and this is a property of great
importance in the interactions between the MPs and elements of freshwater ecosystems.
Due to their small sizes, MPs can be easily ingested or incorporated by freshwater organ-
isms. Additionally, the small size influences the transport, accumulation, and retention
time of MPs [36]. The MPs clearance in freshwater fishes (Oncorhynchus mykiss and Cyprinus
carpio) is particle size dependent, and the retention time differs between small and large
MPs. The retention time increases with the expansion of the MPs’ size. Moreover, the reten-
tion time is influenced by the gastrointestinal morphology of the fish [37]. Additionally, the
size of the particles (e.g., polyethylene) has a primordial role in the MPs’ potential to induce
toxic effects (oxidative stress, apoptosis, DNA damage, ubiquitination, and autophagy) in
freshwater fishes (Danio rerio and Perca fluviatilis) [38].

Crystalline structure or crystallinity refers to the organization of atoms, ions or molecules
in a three-dimensional arrangement. This property decides the location of the MPs in water
due to its influence on density, and it controls the degradation process [39], and it is partic-
ularly important in determining the MPs sorption capacity of different additives [40]. On
the other side, the degree of the MPs’ crystallinity can be affected by biofilm formation [41].

2.2. Chemical Properties

Chemical composition. Generally, MPs are organic polymers composed of carbon and
hydrogen atoms bonded together in the polymer chains. However, the analysis of their
chemical composition revealed that MPs can be associated with individual particles or
different chemicals. MPs can associate with two types of chemicals: (i) additives and poly-
meric raw materials originating from the plastic, which are added during the production
for the improvement of its properties, and (ii) chemical compounds present in the MPs’
environment [42].

MPs have a high affinity for heavy metals and on the basis of this association, MPs
can act as a vector for heavy metals by introducing them into freshwater organisms or the
human body [43]. In freshwater, MPs can adsorb on their surface various heavy metals: Cr,
Cu, Zn, Pb, Ag, Cd, Hg, Ni, Co, Ti, and As [44,45].

The mechanism by which metals are adsorbed onto the MPs’ surface is complex
and controlled by the MPs’ surface. MPs can interact with heavy metals by the oxygen-
containing functional groups formed after the MPs’ surface oxidation. Additionally, MPs
and heavy metals can be associated through electrostatic interactions and hydrogen bond-
ings [46]. Furthermore, the mechanism of adsorption is controlled by various factors
related to the plastic characteristics and environmental parameters. The characteristics of
the plastics which influence the association of MPs with heavy metals are: the polymer
type, crystallinity, density, size, surface area, and zeta potential, whereas the category
of environmental factors includes variables such as: the pH, temperature, salinity, and
particulate matter [47]. Moreover, a critical role in the adsorption of heavy metals by the
MPs is related to the microbial biofilms developed on the MPs’ surface [48].

Besides heavy metals, other hazardous additives from the composition of MPs are
considered to be organic synthetic compound bisphenol A, phthalates, or flame-retardants
compounds [42].

Surface chemistry. The MPs’ surface is modified after the particles enter terrestrial
and aquatic environments or are formed from larger particles. Thus, they suffer from
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biodegradation processes which involve the formation of functional groups on the MPs’
surface as a result of oxidative reactions [18]. The functional groups present on the plastic
surface can be of the aldehyde, ketones, ester, lactone, or acid type [49]. The surface
chemistry of the MPs influences their impact on freshwater biofilm communities [50] and
controls the association of the MPs with different additives.

The physical and chemical properties of MPs are summarized in Figure 1.
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Figure 1. Physical and chemical properties of MPs. Diagram created in https://biorender.com/
(accessed on 11 September 2022).

Furthermore, it was demonstrated that the physical and chemical properties influence
the cytotoxic potential of MPs [51], and these are aspects that are discussed in Sections 4
and 5 of this review.

3. Biodegradation of Microplastics in Freshwaters

After the plastic waste enters the environment, they are broken down, leading to
the formation of smaller fragments, including MPs. Plastic can be degraded through
biotic (biodegradation and biodisintegration) or abiotic (UV irradiation, heat, chemicals,
or mechanical stress) processes [52]. After the MPs’ formation, the particles are subjected
to further mechanical, chemical, or biological degradation [53]. This section of the review

https://biorender.com/
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focuses on describing the factors and process involved in the biological degradation of MPs,
known also as biodegradation or biotic degradation, which is performed mainly by the
microorganisms developed in the ecosystem, which use the plastic as a carbon source [54,55].
Depending on the oxygen presence, the biodegradation processes of MPs can be classified
into aerobic and anaerobic ones. In aerobic conditions, oxygen acts as an electron acceptor,
and the polymers are reduced to carbon dioxide, water, and residuals of carbon. In
anaerobic degradation, the organic polymers are broken down into smaller compounds as
in aerobic degradation, to which methane is added. In this situation, different compounds,
such as nitrate, iron, sulphate, manganese, and CO2 represent electron acceptors, instead of
oxygen (Figure 2) [2,56].
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Figure 2. Schematic representation of aerobic and anaerobic decomposition of plastic by microorgan-
isms. The aerobic degradation of MPs by microorganisms leads to their disintegration to CO2, H2O,
and carbon residuals, while in the anaerobic degradation, CO2, H2O, CH4, and carbon residuals are
formed. Diagram created in https://biorender.com/ (accessed on 27 July 2022).

The main mechanism by which MPs are biologically degraded is based on the action
of the microorganisms (bacteria, actinomycetes, algae, and fungi) present in the envi-
ronment, and this involves several stages: the synthesis of extracellular enzymes, their
attachment on the MPs’ surface, the degradation of the MPs into smaller structures, and
their mineralization into oxidized metabolites [57,58].

The abundance of MPs in the environment leads to the adaptation of the microorgan-
isms to survival by the synthesis of the enzymes involved in the degradation processes.
This process is highly complex. Firstly, the microorganisms produce extracellular enzymes,
which increase the hydrophilicity of the MPs through the formation of alcohol or carbonyl
groups on their surface, thus allowing further degradation to occur [57–59]. Secondly, the
chemical groups generated on the MPs’ surface facilitate the anchorage of microorganisms,

https://biorender.com/
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which cleave the polymers in smaller fragments (oligomers and monomers). Thirdly, the
MPs fragments are internalized into the microorganisms’ cells [60]. At this stage, other
enzymes (MPs-degrading enzymes) are involved in the degradation and mineralization of
the MPs’ monomers [57,58], which are used as a carbon source for microbial growth [61].
Furthermore, it is postulated that the complete degradation of plastic into CO2, H2O,
and other metabolic products is mediated by the tricarboxylic acid cycle (TCA) [62]. The
schematic representation of the biodegradation process is illustrated in Figure 3. Given that
the degradation of MPs by a single species of microorganisms leads to the formation of
toxic products, microbial communities have adapted and developed the combined degra-
dation by different microbial species, which limits the disadvantages induced by a single
mechanism of degradation [63].
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Figure 3. Biodegradation process of MPs by microorganisms. (I) Plastic waste is degraded to
microplastics. (II) Microorganisms colonize the MPs’ surface and produce extracellular enzymes
which degrade MPs to monomers and oligomers. (III) Monomers and oligomers are internalized into
microbial cells, and under the action of intracellular enzymes, these are disintegrated to metabolic
products, which are used as a carbon source by microorganisms. Image created in https://biorender.
com/ (accessed on 4 August 2022).

In freshwater environments, the biofilms community which colonizes the surface
of the MPs is characterized by a large diversity. As example, an investigation of biofilm
formation on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) revealed the presence of
species from the Burkholderiales order (Acidovorax, Undibacterium, and Chitinimonas genera)
and their function as degraders of plastic [64]. Besides these, members of the Planktophila
order and the Betaproteobacteria class were found to develop biofilm bacterial communities
on high-density polyethylene, polyethylene terephthalate, and polystyrene incubated with
freshwater samples [65].

As a consequence of the microorganisms’ variability and the intrinsic substrate speci-
ficity of the enzymes, the MPs-degrading enzymes are characterized based on the MPs types
that can be disintegrated. In this direction, relying on the current research, MPs-degrading
enzymes can be grouped in various categories: the polyethylene-group-degrading en-

https://biorender.com/
https://biorender.com/
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zyme, polyethylene terephthalate-degrading enzyme, polystyrene-degrading enzyme,
polypropylene-degrading enzyme, and the polyvinyl-chloride-degrading enzyme, etc. [57].
Besides the degradation induced by the microorganisms, in the biodegradation category,
enzymatic degradation, which relies on high-specificity enzyme species produced by or-
ganisms found in the insect digestive tract and in terrestrial and aquatic environments, is
also included [63].

The complexity of MP biological degradation is also influenced by the environmental
conditions and plastic characteristics [66]. The plastics characteristics represent the intrinsic
factors and include the structure, composition, form of the MPs, and presence or absence of
internal additives. The environmental conditions or external environmental factors are con-
sidered to be the pH, temperature, oxygen, light, bioturbation, catalyst, and environmental
additives [63].

4. Aquatic Autotrophic Organisms Exposure

Plants are fundamental components in the trophic circuit of MPs in a freshwater
ecosystem. Accordingly to Bakker et al. (2016), nearly 50% of the produced plant biomass
is removed by aquatic herbivores. The freshwater vegetation provides food or nursery
habitats for a range of organisms, including periphyton, zooplankton, invertebrates, fish,
frogs, and birds. Thus, the aquatic autotrophic organisms’ exposure to MPs is a problem
that could affect the homeostasis of freshwaters at many levels and further affect human
health [67].

The research literature on the impacts of MPs on freshwater autotrophic organisms
is not extensive. The first study on the negative effects resulting from the interaction of
MPs with freshwater floating plants was reported by Kalčíková et al. (2017), and it showed
that 30–600 µm polyethylene microbeads from cosmetic products were adsorbed onto
the surface of the roots of duckweed (Lemna minor), and they mechanically blocked their
growth reducing the root length. However, leaf growth and the content of photosynthetic
pigments in the duckweed leaves were not affected [68]. Another study on duckweed
(Spirodela polyrhiza) found neither adsorption of them on the plant surface nor negative
effects on the plant growth and chlorophyll production when they were exposed to 500 nm
MP particles. Only the external attachment of nanoplastics could be observed on duckweed
roots [69].

Negative effects of plastic particles on submerged freshwater weeds were also re-
ported. Myriophyllum spicatum exposed to 20–500 µm polystyrene microparticles exhibited
a reduced main shoot length in a concentration-dependent manner, but no alterations
were found for Elodea sp. in the same conditions. However, smaller polystyrene particles
(50–190 µm) significantly reduced the shoot-to-root ratio for both the macrophytes and side
shoot length, relative growth rate, and the root and shoot biomass for Elodea sp. [70].

Investigations on the interaction between the plastic particles and freshwater algae
were initiated in 2010. Bhattacharya et al. (2010) exposed the green algae Chlorella sp. and
Scenedesmus sp. to positively and negatively charged polystyrene beads of 20 nm. They
concluded that nanosized plastic beads were adsorbed onto the surface of algae, which
inhibited the algal photosynthetic activities, but only the exposure to positively charged
particles led to the amplification of reactive oxygen species (ROS) production [71]. Later,
in a similar study, Nolte et al. (2017) proved that any growth inhibition is not the cause
of the external adsorption of polystyrene particles onto the algal cell wall [72]. When the
microalga Chorella vulgaris was exposed to polystyrene particles of different sizes (0.05, 0.5,
and 6.0 µm) under laboratory conditions, no effects on microalgal photosynthesis were
noticed, except for a high concentration of the smallest particles tested [73]. The contact of
polypropylene and high-density polyethylene (>400 µm) with Chlamydomonas reinhardtii
revealed no alteration in the expression of the genes involved in the stress response and
apoptosis up to 60 days of exposure, but a significant overexpression of the genes involved
in sugar biosynthesis was noticed [74]. When the same algae were exposed to polystyrene
microplastic, physical damage was detected on their surface, which caused changes in the
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osmotic pressure inside and outside the cells, the alteration of algal photosynthesis, and an
increase in the number of soluble proteins, and malondialdehyde (MDA) content [75,76].

Other species from freshwater phytoplankton such as Scenedesmus armatus and Micro-
cystis aeruginosa might also be injured by polyethylene MPs, which can inhibit their cell
growth and gross photosynthesis activity in a time- and concentration-dependent manner,
mainly affecting cell respiration [77].

The toxicity of MPs to freshwater autotrophic organisms depends on many factors.
Most of the studies reported time- and concentration-dependent effects, but in a similar
way, the size, shape, charge, and composition of the MPs are determinant factors of the
plastic exposure effects on aquatic plants. It is also shown that the water temperature may
influence the interaction of freshwater species with MPs, as it can make plastic float in the
cold season and sink more rapidly in the warm season [78]. As well as this, the particle
color influences the toxicity. Studies on algal growth revealed that the inhibition effects
were dependent on the MPs’ color; white MPs inhibited the growth rate significantly, while
green MPs induced the smallest cytotoxic effects [79]. MPs can be adsorbed onto plant
surfaces and alter the cell growth and photosynthesis of many aquatic species of freshwater
autotrophic organisms, and these effects could be transmitted to the food web, which
includes humans. This aspect urgently needs more research to be conducted to fill the gaps
and acquire a better comprehension of the effects of MPs on the freshwater full ecosystem.

5. Aquatic Fauna Exposure

MPs contaminants present a serious hazardous risk to freshwater fauna, and significant
biochemical and molecular modifications in homeostasis have been described: genotoxicity,
ROS production, liver changes, and the inhibition of the growth rate, etc. Because of their
small sizes, MPs particles can be easily mixed with the food and ingested or incorporated
by the freshwater organisms, including: fishes [80–82], bivalves [83], and caddisflies [84],
etc. Besides ingestion, another major route of exposure to MPs, which has been described
for animals, is inhalation [85].

In fauna studies, great attention is paid to fish exposure to MPs, on account of their
importance in human feed as a source of protein [86]. The impact of the MPs’ pollution on
various freshwater fishes has been examined all over the world (Table 1).

Table 1. Overview of distribution over the world of freshwater fishes subjected to MPs’ pollution.

Country Sublocation Freshwater Fish Species MPs Type References

Japan Tama River Tokyo Plecoglossus altivelis Not described [87]

Japan Komaoi River,
Hokkaido Tribolodon hakonensis Not described [87]

Poland Widawa River Gobio gobio, Rutilus rutilus Not described [88]

Thailand Chi River Labiobarbus siamensis Not described [89]

Puntioplites proctozyson

Cyclochelichthy repasson

Henicorhynchus siamensis

Labeo chrysophekadion, Mystus bocourti

Hemibagrus spilopterus, Laides
longibarbis

Bangladesh Jamuna River Wallago attu Not described [90]

Anguilla bengalensis

Labeo calbasu, Ailia coila
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Table 1. Cont.

Country Sublocation Freshwater Fish Species MPs Type References

Cirrhinus reba, Ompok pabda

Clupisoma garua

Brazil Uruguay River Iheringhthys labrosus Not described [91]

Astyanax lacustris

Brazil Goiana Estuary Centropomus undecimalis Not described [92]

Centropomus mexicanus

Brazil Pajeú River Hoplosternum littorale Not described [93]

United Kingdom River Thames Rutilus rutilus Polyethylene [94]

Polypropylene

Polyester

Argentina and
Uruguay

Río de la Plata
Estuary Luciopimelodus pati Not described [95]

Pseudoplatystoma corruscans

Oligosarcus oligolepis, Parapimelodus
valenciennis

Odontesthes bonariensis

Astyanax rutilus

Cyprinus carpio, Pimelodus maculatus

Prochilodus lineatus

Hypostomus commersoni

Cyphocharax voga

Belgium Flemish rivers Gobio gobio Ethylene vinyl
acetate copolymer [96]

Polypropylene

Polyethylene
terephthalate

Polyvinylchloride

Cellophane

Polyvinyl acetate

Polyamide (nylon)

Tanzania Lake Victoria Lates niloticus Polyethylene/polypropylene
co-polymer [97]

Oreochromis niloticus

Polyethylene

Polyester

Polyurethane

Australia Greater
MelbourneArea Gambusia holbrooki Polyester [98]

Polypropylene

Rayon
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Table 1. Cont.

Country Sublocation Freshwater Fish Species MPs Type References

Polyamid

Polyethylene

Acrylic

Polystyrene

Ethylene vinyl acetate

Poly (ester amid)

Polyurethane

Polyvinyl chloride

USA Brazos River Basin Lepomis macrochirus Not described [99]

Lepomis megalotis

USA Evergreen Lake Dorosoma cepedianum Not described [100]

Lake Bloomington Micropterus salmoides

China Qinghai Lake Gymnocypris przewalskii Polyethylene [101]

Polypropylene

Polystyrene

Nylon

Polyethylene
terephthalate

Ethylene vinyl
acetate copolymer

Polyvinyl chloride

Polycarbonate

China Poyang Lake Carassius auratus Polypropylene [102]

Polyethylene

Polyvinyl chloride

Nylon

China Taihu Lake Cyprinus carpio Cellophane [103]

Carassius auratus Polyethylene
terephthalate

Hypophthalmichthys molitrix Polyester, etc.

Pseudorasbora parva

Megalobrama amblycephala

Hemiculter bleekeri

Canada East coast of
Vancouver Island Chinook salmon Not described [104]

Turkey Karasu River Squalius cephalus Polyethylene [105]

Cyprinus carpio Polyester

Alburnus mossulensis Poly (vinyl stearate)

Polypropylene

Cellulose
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The influence of MPs on freshwater fishes can have impacts at all biological levels
(the cellular level, organ/tissue, individual, population, community, and the ecosystem) by
inducing cell death, the alteration to the metabolic activity, mortality, and the change in
population number, diversity, or ecosystem structure [106]. For fish, two possible uptake
routes of MPs have been postulated: active and passive. MPs particles can be actively
ingested if they are confused with food or passively when accidentally are ingested or
transferred from the food chain [107].

Cyprinus carpio is one of the most investigated fish species for the recognition of the
consequences induced by MPs exposure in freshwater [108]. Xia and collaborators (2020)
reported that polyvinyl chloride induced oxidative stress in the liver, intestine, and gills of
Cyprinus carpio var. larvae after 30 and 60 days of exposure to different concentrations of
polyvinyl chloride MPs (10%, 20%, and 30% MPs by weight). Additionally, a cytoplasmic
vacuolation in the liver, altered gene expressions, and an inhibition of weight gain and
body length growth were detected [109]. In another study, Chen et al. (2022) found that
polyethylene MPs perturbs the intestinal homeostasis of Cyprinus carpio by alterations to
the gut histology and changes in the intestinal microbiota composition [110]. In agreement
with these studies, it was reported that MPs, represented mainly by polyethylene, induced
biochemical changes (e.g., elevation of alkaline phosphatase and creatine kinase) in Cyprinus
carpio after 21 days of exposure [111].

Biochemical alterations have been observed also for other freshwater fish species.
Oreochromis niloticus individuals presented an inhibition of acetylcholinesterase activity
in the brain after 14 days of exposure to polystyrene MPs (dimensions of 0.1 µm and
concentrations of 1, 10, and 100 µg/L), which can indicate the potential of these MPs to
trigger neurotoxicity [112]. The neurotoxic potential of naturally aged polystyrene MPs
was demonstrated also by Guimarães and collaborators (2021), who exposed Danio rerio
fishes (zebrafishes) to MPs for five days and observed a high acetylcholinesterase activity
and numerical changes in the neuroblasts distributed on the fishes’ body surface. Besides
the neurotoxic potential, polystyrene MPs presented also a cytotoxic potential, which
was revealed by the presence of apoptotic and necrotic erythrocytes and the induction of
oxidative stress [113]. For the same species, Xue et al. (2021) reported that polyethylene MPs
can affect the intestinal microbiota of fishes by changing the composition and proportions
of certain phyla and genera [114]. Microbiota dysbiosis was noticed also when zebrafish
individuals were exposed to polystyrene MPs for two weeks. Moreover, it was observed
that these MPs can induce pathological damages in the gills and intestines, oxidative stress
in the liver, and an innate immune disruption [115].

The biochemical and molecular responses of fishes to the presence of MPs was species
and tissue dependent. So, Perca fluviatilis was more liable to polystyrene MPs action
compared to Danio rerio, with a high DNA damage index in the liver, opposed to that
registered in the gills in both of the species. However, the gills presented more a significant
alteration of the metabolites than the liver tissue did [116]. In Figure 4 is a summary of the
main alterations induced in freshwater fishes as a consequence of MPs pollution.

MPs ingestion by freshwater fishes is influenced by various factors classified in two
main categories: biotic factors and plastic properties [107]. In the literature, several re-
views outline the factors that control the ingestion of plastic microparticles by freshwater
fishes [117,118]. MPs ingestion is a complex and unclear mechanism, but it can be influ-
enced by the concentration of MPs in the environment, the length, color, and density of the
particles [107,118], and the living habitat [117].
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Figure 4. The main histological, biochemical, and molecular modifications induced by microplastic
in freshwater fishes. Image created in https://biorender.com/ (accessed on 9 August 2022).

Besides fish, other organisms from the Animalia regnum are affected by the exposure to
different MPs types. Polystyrene MPs beads can induce acute toxicity in rotifer Brachionus
calyciflorus, crustacean Ceriodaphnia dubia, and benthic ostracod Heterocypris incongruens.
Moreover, DNA strand breaks and an increase in ROS production were described in Cerio-
daphnia dubia as a response to the inflammatory processes [119]. Additionally, polystyrene
fragments affect the clearance rate of Dreissena polymorpha, without influencing the energy
reserves or generating oxidative stress [120]. Other toxic effects of polystyrene were ob-
served on freshwater benthic clams Corbicula fluminea when various modifications were
reported: the activation of an innate immune response, the triggering of the complement
and coagulation cascades, and epithelial damage in the intestines [121]. For the same
species, it was proved that MPs can induce neurotoxicity through cholinesterase inhibi-
tion [122]. Adverse effects of MPs were also reported on crustacean Daphnia magna. The
long-term exposure (21 days) of Daphnia magna to MPs microspheres (1–5 µm diameter; con-
centrations between 0.04 and 0.19 mg/L) in different conditions of temperature and light
intensity reduced their somatic growth and population growth rate, affected reproduction,
and induced mortality [123]. The exposure of adult Daphnia magna to 2 µm polystyrene
MPs for the same time interval was associated with mortality after seven days of treatment,
and this effect was associated with food presence rather than MPs concentration. Thus, a
relation was observed between MPs ingestion and food availability, which indicates that
when food was present, the uptake of MPs by Daphnia magna did not increase with the rise
in the MPs concentration [124]. Similarly, the importance of feeding in correlation with MPs
toxicity was reported. Jemec and collaborators (2016) found that polyethylene terephthalate
textile microfibers can induce mortality in Daphnia magna only when the individuals were
not pre-fed before the experiment [125]. Polyethylene and polystyrene MPs can affect the
swimming behavior of Daphnia magna by increasing the “spinning” swimming patterns,
without affecting the speed or mortality rate [126]. The behavior of Daphnia magna exposed
to polystyrene MPs (0.125, 1.25, and 12.5 µg/mL, with sizes of 1 and 10 µm) for 21 days
was investigated also by De Felice and collaborators (2019) who found that the highest
concentrations of both sizes of MPs induced a change in the phototactic behavior and an
increase in the swimming activity, body size, and reproductive effort [127]. In addition, it
was found that polyethlyene MPs (1 µm) can induce the immobilization of Daphnia magna
after short-term exposure to them (96 h) [128].

https://biorender.com/
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Other organisms, such as amphipods, nematodes, chironomids, oligochaetes, and
amphibians, were negatively influenced by MPs presence in the freshwater environment.
The chronic exposure of Hyalella azteca amphipod to polyethylene MPs reduced their
growth and reproduction rates. Moreover, it was observed that polypropylene particles
were more toxic than polyethylene fibers in acute exposure conditions [129]. Another effect
that was observed for amphipods (Gammarus fossarum) after MPs exposure (polyamide
fibers) was the reduction of the assimilation efficiency [130]. When the effects of low-
density polyethylene MPs were compared between Gammarus fasciatus and Gmelinoides
lacustris amphipods, it was observed that the two species differed in their response to
MP exposure for 14 days: Gmelinoides lacustris was more sensitive to oxidative stress,
whereas the swimming behavior changed only for Gammarus fasciatus [131]. For benthic
nematode Caenorhabditis elegans, the reproductive dysfunction and decrease in the body
length and survival rates were observed after exposure to 5 mg/m2 MPs. In the same
study, it was found that MPs can cause damage and oxidative stress in nematode intestines,
dependent on the plastic’s size [132]. Similar negative effects (oxidative stress, an intestinal
injury through the hyperpermeabilization of the intestinal barrier, and an alteration of the
expression of genes related to intestinal development, and a decrease in lifespan) after the
exposure of Caenorhabditis elegans to MPs were also reported [133,134]. However, the effects
of MPs on nematodes are species specific. The exposure of different nematode species to
polystyrene beads revealed that Caenorhabditis elegans was more susceptible to MPs than
Plectus acuminatus. Additionally, the particles reduced the carrying capacity of Caenorhabditis
elegans and accelerated the growth of Acrobeloides nanus populations [135]. As well as
this, it was reported that polyvinyl chloride MPs can affect the emergence, development,
and weight of freshwater Chironomus riparius in a concentration-dependent manner [136].
Similarly, polyethylene induced mutagenicity and the cytotoxicity of erythrocytes and
morphological changes in Physalaemus cuvieri tadpoles [137]. MPs can also be toxic to
freshwater oligochaete Lumbriculus variegatus. Polyethylene exposure induced important
sub-cellular responses in Lumbriculus variegatus (the reduction of energy reserves and
aerobic energy production and the activation of antioxidant and detoxification mechanisms)
after 48 h, while after 26 days, the rates of reproduction and biomass were not affected [138].
Additionally, it has been proved that MPs mixed with sediment are more harmful to
lumbriculids than MPs that are layered on the sediment surface [139].

However, excepting the negative effects demonstrated on various species from fresh-
water fauna, some MPs can also not be harmful to different organisms. It was demonstrated
that polyethylene MPs did not have detrimental effects on the survival and reproduction of
freshwater oligochaeta Allonais inaequalis [140]. Additionally, it was revealed that amphi-
pod Gammarus duebeni can ingest 10–45 µm polyethylene MPs by feeding on contaminated
Lemna minor, but no impact on their mortality or mobility was observed after 48 h of expo-
sure [141]. Similarly, Daphnia magna ingested plastic microbeads with a size of 63–75 µm,
which filled the guts of the crustaceans, but no significant effects on their reproduction and
survival were found [142]. Consistent with these studies, no negative impact of polyethy-
lene terephthalate fragments (10–150 µm) on the survival, development (molting), energy
reserves (glycogen and lipid storage), and feeding activity of Gammarus pulex after 24 h of
exposure was reported [143]. Neither of the polystyrene fragments MPs (<63 µm) induced
modifications to the oxidative balance, survival, reproduction, and energy reserves of
gastropod Lymnaea stagnalis, suggesting that these particles are not relevant stressors for
these populations [144]. Similar results were obtained also when freshwater oligochaete
Tubifex tubifex was exposed to polyethylene microspheres (up to 10 µm, in size) and no
significant differences between the exposed and control groups were observed in terms of
survival and oxidative balance [145].

6. Conclusions and Outlooks

Despite the large amount of research focused on the effects induced by MPs in marine
environments, the studies centered on the outcomes produced by micro-sized plastic
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particles on freshwater ecosystems are still limited. In this paper, we reviewed the most
important implications of MPs in freshwater, considering their properties, the processes
to which they are subjected after their entrance into freshwaters, and we examined their
potential toxic effects on autotrophic organisms and fauna.

MPs are carbon polymers with dimensions between 1 µm and 5 mm, and they have
various shapes (e.g., spherical, irregular, fibrous, films, foams, fragments, flakes or pellets,
line, filament, and foil) and colors (e.g., blue, black, red, orange, yellow, and white). MPs
can be associated with other particles or chemicals, including heavy metals, for which MPs
have a high affinity. Based on this association, MPs are able to act as vectors for heavy
metals. After they enter the environment or are generated from the plastic debris found in
nature, the MPs are subjected to biodegradation processes that are based, mainly, on the
action of microorganisms which use them as a carbon source.

The presence of MPs in the environment is linked with a considerable impact on the
fauna and autotrophic organisms. The studies showed that MPs could have no harmful
consequences, or they could induce cytotoxic effects, the repercussions being dependent
on the particle characteristics, species, and method of exposure. Freshwater autotrophic
organisms can be affected by micro-sized particles by the production of reactive oxygen
species, inhibition of cell growth, physical damage, and the alteration of the photosynthesis
process. Among the biochemical and molecular modifications induced in freshwater fauna,
oxidative stress, DNA damage, neurotoxicity, changes to the intestinal microbiota, and
inflammation were reported.

Freshwater represents a source of drinking water and food for humans. As a con-
sequence of this essential need of humans, the high impact of presence of MPs in global
freshwater systems is linked to the entry of MPs into the human food chain through the
ingestion of food or water contaminated with these micro-sized plastic particles, which
can induce considerable systemic dysregulations. In terms of the first perspective of this
study, the investigation of the MPs’ effects on human health could be really interesting and
useful in this field. Until now, little research has been conducted in this area. Studies on
various human cell types such as colon, intestinal, endothelial, lymphocytes, lung, dermal
fibroblasts, and kidneys exposed to different categories of MPs have revealed important
morphological and metabolic changes: modifications to the oxidative balance, genomic
instability, inflammation, the loss of proliferative capacity, cytotoxicity, the triggering of
autophagy, and necrosis, etc. However, the effects are dependent on the size, concentration,
properties, and chemical composition of the MPs [146–157]. Along with the knowledge
brought by these studies, other ones that are focused on the human systemic effects induced
by MPs will be needed in the future.

In terms of a second perspective, the production of MPs will continually increase,
affecting freshwater ecosystems, and also, humans life, and this aspect urgently needs to
establish the criteria for plastic recycling, and also, the technological, engineering, and
social tools used to solve the MPs pollution issue.
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