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Abstract: This work is a response to the appeal of various international health organizations and the
Automatic Control Community for collaboration in addressing Coronavirus/COVID-19 challenges
during the initial stages of the pandemic. Specifically, this study presents scientific evidence support-
ing the efficacy of three primary non-pharmacological strategies for pandemic mitigation. We propose
a control system to aid in formulating a public decision policy aimed at managing the spread of
COVID-19 caused by the SARS-CoV-2 virus, commonly known as coronavirus. The primary objective
is to prevent overwhelming healthcare systems by averting the saturation of intensive care units
(ICUs). In the context of COVID-19, understanding the peak infection rate and its time delay is crucial
for preparing healthcare infrastructure and ensuring an adequate supply of intensive care units
equipped with automatic ventilators. While it is widely recognized that public policies encompassing
confinement and social distancing can flatten the epidemiological curve and provide time to bolster
healthcare resources, there is a dearth of studies examining this pivotal issue from the perspective
of control system theory. In this study, we introduce a control system founded on three prevailing
non-pharmacological tools for epidemic and pandemic mitigation: social distancing, confinement,
and population-wide testing and isolation in regions experiencing community transmission. Our
analysis and control system design rely on the susceptible-exposed–infected–recovered–deceased
(SEIRD) mathematical model, which describes the temporal dynamics of a pandemic, tailored in this
research to account for the temporal and spatial characteristics of SARS-CoV-2 behavior. This model
incorporates the influence of conducting tests with subsequent population isolation. An On–off
control strategy is analyzed, and a proportional–integral–derivative (PID) controller is proposed to
generate a sequence of public policy decisions. The proposed control system employs the required
number of critical beds and ICUs as feedback signals and compares these with the available bed ca-
pacity to generate an error signal, which is utilized as input for the PID controller. The control actions
outlined involve five phases of “Social Distancing and Confinement” (SD&C) to be implemented by
governmental authorities. Consequently, the control system generates a policy sequence for SD&C,
with applications occurring on a weekly or biweekly basis. The simulation results underscore the
favorable impact of these three mitigation strategies against the coronavirus, illustrating their efficacy
in controlling the outbreak and thereby mitigating the risk of healthcare system collapse.

Keywords: epidemic control; COVID-19; control and modelling; PID control; On–off control; public
policy design; healthcare system capacity; social distancing and confinement

1. Introduction
Humanity

Humanity and the scientific community have learned a great deal in just six months
since the coronavirus appeared, both in terms of its biology and dynamic behavior. Due to
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its high degree of virulence and contagion rate and considering that a potential vaccine may
take 10–15 months to be developed, social distancing and confinement, extensive testing,
and quarantining of confirmed infected subjects are the most effective tools and actions
that public health organisms can apply to control and moderate the COVID-19 outbreak.
Taking no action in those directions can, in most cases, increase the number of deceased
due to the collapse of the health system and the shortage of ICUs.

It is well known that mathematical models are powerful tools to study and predict
the dynamic behavior of processes and systems, both physical and biological [1–3], as
well as to assist in decision making and to design automatic control systems [4,5], and
cost-effective control for the epidemic system (see [6] and the references therein). In the
particular case of the coronavirus pandemic, its dynamic behavior is generally in line with
traditional mathematical compartmental models [7–10], such as the susceptible–infected–
recovered (SIR) or the SEIR models, that include the number of exposed individuals, which
is useful to estimate the spread of the virus, the peak to compute the number of infected
individuals, and the number of recovered individuals [11]. Some variants of these have
recently been proposed, such as the SIDARTHE model [12,13]. These models are tuned to
show the dynamic evolution of the pandemic, the outbreak, the rise time, the peak time
and percent overshoot, and the fading stage. These values have been the main scientific-
based parameters used to define public policies for mitigating COVID-19 and flattening the
peak of the epidemiological curve. Knowledge of the maximum peak and its delay time is
important for preparing the healthcare system’s infrastructure and obtaining sufficient ICUs
with automatic ventilators. The effectiveness of public actions based on social distancing
and confinement to flatten the outbreak of the epidemiological curve is well known, and
thus it takes time to prepare the healthcare system and increase ICU capacity. However,
very few studies have addressed this critical problem from a control system theory point
of view, that is, designing a closed-loop feedback control system that can regulate the
number of infections that will require care systems and ICUs. Some works along these
lines are shown in [13,14]. However, in all approaches, the use of On–off-type control
actions is proposed. In this work, a simple control system based on public policy design
for controlling the COVID-19 outbreak is proposed to prevent the collapse of healthcare
capacity and the saturation of ICUs. The obtained control policy allows for generating a
control action sequence of social distancing and confinement that regulates the COVID-19
outbreak, hence maintaining the patients requiring ICUs below a preset threshold, given
by the maximum number of intensive care beds available. The main control objective can
be stated as follows: Let there be a healthcare system with a finite number of ICUs, and
considering the entire pandemic evolution period, it is desired to automatically obtain a
control action sequence (scaled social distancing and confinement values) that regulates the
COVID-19 outbreak; hence, the infected number (requiring the health system and ICUs) is
below a desired set-point. In this way, the collapse of the health system and the saturation
of ICUs can be avoided, and so the number of deaths due to a lack of ICU beds can be
decreased. The components of the closed-loop control system are a COVID-19 SEIRD model
of the process to be controlled [7], which includes the number of deaths (D) due to the
infection; public policy as an actuator element; a social distancing and confinement scale
as control actions; and, as a feedback signal, the number of infected people demanding
hospital assistance and access to ICUs. We assume that the control policy is applied once a
week (or once every fortnight), a period generally considered to be a stage or phase in a
sequencing social confinement process. An On–off control action is first analyzed, and then
a PID controller with anti-windup is proposed [15–19]. The control actions are quantized
by amplitude, considering five social distancing and confinement values adapted to the
usual public policies that are currently carried out in the pandemic regions. The main
advantage of using a PID controller is that it is a model-free controller with robustness to
nonlinearities and, in addition, does not require the operator to be familiar with advanced
mathematical developments. This paper also includes an estimation of how control actions
can influence economic activity. The computational simulation results demonstrate the
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practical feasibility of the proposed control system in a real government-decision-making
context. The control system presents good performance and robustness to uncertainty, in
both the severity of the virus and the model parameters. This robustness is expected owing
to the use of a feedback closed-loop system. It also included comparative examples of
different public control policies in an open-loop control system, ranging from a weak policy
to a very strongly restrictive public policy on confinement and social distancing sequences.

2. Mathematical Modeling of COVID-19 Epidemic

In this section, we describe the COVID-19 epidemic model used to analyze and
evaluate the proposed control system. The model used is a SEIRD model, proposed in [7],
which includes the number of deaths (D) due to infection, the lack of beds in the care
systems, and the ICU capacity. This model computes the infected population and the
number of casualties of this epidemic and may be applied to places like the Italian region
of Lombardy, where the epidemic started on 25 February 2020. However, it can also be
calibrated and adjusted for other regions. In the case of Argentina, the government imposed
strict quarantine on 20 March 2020, just two weeks after the first confirmed case appeared.
This quick response to the COVID-19 outbreak helped Argentina to control the disease
spread compared to other countries in the region that did not take such actions. Over the
last three months, different levels or phases of social distancing and confinement have
been implemented, ranging from strict quarantine, with no commercial or educational
activities allowed, to a more flexible confinement, where some activities except schools
and universities are permitted. Deciding when and how to relax isolation policies without
collapsing the health system is the subject of this study. Therefore, the differential equations
of an epidemic disease process can be represented by a class of graphical mathematical
models called compartmental models [20,21]. In this study, the total population is divided
into classes, and there are assumptions and laws for individuals to move from one class
to another [22,23]. A compartment represents a variable of interest and is assumed to
be internally homogeneous, so the individuals inside are indistinguishable. This is also
associated with the state variable. For example, given a certain epidemic disease, men
and women can be grouped in a single compartment or, depending on the complexity of
the model, separated into different compartments. A similar situation can occur with age
range, country, and ethnicity. Each compartment interacts with the other compartments
through different equations, represented by arrows between the compartments.

At the time when the vaccine was still in development and testing, the isolation of
people diagnosed positively and social distancing were the only options to control the
spread of SARS-CoV-2.

In this work, an SEIR epidemic disease model is considered [7,10,22–27]. In this model,
the total initial population, N, is classified into four compartments: the S(t), susceptible;
E(t), exposed; I(t), infected/infectious; R(t), recovered; and D(t), dead populations. The
relationship between the state variables can be described by the following differential
equations:

dS(t)
d(t)

= Λ − µS(t)− β

N
S(t)

dE(t)
dt

=
β

N
S(t)I(t)− (µ + ε)E(t)

dI(t)
dt

= εE(t)− (γ + µ + α)I(t) (1)

dR(t)
dt

= γI(t)− µR(t)

dD(t)
dt

= αI(t)

where N = S + E + I + R. Equations (1) are subject to the initial conditions S(0), E(0), I(0),
R(0), and D(0), and the parameters are defined as: Λ, per-capita birth rate; µ, per-capita
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natural death rate; α, virus-induced average fatality rate; β, probability of transmission by
contact; ε, rate of progression from exposed to infectious (the reciprocal is the incubation
period); γ, recovery rate of infectious individuals (the reciprocal is the infectious period);
and N, the total number of alive individuals at time t, with units of (1/T), and T: time. The
scheme of a typical SEIRD model is illustrated in Figure 1.

COVID 2024, 4, FOR PEER REVIEW 4 
 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜀𝐸(𝑡) − (𝛾 + 𝜇 + 𝛼)𝐼(𝑡) (1) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡)  

𝑑𝐷(𝑡)

𝑑𝑡
= 𝛼𝐼(𝑡)  

where N = S + E + I + R. Equations (1) are subject to the initial conditions S(0), E(0), I(0), 

R(0), and D(0), and the parameters are defined as: Λ, per-capita birth rate; μ, per-capita 

natural death rate; α, virus-induced average fatality rate; β, probability of transmission by 

contact; ε, rate of progression from exposed to infectious (the reciprocal is the incubation 

period); γ, recovery rate of infectious individuals (the reciprocal is the infectious period); 

and N, the total number of alive individuals at time t, with units of (1/T), and T: time. The 

scheme of a typical SEIRD model is illustrated in Figure 1. 

 

Figure 1. SEIRD epidemic mathematical model. 

3. Proposal of a Public Decision Policy for Controlling COVID-19 Outbreaks Based on 

Control System Engineering 

The percentage of total infected people requiring acute care is estimated (approxi-

mately 26.7% of all COVID-19 infected per day), which accounts for a given Pic, including 

both critical care beds and ICUs with mechanical ventilators. The main control objective 

can be stated as follows: Given a healthcare system capacity (including the number of 

critical care beds and ICUs required), RIUC, and considering the entire pandemic evolution 

period described by (1), it is desired to obtain, automatically, a sequence of control actions 

(scaled social distancing and confinement values for the whole population), u(t), assigning 

the value β in (1) such that Pic(t) be below a desired set-point, RIUC, given by the maximum 

health care capacity. Then, the control error can be expressed by 

)t(PR)t(e icIUC −=  (2) 

where the period, t, is one week or one fortnight, and the design specification,  
+−  andttPR icIUC ,,)( , is an arbitrary constant that is as small as possible. The 

proposed PID controller law, in the continuous time domain, is given as 














++= 

t

d

i

p
dt

)t(de
Td)(e

T
)t(eKK)t(u

0

1  (3) 

where u(t) is the control signal action representing the level of social distancing and con-

finement, assigning the value β in Equation (1), e(t) is the control error, K and Kp are the 

proportional gains, Ti is the integration time, and Td is the derivative time (lead time). The 

PID control law comprises three terms, the proportional, integral, and derivative terms. 

The proportional term, P, responds instantly to the feedback control error; the integral 

term, I, improves the steady-state error; and the derivative term, D, acts on the transient 

Figure 1. SEIRD epidemic mathematical model.

3. Proposal of a Public Decision Policy for Controlling COVID-19 Outbreaks Based on
Control System Engineering

The percentage of total infected people requiring acute care is estimated (approxi-
mately 26.7% of all COVID-19 infected per day), which accounts for a given Pic, including
both critical care beds and ICUs with mechanical ventilators. The main control objective
can be stated as follows: Given a healthcare system capacity (including the number of
critical care beds and ICUs required), RIUC, and considering the entire pandemic evolution
period described by (1), it is desired to obtain, automatically, a sequence of control actions
(scaled social distancing and confinement values for the whole population), u(t), assigning
the value β in (1) such that Pic(t) be below a desired set-point, RIUC, given by the maximum
health care capacity. Then, the control error can be expressed by

e(t) = RIUC − Pic(t) (2)

where the period, t, is one week or one fortnight, and the design specification,
|RIUC − Pic(t)| < δ, ∀t, and δ ∈ ℜ+, is an arbitrary constant that is as small as possi-
ble. The proposed PID controller law, in the continuous time domain, is given as

u(t) = K

Kpe(t) +
1
Ti

t∫
0

e(τ)dτ + Td
de (t)

dt

 (3)

where u(t) is the control signal action representing the level of social distancing and con-
finement, assigning the value β in Equation (1), e(t) is the control error, K and Kp are the
proportional gains, Ti is the integration time, and Td is the derivative time (lead time). The
PID control law comprises three terms, the proportional, integral, and derivative terms.
The proportional term, P, responds instantly to the feedback control error; the integral term,
I, improves the steady-state error; and the derivative term, D, acts on the transient response
of the closed-loop system. For a sample time, T0, Equation (3) can be transformed into a
difference equation via discretization as t = kT0 with k = 0, 1, 2. . .integer. The derivative
term is replaced by a first-order difference expression, and the integral term is replaced by a
sum. The continuous integration may be approximated by either rectangular or trapezoidal
integration, as in [28,29]. In this work, rectangular integration is used, and then Equation (3)
can be written as

u(k) = K

{
Kpe(k) +

T0

Ti

k

∑
h=1

e(h − 1) +
Td
T0

[e(k)− e(k − 1)]

}
, (4)
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where u(k) and e(k) are the discrete control action and control error, respectively, k represents
the sampling time variable, and T0 is the sample time. Equation (4) is a non-recursive
control algorithm due to the formation of the sum of all past errors, e(k), which must
be stored. However, recursive algorithms are more suitable for programming and are
characterized by the calculation of the current manipulated variable, u(k), based on its
previous values, u(k-l), and correction terms. To derive a recursive algorithm, u(k-l) can be
expressed as

u(k − 1) = K

{
Kpe(k − 1) +

T0

Ti

k−1

∑
h=1

e(h − 1) +
Td
T0

[e(k − 1)− e(k − 2)]

}
. (5)

Subtracting (5) from (4), the PID control recursive algorithm is given as

ui(k) = ui(k − 1) + a0 e(k) + a1 e(k − 1) + a2e(k − 2), (6)

where
a0 = K

(
Kp +

T0
Ti

)
a1 = −K

(
Kp + 2 Td

T0
− T0

Ti

)
a2 = K Td

T0
.

(7)

The discrete transfer function, in z-transform, of the difference equation (Equation (7))
can be written following [28,29] as

GPID(z) =
Ui(z)
E(z)

=
ao + a1z−1 + a2z−2

1 − z−1 (8)

Considering

Ki =
T0

Ti
, Kd =

Td
T0

, Ki < Kd

and combining (7) with (8),

GPID(z) = K
[

Kp + Ki
z−1

1 − z−1 + Kd(1 − z−1)

]
(9)

Thus, similar to the continuous-time PID controller, we obtained a separate channel
for the P, I, and D terms. Therefore, the single algorithms are

up(k) = KKpe(k) P − behaviour
uI(k) = uI(k − 1) + K Kie(k − 1) I − behaviour
ud(k) = K Kd(e(k)− e(k − 1)) D − behaviour

(10)

Then, the PID algorithm is

ui(k) = up(k) + uI(k) + ud(k) (11)

which is analogous to the continuous-time PID-controller. The choice of Ti, Td, and K
follows the procedure detailed in the literature [15,16], and T0 is fixed depending on the
required dynamics.

In this work, we propose that the signals be quantized in amplitude and time. T0 is
set as the sampling time usually applied in public policy decisions; hence, we choose the
period, T0, to be once a week or every fortnight. We propose five quantized or discretized
levels (but they can be chosen arbitrarily, including the On–off control) for the social
distancing and confinement policy, u(k), such as

u(k) ∈ {u1, u2, u3, u4, u5}
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which can be seen in Table 1. The minimum and maximum values for u were taken from a
previous work [14], and here, three intermediate values were added.

Table 1. Discretized levels of control action.

Confinement Social Level Proportion of Baseline Contact Rate Control Action

Light 70% u1 = 2.7

Weak 50% u2 = 2.1

Medium 30% u3 = 1.5

Strong 20% u4 = 0.7

Extreme 10% u5 = 0.2

The integral action term of the PID algorithm combined with an actuator that becomes
saturated can result in undesirable effects. If the control error remains in the integrator, it
can saturate the actuator, so the feedback path will be broken because the actuator stays
saturated even if the process output changes. To deal with this effect, a PID controller with
anti-windup characteristics is proposed, which automatically resets the integrator when the
actuator is saturated. The main reason for choosing a PID controller is that it is a model-free
controller with a feedback loop that makes it robust to nonlinearities, and in addition, it
does not require the operator to be familiar with advanced mathematical developments.
Figure 2 shows a block diagram of the PID control algorithm.
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Figure 2. Block diagram of the proposed PID control algorithm for the social distancing and confine-
ment policy.

4. Simulations Analysis and Main Results

In this section, the practical feasibility and performance of the proposed control
system are shown by some simulation results. This also proves its good performance
and robustness to nonlinearities and uncertainties in the severity of the virus and model
parameters.

We use the SEIRD model to compute the infected population and the number of
casualties from the COVID-19 epidemic. Let us consider the following parameter basis as
a representative example to analyze and design the control system proposed: N = 20,000,
γ = (1/5)/day, σ = 1/7, and α = 0.004/day. We assume there are five ICU beds available
for every 1000 inhabitants [26], i.e., 100, and we take a security threshold, RICU = 90 ICUs.
Figure 3 shows the number of individuals in every class of the SEIRD model. Figure 4
shows the cumulative number of dead people (D) and the number of deaths per specific
day (D). The initial conditions are fixed by the number of exposed people at t = 0, 20,000,
with one initial infected person, I(0) = 1. The value of the maximum Ro = 3, indicating
imperfect isolation measures. We can see that the peak of dead individuals per day is
reached approximately by day 25 from the beginning of the outbreak. In both figures, social
distancing and confinement measures are not considered.
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Figure 4. Total number of deaths (top) and deaths per specific day (bottom).

4.1. An Open-Loop Control System Strategy for Social Distancing and Confinement

Firstly, the well-known situation where implementing no social distancing and con-
finement actions is considered. Economic activity is evaluated in the simulations as a
function of social distancing and confinement, considering that only 40% of the population
is economically active and assuming that economic activity has a logistic-function-type
relationship with social distancing and confinement actions.

Figure 5 shows the highest and longest-lasting peak of a patient whose number is over
the available ICU capacity, which represents cases that will likely result in a significantly
higher mortality rate. Another extreme case appears when, during the beginning, there
are strong social distancing and confinement actions, and after a given time, all restrictions
are removed. Figure 6 presents the results in that case, where the peak over the avail-
able ICU capacity shifted in time, with the same results as in the previous case. Both in
Figures 5 and 6, economic activity is practically not affected when people are moving freely.
However, the number of deaths is very significant.
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Figure 5. Evolution of patients that need ICUs (top figure, red line) and 100 (90 including threshold)
available ICU beds (top figure, blue and green lines) without any public policy for social distancing
and confinement; thus, u = 2.7 from Table 1 (bottom figure, blue line).
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Figure 6. Evolution of patients that need ICUs (top figure, red line) and 100 (90 including threshold)
available ICU beds (top figure, blue and green lines) with strong public policy for social distancing
and confinement at the beginning (u = 0.2 from Table 1, for day 15 to day 100) and then relaxing
all restrictions (u = 2 from Table 1, for day 100 to day 200), and the impact on economic activity
(bottom figure, blue line).

4.2. An On–Off Control System Strategy

One of the most widely used public policies is the On–off control strategy through
social distancing and confinement to control the COVID-19 outbreak and avoid health
system collapse and ICU bed saturation. The On–off controller is the simplest form of
a controller, which switches On when the error between a defined set-point value and
feedback signal is positive and switches Off when the error is zero or negative.

The On–off control objective can be formulated as follows: Let the output signal from
the controller be u(t), the social distancing and confinement public policy, and the actuating
control error signal be e(t), the difference between the set-point and the feedback signal. In
two-position control, the signal u(t) remains either at a maximum or minimum predefined



COVID 2024, 4 52

value, depending on whether the actuating error signal is positive or negative. The control
law is given as

u(k) =
{

U1 f or e(k) ≥ 0
U2 f or e(k) < 0
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where U2 is the minimum distance and confinement social action, and U1 is the strongest
action. This controller is simple; however, when the system operates close to the set-point,
an undesirable oscillation (chattering) is generated. To avoid chattering, practical On–off
controllers usually have a dead zone around the set point,

u(k) =


U1 f or e(k) > bn
0 f or |e(k)| ≤ bm

U2 f or e(k) < −bm
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The On–off controller is often called a bang–bang controller or a two-step controller
since the manipulated variable output of the controller rapidly switches between On and
Off with no intermediate state. This control type applied to the COVID-19 outbreak works
as follows: when the number of new patients requiring acute care or ICUs is below a
threshold (set point), the control action is low confinement and social distancing, whereas
when new patients exceed that threshold, then the social distancing and confinement
action is strong. Economic activity is evaluated in the simulations as a function of social
distancing and confinement, considering that only 40% of the population is economically
active and assuming the economic activity has a logistic-function-type relationship with
the social distancing and confinement actions. Figure 8 shows an On–off public policy of
social distancing and confinement, considering a sampling time of T0 = 1 day, with a good
performance, but it is impractical. This type of controller improves its performance when
the sampling period decreases. In Figure 9, a flattening of the infected people curve can be
seen due to the application of the On–off control system. Figures 10 and 11 show this for
T0 = 3 days and T0 = 15 days, respectively.
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Figure 8. Evolution of patients that need ICUs (top figure, red line) and 100 (90 including threshold)
available ICU beds (top figure, blue and green lines) using On–off control strategy, u(t), with the
sampling time T0 = 1 day (bottom figure, blue lines) and u(t) assigned to β in Equation (1).
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Figure 9. Evolution of SEIRD variables, where each individual are either susceptible (S) to the disease,
exposed (E) to the disease, infected (I) by the disease, and recovered (R) or died (D) from the disease.
Flattening of the infected curve (fuchsia line) due to On–off control system using a sampling time
T0 = 1 day.

COVID 2024, 4, FOR PEER REVIEW 11 
 

 

Figure 10. Evolution of patients that need ICUs (top figure, red line) and 100 (90 including thresh-

old) available ICU beds (top figure, blue and green lines) using an On–off control strategy u(t) with 

a sampling time T0 = 3 days (bottom figure, blue line) and u(t) assigned to β in Equation (1). 

 

Figure 11. Evolution of patients that need ICUs (top figure, red line) and 100 (90 including thresh-

old) available ICU beds (top figure, blue and green lines) using an On-off control strategy with a 

sampling time T0 = 15 days (bottom figure, blue line) and u(t) assigned to β in Equation (1). 

4.3. Main Results for the Proposed PID Control System 

The PID controller is the most intuitive and practical feedback control system widely 

used in engineering [27,30] and other technical fields since its introduction in a paper by 

Nicolas Minorsky in 1922 [31] and the Taylor Instrument Company in 1936 in the industry 

field. The main objective of the proposed PID controller is to regulate the COVID-19 out-

break to avoid the collapse of the health system and the saturation of the ICU beds. Figure 

12 shows a block diagram of the proposed PID-based control system for controlling the 

COVID-19 outbreak. The control error is defined as the difference between the desired set 

point, RIUC, given by the maximum health care capacity (including the number of critical care 

bed and ICUs required), and the number of patients requiring ICUs, PIC. The main objective 

of the PID controller is to make the control error as small as possible, such as |𝑅𝐼𝑈𝐶 − 𝑃𝐼𝐶| ≤

𝛿, 𝛿 ∈ ℝ+. Then, the control action is quantized by amplitude into five levels of social distanc-

ing and confinement, detailed in Table 1, and applied by public authority. The loop is closed 

by the feedback signal, PIC, which is the number of patients requiring ICUs. 

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300
Healthcare System Capacity

Days

P
a
ti
e
n
ts

 r
e
q
u
e
ri
n
g
 I

C
U

s

0 10 20 30 40 50 60 70 80 90
0

1

2

3

Social distancing and confinement

Days

P
h
a
s
e
 o

n
e
 a

n
d
 f

iv
e

0 50 100 150
0

200

400

600
Healthcare System Capacity

Days

P
a
ti
e
n
ts

 r
e
q
u
e
ri
n
g
 I

C
U

s

0 20 40 60 80 100 120 140
0

1

2

3

Social distancing and confinement

Days

P
h
a
s
e
 o

n
e
 a

n
d
 f

iv
e

Figure 10. Evolution of patients that need ICUs (top figure, red line) and 100 (90 including threshold)
available ICU beds (top figure, blue and green lines) using an On–off control strategy u(t) with a
sampling time T0 = 3 days (bottom figure, blue line) and u(t) assigned to β in Equation (1).
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Figure 11. Evolution of patients that need ICUs (top figure, red line) and 100 (90 including threshold)
available ICU beds (top figure, blue and green lines) using an On–off control strategy with a sampling
time T0 = 15 days (bottom figure, blue line) and u(t) assigned to β in Equation (1).

4.3. Main Results for the Proposed PID Control System

The PID controller is the most intuitive and practical feedback control system widely
used in engineering [27,30] and other technical fields since its introduction in a paper by
Nicolas Minorsky in 1922 [31] and the Taylor Instrument Company in 1936 in the industry
field. The main objective of the proposed PID controller is to regulate the COVID-19
outbreak to avoid the collapse of the health system and the saturation of the ICU beds.
Figure 12 shows a block diagram of the proposed PID-based control system for controlling
the COVID-19 outbreak. The control error is defined as the difference between the desired
set point, RIUC, given by the maximum health care capacity (including the number of
critical care bed and ICUs required), and the number of patients requiring ICUs, PIC. The
main objective of the PID controller is to make the control error as small as possible, such
as |RIUC − PIC| ≤ δ, δ∈ R+. Then, the control action is quantized by amplitude into five
levels of social distancing and confinement, detailed in Table 1, and applied by public
authority. The loop is closed by the feedback signal, PIC, which is the number of patients
requiring ICUs.
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Figure 12. Block diagram of the proposed PID-based control system as a public authority policy.

A PID controller was chosen because it has a model-free design, is robust to nonlinear-
ity, is very simple, and has an easy-to-understand operation. A computational simulation
study was carried out using the COVID-19 SEIRD epidemic model presented in Section 2,
considering that 6.5% of patients require an ICU bed with ventilation [26]. The set point
is RICU = 90 ICUs. The PID parameters were tuned, resulting in Kp = 0.95, Ki = 0.012/6.5,
and Kd = 7.5. Figure 13 shows the PID performance for a sampling time of T0 = 7 days.
Figure 14 shows the flattering of the infected individuals curve due to feedback PID control.
Figure 15 presents the same controller parameters but for T0 = 3 days, showing better
performance, as expected. The robustness of the PID controller to uncertainty in the model
parameters is proven by considering an uncertainty of 10% in the SEIRD model parameters.
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Figure 16 shows the above-mentioned case. In Figure 17, we show the performance of the
proposed control system considering that people’s behavior is such that it does not obey the
suggested actions of social distancing and confinement, estimated at 35% of people in each
u(k). The predictive PID controller [28] operation can be seen when the feedback signal
∆PIC = PIC(k)− PIC(k − 1) is considered, which improves the performance. Working in a
heuristic way with a value of ∆PIC = 0.5(PIC(k)− PIC(k − 1)), we obtain a pattern profile,
in which for a phase 2 period of approximately 80 days, very good performance is achieved;
see Figures 18 and 19, which use ∆PIC and ∆PIC/2, respectively.
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Figure 13. PID controller with a sampling time of T0 = 7 days. Evolution of patients that need
ICUs (top figure, red line) and 100 (90 including threshold) available ICU beds (top figure, blue and
green lines). Trajectory of u(t) updated every 7 days (middle figure, blue line) with u(t) assigned to
β in Equation (1). The economic activity is detailed in the bottom figure (blue line), ranging from 0
(closed) to 100% (normal).
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Figure 15. PID controller with a sampling time of T0 = 3 days. Evolution of patients that need ICUs
(top figure, red line) and 100 (90 including threshold) available ICU beds (top figure, blue and green
lines). Trajectory of u(t) updated every 3 days (middle figure, blue line) with u(t) assigned to β in
Equation (1). The economic activity is detailed in the bottom figure, ranging from 0 (closed) to 100%
(normal).
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Figure 16. PID controller performance considering an uncertainty of 10% in the SEIRD model
parameters, and with a sampling time of T0 = 7 days. Evolution of patients that need ICUs (top figure,
red line) and available ICU beds (top figure, blue-cyan line). Trajectory of u(t) updated every 7 days
(middle figure, blue line) with u(t) assigned to β in Equation (1). The economic activity is detailed in
the bottom figure, ranging from 0 (closed) to 100% (normal).
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Figure 17. PID controller performance considering 35% of people do not abide by the social distancing
and confinement actions suggested by the PID control system. T0 = 7 days. Evolution of patients that
need ICUs (top figure, red line) and 100 (90 including threshold) available ICU beds (top figure, blue
and green lines). Trajectory of u(t) updated every 7 days (middle figure, blue line) with u(t) assigned
to β in Equation (1). The economic activity is detailed in the bottom figure, ranging from 0 (closed) to
100% (normal).
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Figure 18. PID controller with a sampling time of T0 = 7 days and feedback signal, ∆PIC(k),
for improving performance. Evolution of patients that need ICUs (top figure, red line) and 100
(90 including threshold) available ICU beds (top figure, blue and green lines). Trajectory of u(t)
updated every 7 days (middle figure, blue line) with u(t) assigned to β in Equation (1). The economic
activity is detailed in the bottom figure, ranging from 0 (closed) to 100% (normal).
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Figure 19. PID controller with a sampling time of T0 = 7 days and ∆PIC(k)/2. Evolution of patients
that need ICUs (top figure, red line) and 100 (90 including threshold) available ICU beds (top figure,
blue and green lines). Trajectory of u(t) updated every 7 days (middle figure, blue line) with u(t)
assigned to β in Equation (1). The economic activity is detailed in the bottom figure (blue line),
ranging from 0 (closed) to 100% (normal).

These simulation results show the practical feasibility, good performance, and robust-
ness of the proposed approach and show the pattern of the social distancing and confinement
sequence profile, both in the corresponding phase and in its duration over time.

4.4. Modification of the SEIRD Model, Including the Testing of Asymptomatic and
Presymptomatic Subjects

In these computational simulations, a modification of the SEIRD epidemiological
model, Equation (1), is considered, in which, in addition to representing susceptible (S(t)),
exposed (E(t)), infected (I(t)), recovered (R(t)), and deceased (D(t)) subjects, the testing of
asymptomatic and pre-symptomatic subjects is incorporated, as in [26,31].

Considering a population of size N divided into six compartments, S susceptible
individuals; E exposed but not yet contagious individuals; Ia, asymptomatic individuals
with no symptoms or mild symptoms; R, recovered individuals; D, deceased individuals,
and Ip, pre-symptomatic individuals who eventually develop symptoms, and the constraint
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N = S + E + Ia + R + D + Ip, a dynamical model can be described by the following set of
differential equations

dS(t)
d(t)

= − βa

N
(µ(t)S(t)Ia(t))−

βp

N
(
µ(t)S(t)Ip(t)

)
dE(t)

dt
=

βa

N
µ(t)S(t)Ia(t)− σE(t) +

βp

N
(
µ(t)S(t)Ip

)
dIa(t)

dt
= ασE(t)− (γa + ρ(t)va)Ia(t)

dR(t)
dt

= γc Ip(t)

dD(t)
dt

= αIa(t)

Ip(t)
dt

= (1 − α)σE(t)− γp Ip(t)− ρ(t)vp Ip(t)

where µ(t) is the intervention factor for social distancing and confinement; ρ(t) is the in-
tervention factor for testing and isolation; α is the portion of asymptomatic carriers; βa is
the asymptomatic portion; βp is the portion of pre-symptomatic individuals; σ is the rate
of exposure to infected people; γa is the transition rate from asymptomatic to recovered
or hospitalized patients; γp is the transition rate from pre-symptomatic to recovered or
hospitalized; and va, vp are the probabilities of detecting asymptomatic carriers and symp-
tomatic carriers, respectively. In these experiments, the proposed control system employs
the PID controller tuned with the following range of gains: K = 0.01 − 0.009, Kp = 1.65,
Ki = 0.012/6.5, and Kd = 5 − 150.

Figure 20 shows the evolution of the controlled variable, PIC(t), for a sampling period
of T0 = 7 days without testing and isolation, and it can be observed that there is no saturation
of the health system. Figure 21 shows how the curve of infected people, and therefore
the number of patients who require medical attention, is flattened due to the automatic
generation of the corresponding sequence of phases. Figure 22 shows the positive impact
of using both the application of the phases generated by the controller and the isolation
test. Note that by incorporating the strategy of testing with isolation, the mobility of the
population can increase, allowing more opportunities for economic and social activities.
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Figure 20. Response of the proposed control system without testing with isolation. Evolution of
patients that need ICUs (top figure, red line) and 100 (90 including threshold) available ICU beds
(top figure, blue and green lines). Trajectory of u(t) updated every 7 days (below figure, blue line)
with u(t) assigned to β in Equation (1).
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Figure 21. Evolution of SEIRD variables, where each individual is either susceptible (S) to the disease,
exposed (E) to the disease, infected (I) by the disease, and recovered (R) or died (D) from the disease.
Flattening of the infected curve (fuchsia line) due to an On−off control system with a sampling time
interval T0 = 1 day.
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Figure 22. Positive impact of social distancing and confinement with all mitigation tools, testing,
and mass isolation of the population. Evolution of patients that need ICUs (top figure, red line) and
100 (90 including threshold) available ICU beds (top figure, blue and green lines). Trajectory of u(t)
updated every 7 days (below figure, blue line) with u(t) assigned to β in Equation (1).

Further simulations were carried out, in which the robust behavior of the PID controller
was obtained in the face of uncertainties in the model, considering a 10% error. Another
situation experienced is the case in which 35% of the population does not obey the directives
and orders of the government authority regarding social distancing and confinement.

It has been found that the performance of the control system can be
improved by adding a predictive control action, considering, as a feedback signal,
∆PIC(k) = 0.5 (PIC(k)− PIC(k − 1)). Figure 23 shows the system’s response to the pro-
posed modification.
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of u(t) updated every 7 days (below figure, blue line) with u(t) assigned to β in Equation (1).

5. Conclusions

This work was in response to the requirements of the IFAC, IEEE, the World Health
Organization, and other institutions at the beginning of 2020, with the main objective of
contributing to the fight against COVID-19 and future pandemics from a systems and con-
trol theory approach. There are many influences of the outbreak that were not considered
in the present approach, which are important in an overall strategy towards the spread
of COVID-19 and flattening the epidemiological curve, e.g., extensive testing, tracking
infections, and quarantining confirmed infected subjects. It has been proven that the proper
and correct use of a high-quality mask is equivalent to the confinement of people. However,
it is well known that controlling the infection rate is one of the key actions, and hence, this
work contributes towards that direction.

In this paper, we have used social distancing, confinement, and testing with the
isolation of infected individuals, including pre- and asymptomatic detection, as a public
policy to fight against the COVID-19 outbreak, mainly to avoid the saturation of the health
system and ICU capacity. An approach that tries to regulate the COVID-19 outbreak based
on a feedback PID control system was presented, resulting in a simple and robust control
strategy for generating a sequence of social distancing and confinement as a public policy
involving the whole population. A PID controller was chosen mainly because it is a model-
free controller, it is very intuitive and practical, and it does not require the operator to be
familiar with advanced mathematical developments. The main objective of the proposed
PID controller is to regulate the COVID-19 outbreak to avoid the collapse of the sanitary
system and the saturation of ICU beds. In this way, the feedback control strategy proposed
can help public health authorities in their efforts to contain the virus, mainly in the outbreak
phase. We have used a COVID-19 SEIRD model to analyze and design an On–off control
strategy and the PID anti-windup controller proposed. This strategy uses the health system
and ICU capacity as a feedback signal measure for determining when physical and social
distancing and confinement should be tightened up and when they should be relaxed.
The control system generates a sequence of five possible levels of social distancing and
confinement actions. These are useful measures for the decisions of policymakers. To show
the practical feasibility and performance of the PID-based control algorithm, as well as its
stability and robustness properties, simulation studies were carried out for the COVID-19
SEIRD mathematical model. These simulation results also produce a social distancing and
confinement sequence profile, both in the corresponding phase and in its duration over
time, which can be helpful for public social distancing and confinement policies. Scientific
evidence has been given for the effectiveness of the three main non-pharmacological
pandemic mitigation tools.
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The directions for future investigation will be oriented toward the optimization and
adaptive issues of the PID-based control structures, including their impact on economic
activity by using suitable metrics and indexes and including in the mathematical model
extensive testing to apply to the quarantining of confirmed infected subjects.

This research supports and validates the strategies of many health groups carried out
in many countries in the field of control systems engineering. It can also be very helpful
and useful for public authorities in their decision making, especially in those places and
countries where the virus is not yet circulating or is in its initial stage of circulation. We
hope this paper inspires further investigations into the control system for fighting the
COVID-19 outbreak or other possible pandemics in the future.
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