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Abstract: What are the effects of Corona Virus Disease 19 (COVID-19) on inflation, unemployment,
and GDP in Africa? Using geo-coded cross-sectional data taken from the World Health Organization
and International Monetary Fund, we investigate the spatial distribution of COVID-19 and its
effects on inflation, unemployment, and Gross Domestic Product (GDP) in Africa by employing
the Geographic Information System (GIS), multivariate analysis of covariance (MANCOVA), and
spatial statistics. The entire dataset was analyzed using Stata, ArcGIS, and R software. The result
shows (1) that there is evidence of a spatial pattern of COVID-19 cases and death rate clustering
behavior in Africa, verifying the existence of spatial autocorrelation. The result also reveals (2) that
COVID-19 has a negative effect on unemployment, inflation, and GDP in Africa. We confirmed that
(3) temperature, rainfall, and humidity were statistically significantly associated with the spread of
the COVID-19 pandemic in Africa. The comparison of the GDP of African countries before and after
the pandemic shows (4) a large decrease in GDP, the highest in Seychelles (23 percent). The result of
the study shows (5) that there has been a significant increase in inflation and unemployment rates in
all countries since the outbreak of the pandemic as compared to the time before the outbreak. There
is also evidence that (6) there is a significant relationship between death rate due to COVID-19 and
population density; temperature with COVID-19 cases and death rate; and precipitation with death
rate due to COVID-19. Therefore, respective governments and the international community need
to pay attention to controlling/reducing the impact of COVID-19 on inflation, unemployment, and
GDP, focusing on the indicated demographic and environmental variables.

Keywords: spatial pattern; GIS; GDP; COVID-19; inflation and unemployment

1. Introduction
Study Background

In late 2019, a new virus called Corona virus was seen in China and spread alarm-
ingly to different parts of the world [1]. It was declared a novel virus, COVID-19, and
characterized as a pandemic in early 2020 [2].

The global economy has been largely affected by the spread of the pandemic. Thus,
clearly examining its relationship with different factors has been the interest of many
researchers. It was well noted that temperature [3,4], humidity [5], sunshine hour [6],
precipitation [7], wind condition [8], air quality [9,10], and population density [11,12]
are regarded as the most driving factors for the spread of the pandemic. The 2021 World
Economic Outlook from the International Monetary Fund (IMF) shows that global economic
growth fell to an annualized rate of around −3.2% in 2020, with a recovery rate of 5.9%
projected for 2021 and 4.9% for 2022.

The report by [13] revealed that in Sub-Saharan African countries, the global shock was
projected to contract economic activity by 2.8% in 2020 from 2.2% in 2019. Similarly, it was
noted that the massive spread of the pandemic varied from continent to continent [14–16].
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Moreover, the articles by [17] assessed the impacts of covariates on COVID-19, while [18]
addressed the prediction of COVID-19 in Africa; however, they lacked an impact assessment
related to the economy. According to a report by the World Bank in 2017, Sub-Saharan
Africa paid 5.17% of its total GDP for health, which is smaller than the 9.89% contributed
by the Organization for Economic Co-operation and Development. This indicates that the
amount of money contributed to the health care system was not enough to address the
pandemic [19].

The spatial distribution of COVID-19 varies across the globe, including in Africa.
On February 14, the first case of COVID-19 was reported in Africa, while the first South
African case was confirmed on March 5, 2020 [20]. Following this, the pandemic has spread
rapidly across the entire African continent. To mitigate its spread by paying attention to
the hotspot areas, it is believed that the Geographic Information System (GIS) provides an
excellent medium for integrating specific health data and economic data, along with its un-
derstanding of population habits, including healthcare services, and the environment [21].
Understanding disease space and time dynamics is important for both planners and epi-
demiologists, as with space distribution, the hot spot areas are marked for intervention [22].
Thus, clearly determining the spatial distribution of the pandemic and its impact, along
with employment and inflation on the GDP, is important for hotspot area identification and
further intervention.

A considerable number of articles have been published based on GIS and spatial
modeling since the outbreak of the pandemic. For instance, [23] presented how various GIS
applications are taken into consideration to model the driving factors of the pandemic, but
it gives less emphasis to its impact on the economy. Spatial models are the most widely used
tools to link the geographic relationship between several predictor parameters associated
with the outbreak of any pandemic [24,25]. Moreover, GIS and spatial autoregressive
models were the most popular techniques to describe the dispersion of COVID-19 by
incorporating the issues of spatial dependency while considering population density, level
of healthcare services, and environmental variables [26].

This work focuses on the spatial distribution of COVID-19 and tries to identify the
effect of COVID-19 on inflation, unemployment, and GDP in Africa, along with the driving
forces of the pandemic. It also examines the effect of the pandemic on three dominant
economic indicators, namely inflation, unemployment rate, and GDP per capita, and
suggests ways of reducing the impact of the pandemic and actions to be taken for further
intervention. In short, this paper is aimed at assessing COVID-19 and examining its effect
on inflation, unemployment rate, and Gross Domestic Product (GDP) in Africa via GIS and
spatial exploratory techniques.

2. Data Source and Methodology
2.1. Study Area and Period

Africa is regarded as the second-largest and most populous continent after Asia. The
continent has a land area of about 30.3 million km2, including adjacent islands; it covers
6% of Earth’s total surface area and 20% of its land area. Africa’s population was about
1.3 billion in 2018, which accounts for about 16% of the world’s human population. The size
of the population is estimated to be 1.4 billion in 2022 (16.7% of the world’s population).
The map of the study area is presented in Figure 1. A total of 54 African countries were
considered for the study.
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Figure 1. The map of 54 African countries.

2.2. The Data

Invoked with the initiation of the current impact of cross-cutting issues, such as the out-
break of the pandemic, war, and inflation, including the unemployment rate, global datasets
are taken into consideration. Four global datasets were considered: COVID-19 cases and
deaths from the World Health Organization: GDP per capita from the International Mon-
etary Fund; inflation taken from the different global databases; and unemployment rate
directly taken from the World Bank, referring to the unemployment data that is based on
the total labor force in line with the proposed objectives. The entire dataset that inspired
this study was secondary data collected directly from the four datasets indicated above.
The data were compiled from the World Health Organization’s reports up to 1 January
2021, since the outbreak of the pandemic. This data set contains the number of COVID-19
cases, deaths, and recoveries for all African countries. Moreover, the data for climate and
other parameters were collected from online meteorology. The data on population density
and GDP were taken from Richest African Countries 2022 (World Population Review,
2022). ArcGIS 10.4.1 was used for mapping the spatial distribution of COVID-19 and GDP
per capita.

2.3. Variable Identification

The outcome variable in the study is the gross domestic product (GDP), measured in
billions of US dollars.

The predictor variables considered in this study are summarized in Table 1.
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Table 1. Summary of the predictor variables.

Category Variables Descriptions

Meteorological factors

Temperature The yearly average temperature in degrees Celsius

Relative humidity The daily average relative humidity in percentage

Precipitation Daily average wind speed in km/hr

Population size Population density for each country in Africa

Inflation Consumer price index Global database

Unemployment rate Unemployment rate based on the
total labor force

Global database (unemployment data and total
labor force)

2.4. Spatial Statistical Analysis

In this study, the methods of statistical analysis used include descriptive statistics,
spatial autocorrelation analysis, and a spatial autoregressive model. Following the analysis,
the model adequacy checks (diagnostics) for fitted models were examined.

2.4.1. Concept of Spatial Autocorrelation/Dependence

The primary premise underlying the analysis of spatial data is that values of a variable
in close proximity are more similar or related than values in distant locations.

Tobler’s first law of geography summarizes this inverse relationship between value
association and distance: “Everything is related to everything else, but near things are more
related than distant things” [27]. When close-by observations (i.e., those in the same place)
have similar variable values, the pattern is said to have positive spatial autocorrelation
(self-correlation). In contrast to Tobler’s law, negative spatial autocorrelation is stated to
exist when observations that are close in space are more dissimilar in variable values than
observations that are further apart. When variable values are independent of location, zero
autocorrelation exists.

According to [27], spatial autocorrelation can be loosely defined as the coincidence of
value similarity with location similarity. In other words, high or low values for a random
variable tend to cluster in space (positive spatial autocorrelation), or locations tend to be
surrounded by neighbors with very dissimilar values (negative spatial autocorrelation).
Of the two types of spatial autocorrelation, researchers usually focus on positive autocor-
relation. Negative spatial autocorrelation implies a checkerboard pattern of values and
does not always have a meaningful substantive interpretation [28]. The spatial autocorrela-
tion/dependence is the situation where the dependent variable (the error terms) at each
location is correlated to the observation in the dependent variable (the error term) of the
other location [29–32].

2.4.2. Methods of Measuring Spatial Autocorrelation
Contiguity Spatial Weight Matrix

According to Tobler’s first law, the neighboring or nearest regions are coded in the
form of a spatial weight matrix with zero diagonal and non-zero off-diagonal elements,
which often weigh to sum to unity in each row with typical elements. The non-standardized
weight matrix is stated as:

wij =

{
1, i f i is neighbor to j
o, other wise

(1)

The standardized weight matrix, which incorporates the average weight value, can be
written as follows:

Wij =
wij

∑n
j=1 wij

(2)
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where wij are elements of the non-standardized weight matrix along location i and location
j and ∑n

j=1 wij is the ith row total of the non-standardized weight matrix; n is the number
of locations considered.

2.4.3. Test of Global and Local Spatial Autocorrelation

Spatial autocorrelation is an important concept in spatial statistics, and it is used to
measure similarity between nearby observations. The test for spatial autocorrelation is
designed to quantify the extent of clustering and allow for statistical inference. The null
hypothesis (under the normality and independence assumptions) is given by:

H0. There is no spatial autocorrelation (ρ = 0)

Against the alternative hypothesis of spatial dependence/autocorrelation (H1 : ρ 6= 0)
which is the claim of interest. To test this hypothesis, we have used Moran’s I and Geary’s
C analyses.

Moran’s I Correlation Analysis

Moran’s I correlation coefficient is widely used to identify the spatial association
pattern. To compute the spatial autocorrelation of the death rate and confirmed cases due
to COVID-19, Moran’s I correlation was employed. The values of Global Mora’s I lie in
the interval of −1 and 1. If the value is significantly less than 0, then there is a negative
spatial relationship; if it is greater than zero, there is a positive spatial relationship; and if
it is zero, there is no spatial relationship. Local Moran’s I was used to identify the local
spatial pattern and outliers among the death rate and confirmed cases due to COVID-19 in
all African countries. This analysis was conducted using ArcGIS version 10.4 and GeoDa.
The global Moran’s I is given as follow:

I g =
n

∑n
i=1 ∑n

j=1 wij

∑n
i=1 ∑n

j=1 Wij(yi − y)
(
yj − y

)
∑n

i=1 (yi − y)2 (3)

where I g is global Moran’s I correlation coefficient; yi and yj respectively represent either
the death rate or confirmed cases due to COVID-19 of site i and site j; y is the mean of y; n is
the number of locations (countries); and Wij is the spatial weights between site i and site j.

Moran Scatter Plot

The Moran scatter plot is a useful visual tool that enables us to assess how similar an
observed value is to its neighboring observations. It is used to show the linear correlation
between the dependent (outcome) variable (Y) and the corresponding neighboring depen-
dent variable (WY). Specifically, WY is plotted against Y, and the Moran’s I coefficient is the
slope of the regression curve [27].

The four different quadrants of the scatter plot correspond to the four types of local
spatial association between a region (country) and its neighbors: the first quadrant (HH) is
a region with a high value surrounded by regions with high values (top on the right); the
second (LH) is a region with a low value surrounded by regions with high values (top on
the left); the third (LL) is a region with a low value surrounded by regions with low values
(bottom on the left); and the last (HL) is a region with a high value surrounded by regions
with low values (bottom on the right). The first and third quadrants refer to positive spatial
autocorrelation, indicating spatial clustering of similar values, whereas the second and
fourth quadrants represent negative spatial autocorrelation, indicating spatial clustering of
dissimilar values.

2.5. Spatial Statistical Methods of Analysis

Spatial exploratory analysis, mainly the Moran scatter plot test of spatial autocor-
relation by incorporating the spatial weight matrix, was employed to examine the issue
of spatial autocorrelation [28,33–37]. The model used to describe the outcome variable
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is described in Section 2.3. The effect of the climatic factors on COVID-19 was tested
with the help of the Multivariate Analysis of Covariance (MANCOVA). Finally, the spatial
autoregressive model is taken into consideration.

3. Results and Discussion
3.1. Descriptive Results

The African economy had been progressing prior to the outbreak of the pandemic.
However, according to the recent report by the African Economic Outlook (2022), about
30 million people in Africa were pushed into extreme poverty in 2021, and about 22 million
jobs were lost in the same year because of the pandemic. It was projected that the trend
would continue, for various reasons, through the second half of 2022 and on into 2023. Thus,
assessing COVID-19, inflation, and unemployment and their impacts on Gross Domestic
Product (GDP) in Africa is highly recommended and advisable. This section mainly focuses
on descriptive results and discussions based on the global datasets.

Table 2 presents a summary of descriptive measures on gross domestic product in
billions of dollars, death rate per 1000 people, and COVID-19 cases for all 54 African
countries. The data were obtained from the WHO and the International Monetary Fund.

Table 2. Summary of descriptive measures.

Variables Number of Countries Mean

GDP per capita (USD) 54 62.78

Deaths per 1000 people 54 4.154

COVID-19 cases (per 1000 people) 54 206.013

3.2. The Top Seven African Countries Affected by COVID-19

Based on the data, it was noted that Angola, Algeria, Egypt, South Africa, Kenya,
Tunisia, and Seychelles were regarded as the top seven countries with a high number of
COVID-19 cases. Among these, South Africa is the country with the highest number of
COVID-19 cases (Figure 2).
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Figure 2. Hotspot has confirmed cases of COVID-19 in Africa.

To examine the effect of COVID-19 on GDP per capita, the top seven African countries
with high COVID-19 cases and deaths were taken into consideration. Figure 3 indicates
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the magnitude of GDP per capita before the pandemic (2019) and during the pandemic
(2021), where the x axis denotes the name of the countries (Angola, Algeria, Egypt, Kenya,
Tunisia, South Africa, and Seychelles), and the y axis indicates the GDP per capita in US
dollars. It can be seen that the GDP per capita has decreased during the pandemic as
compared to the GDP per capita before the outbreak of the pandemic in all countries except
Egypt. The increase in Egypt’s GDP is largely accounted for by the fact that during the
pandemic, a large amount of money was allocated to control and prevent COVID-19 and
the government’s swift and prudent policy response, coupled with significant IMF support.
Moreover, the country has experienced fewer movement restrictions and implemented a
Preparedness and Response Plan (CPRP) (United Nations Egypt, 2020). The result based
on the mean difference of the paired sample t test confirms a significant mean difference in
GDP before and after the outbreak of the pandemic (Figure 3).
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Figure 3. GDP per capita before and after the outbreak of COVID-19 in seven African countries.

As indicated in Table 3, the GDP per capita of Angola decreased from 2177.8 to
2137.9 (1.8%) dollars, Algeria from 3989.7 to 3765.0 (5.6%) dollars, Kenya’s GDP per capita
decreased from 2006.8 to 1909.3 (4.9%) dollars, and South Africa’s GDP per capita decreased
from 6624.8 to 5655.9 (14.6%) dollars.

Table 3. Summary of GDP per capita before and during COVID-19.

Country GDP in USD
(before COVID-19: 2019)

GDP in USD
(during COVID-19: 2021)

Percentage
Decrease

Angola 2177.8 2137.9 −1.8

Algeria 3989.7 3765.0 −5.6

Egypt 3019.1 3876.4 28.4

Kenya 2006.8 1909.3 −4.9

South Africa 6624.8 5655.9 −14.6

Tunisia 3691 3597 −2.6

Seychelles 17,252 13,306.7 −22.9

3.3. Death Rate and GDP before and after the Outbreak

Figure 4 displays the GDP of African countries. The figure shows that Nigeria’s GDP
is the largest (504 billion dollars), while Sao Tome and Principe’s is the smallest (0.5 billion).
The average GDP for 54 African countries is 62.78 billion USD.



COVID 2023, 3 963

COVID 2023, 3, FOR PEER REVIEW 8 
 

 

As indicated in Table 3, the GDP per capita of Angola decreased from 2177.8 to 2137.9 
(1.8%) dollars, Algeria from 3989.7 to 3765.0 (5.6%) dollars, Kenya’s GDP per capita de-
creased from 2006.8 to 1909.3 (4.9%) dollars, and South Africa’s GDP per capita decreased 
from 6624.8 to 5655.9 (14.6%) dollars. 

Table 3. Summary of GDP per capita before and during COVID-19. 

Country  
GDP in USD  

(before COVID-19: 2019) 
GDP in USD  

(during COVID-19: 2021) 
Percentage  
Decrease 

Angola  2177.8 2137.9 −1.8 
Algeria  3989.7 3765.0 −5.6 
Egypt  3019.1 3876.4 28.4  
Kenya  2006.8  1909.3 −4.9 

South Africa 6624.8 5655.9 −14.6 
Tunisia  3691 3597 −2.6 

Seychelles 17,252 13,306.7 −22.9 

3.3. Death Rate and GDP before and after the Outbreak 
Figure 4 displays the GDP of African countries. The figure shows that Nigeria’s GDP 

is the largest (504 billion dollars), while Sao Tome and Principe‘s is the smallest (0.5 bil-
lion). The average GDP for 54 African countries is 62.78 billion USD. 

 
Figure 4. GDP in billions of USD by country in Africa. 

Figure 5 depicts the number of COVID-19 cases per 1000 people by country. It shows 
that South Africa experienced the highest number of cases (3648.968 per 1000 people), fol-
lowed by Tunisia (974.214 per 1000 people). 

0

100

200

300

400

500

600

Ni
ge

ria
So

ut
h 

Af
ric

a
An

go
la

Et
hi

op
ia

M
or

oc
o

Co
te

 d
'Iv

oi
re

Lib
ya

Tu
ni

sia
Ug

an
da

Zi
m

ba
bw

e
Se

yc
he

lle
s

Bo
ts

w
an

a
Be

ni
n

Ni
ge

r
M

oz
am

bi
qu

e
M

au
rit

iu
s

Na
m

ib
ia

E 
Gu

in
ea

To
go

So
m

al
ia

S 
Le

on
e

Dj
ib

ou
ti

Bu
ru

nd
i

Le
so

th
o

Ga
m

bi
a

G 
Bi

ss
au

Za
m

bi
a

GD
P 

 in
 U

S 
Bi

lli
on

 d
ol

la
r

Country 

Figure 4. GDP in billions of USD by country in Africa.

Figure 5 depicts the number of COVID-19 cases per 1000 people by country. It shows
that South Africa experienced the highest number of cases (3648.968 per 1000 people),
followed by Tunisia (974.214 per 1000 people).
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Figure 5. COVID-19 cases per 1000 people in Africa.
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Figure 6 depicts the death rates due to COVID-19 for selected countries, from which
we can clearly observe the variation in the spatial distribution of the death rates. The result
shows that South Africa, Angola, Tunisia, and Ethiopia have experienced high death rates
due to the pandemic in Africa.
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Figure 6. The spatial distribution of deaths due to COVID-19 per 1000 people.

3.4. Testing for Spatial Autocorrelation

The Moran’s I coefficient, one of the most extensively used measures of spatial au-
tocorrelation, was utilized to identify the spatial patterns. Tests and presentations of the
global Moran’s I and local Moran’s I statistics for clustering are included in the spatial
autocorrelation analysis package. The Moran scatter plot is used to show the global test,
in which the slope of the regression line corresponds to Moran’s I. At a significance level
of 0.05, the non-existence of significant clustering of the death rate and confirmed cases
due to COVID-19 was tested in selected countries. First, we calculated the global Moran’s I
test statistics. Furthermore, to ensure that the results were consistent, a diagnostic test for
spatial dependence was conducted.

3.4.1. Tests of Spatial Autocorrelation Using Global Moran’s I

The spatial distribution of COVID-19 cases and the death rate in Africa can be critically
examined using the global spatial autocorrelation. Our goal here is to test the null hypothe-
sis (under the normality and independence assumptions) of “there is no spatial autocorre-
lation (ρ = 0)” against the alternative hypothesis of “spatial dependence/autocorrelation
(ρ 6= 0)”. The result of global Moran’s I shows that there is a positive spatial autocorrelation
for the confirmed cases of COVID-19 (Moran’s I = 0.3432, p-Value = 0.0100) and death
rate (Moran’s I = 0.3895, p-Value = 0.0100) at the 5% level of significance. The result
corresponding to the global test of spatial autocorrelation is given in Table 4.
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Table 4. The results of the global Moran’s I correlation coefficient.

Variable
Moran I Correlation under Normalization

Coefficient Observed Expected Std Z Value p-Value

Death per 1000 people Moran’s I statistic 0.3895 −0.0204 −0.0397 6.088 0.01

COVID-19 cases per 1000 people Moran’s I statistic 0.3432 −0.0204 0.0993 3.6373 0.01

Based on the p-values of the provided Moran’s I coefficients, the global tests of spatial
autocorrelation suggest the rejection of the null hypothesis of no spatial autocorrelation of
the two spatial components at the 5% level of significance. The Moran’s I coefficients of the
confirmed cases and death rate show that the death rate due to COVID-19 and confirmed
cases have substantial positive spatial autocorrelation or clustering. Under the assumption
of normality, we utilize Moran’s scatter plot to depict global spatial autocorrelation, as
shown in Figure 7a,b.
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Figure 7. The Moran scatter plot of the spatial distribution of confirmed cases and death rate. The
result shown in both (a,b) show that there is spatial dependence two locations based on the data of
death rate and number of confirmed cases of COVID 19. The values of the Moran’s I reveals that
there is positive spatial autocorrelation confirming the existance of the spatial autocorrelation on
both events.

Figure 8a presents the spatial distribution of the percentage decrease in GDP per capita
by comparing the values of GDP before and after the pandemic in African countries. It
can be observed that in countries where there are fewer COVID-19 cases, the percentage
decrease in GDP per capita in USD is low. On the contrary, in countries where there are high
COVID-19 cases, the percentage decrease in GDP per capita in USD is high. Our results are
similar to those of the study conducted by [38]. Following the result corresponding to the
spatial distribution of GDP in Africa, the geospatial result corresponding to the COVID-19
cases and death rate in Africa is visualized in Figure 8b,c, from which we note that South
Africa was the most highly affected country compared to the other African countries.
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3.4.2. Result of Multivariate Analysis of Covariance Methods

To determine the relationship between several predictor variables and the confirmed
cases and death rate due to the pandemic, we also conducted a multivariate analysis of
covariance and obtained the results presented in Table 5.

The result of multivariate analysis of covariance shows that death rate due to COVID-19
with population density, temperature with COVID-19 cases and death rate, precipitation
with death rate due to COVID-19, and wind with death rate due to COVID-19 have a
significant association at the 5% level of significance (see Table 5).
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Table 5. Effect of predictor variables on COVID-19 in Africa.

Tests Between-Subjects Effects

Source Dependent Variable Type III Sum of Squares DF Mean Square F Sig.

Corrected Confirmed 725,709,352.30 5 145,141,870.50 7.514 0.000

Model Death 88,008.786 5 17,601.757 21.241 0.000

Intercept Confirmed 143,780,213.00 1 143,780,213.00 7.443 0.009
Death 15,338.553 1 15,338.553 18.51 0.000

Population density Confirmed 36,485,798.84 1 36,485,798.840 1.889 0.175
Death 8391.913 1 8391.913 10.127 0.002

Temperature Confirmed 258,922,007.10 1 258,922,007.10 13.40 0.001
Death 19,730.240 1 19,730.240 23.810 0.000

Precipitation Confirmed 40,568,504.63 1 40,568,504.63 2.100 0.153
Death 3227.607 1 3227.607 3.895 0.054

Humidity Confirmed 77,339,061.270 1 77,339,061.270 4.004 0.051
Death 1544.560 1 1544.560 1.864 0.178

Wind
Confirmed 7,421,844.831 1 7,421,844.831 0.384 0.538

Death 4768.626 1 4768.626 5.755 0.020

Error
Confirmed 102,381,7543.0 47 19,317,312.140

Death 43,918.572 47 828.652

Total
Confirmed 198,669,3983 54

Death 174,588.504 54

3.4.3. Inflation and Unemployment Rate (before and during COVID-19)

This subsection addresses the level of inflation before and during the outbreak of
COVID-19 in Africa. The study also explored the effect of COVID-19 on the unemployment
rate based on the data taken from the employment and total labor force reports from the
World Bank. Figure 9 shows the inflation after the outbreak of the pandemic as compared
with the inflation before the outbreak of the pandemic in each country, from which we
note that there has been a significant increment in inflation since the outbreak of the
pandemic. We considered the consumer price index before the outbreak of the pandemic
and the consumer price index of 2020 and 2021 during the pandemic for each country. As
depicted in Figure 9, the inflation after the outbreak of COVID-19 for each country is high
as compared to the inflation before the outbreak of the pandemic. The result reveals that
there is a marked difference in inflation before and after the outbreak of the pandemic in all
countries (Figure 9).

Table 6 shows the inflation before and after the outbreak of COVID-19 in Africa. The
result clearly shows a marked difference in inflation before and after the outbreak of the
pandemic in Africa.

Table 6. Inflation before and during COVID-19 in Africa.

Country Inflation before COVID-19 Inflation after COVID-19

Angola 18.35 23.85

Benin −0.05 5.92

Burkina Faso −0.64 3.85

Botswana 3.03 7.24

Central African 2.15 3.34

Côte d’Ivoire 0.62 4.09

Cameroon 1.76 2.27
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Table 6. Cont.

Country Inflation before COVID-19 Inflation after COVID-19

Congo 16.99 21.89

Congo, Rep. 1.68 1.97

Djibouti 1.73 2.35

Algeria 2.73 7.23

Egypt 14.14 5.21

Ethiopia 14.83 26.84

Gabon 3.40 5.13

Ghana 8.51 9.97

Guinea 9.65 12.60

Gambia 6.82 7.37

Guinea-Bissau 0.84 3.25

Equatorial Guinea 1.15 12.10

Kenya 4.95 6.11

Liberia 25.26 30.86

Libya 1.68 18.24

Sri Lanka 3.22 7.01

Lesotho 4.60 6.05

Madagascar 6.46 5.40

Mozambique 3.35 5.69

Malawi 9.30 9.47

Namibia 4.00 3.62

Niger 0.25 3.84

Nigeria 11.75 16.95

Rwanda 1.89 10.39

Sudan 57.14 59.09

Senegal 0.74 2.18

Chad 1.65 10.77

Togo 0.81 4.55

Tonga 3.10 10.15

Tunisia 7.00 15.71

Tanzania 3.48 3.69

Uganda 2.74 12.21

South Africa 4.32 4.61

Zambia 8.65 22.02

Zimbabwe 32.95 98.55
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Figure 9. Inflation before and during COVID-19.

Table 7 confirms the existence of a significant mean difference in inflation before and
during the outbreak of the pandemic in Africa.

Table 7. Paired sample test: Inflation before and during COVID-19 in Africa.

Paired Samples Test

Paired Differences

t df
Sig.

(2-Tailed)Mean Std.
Deviation

Std. Error
Mean

95% Confidence Interval of
the Difference

Lower Upper

Inflation before and
during the outbreak of

COVID-19
−5.39643 10.52967 1.62476 −8.67770 −2.11515 −3.321 41 0.002

The result of the study also showed that inflation during COVID-19 was extremely
high and has indirectly influenced the GDP per capita in African countries. Similarly,
the unemployment rate during the pandemic has also increased considerably in African
countries, ranging from a minimum of 0.6875 in Niger to a maximum of 31.3895 in South
Africa (Figure 10).

3.5. Result of Spatial Autoregressive Modeling

The analysis using a spatial autoregressive model focused on the relationship between
confirmed cases, death per 1000 people due to COVID-19, and inflation on the one hand
and GDP per capita on the other. The result shows that as inflation increases, the GDP per
capita decreases consistently across African countries. Similarly, as confirmed cases and
deaths due to COVID-19 increase, GDP per capita declines across the countries.

Several researchers have studied the benefits of environmental, social, and governance
(ESG) performance. For instance, Ref. [39] has assessed the importance of good ESG
performance for GDP per capita and suggested the existence of a positive relationship
between ESG and GDP in terms of per capita over the long term. Therefore, a decrease
in GDP per capita is somehow related to inefficient ESG performance. This indicates that
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in order to bring about sustainable economic recovery in the post-COVID-19 era, there is
a need for coordinated efforts to improve the performance of ESG in African countries,
focusing on areas, such as investment in renewable energy, promoting sustainable business
practices, and supporting local communities.
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4. Conclusions

In this research article, we assessed the effects of COVID-19 on inflation, unemploy-
ment rate, and GDP per capita in Africa via GIS and spatial statistics. Measures of spatial
autocorrelation, including Moran’s I and Moran scatter plots, were employed to visual-
ize the spatial distribution of the three parameters (GDP, death per 1000 people due to
COVID-19, and COVID-19 cases per 1000 people). The resuts indicate that the spatial
distribution of the pandemic is clustered, justifying the existence of spatial autocorrelation.
The result of the study also shows a decrease in GDP per capita during the pandemic, and
the rate of decrease varies from country to country, confirming the existence of spatial
dependency. A significantly high death rate and a high confirmed number of cases of
COVID-19 were related to a low GDP per capita. The result of multivariate analysis of
covariance shows that there is a significant association between death rate due to COVID-19
and population density, temperature with COVID-19 cases, precipitation with death rate
due to COVID-19, and wind with death rate due to COVID-19 at a 5% level of significance.
There is also evidence of a significant difference between the consumer price index (inflation
rate) and unemployment rate registered before and after the outbreak of the pandemic.
A marked increase in inflation and unemployment rates has been observed since the out-
break of COVID-19. Reducing unemployment and boosting the GDP per capita can boost
the performance of the ESG. The study suggests the need to support African countries
in reducing/controlling the impact of COVID-19 on inflation, unemployment, and GDP
per capita.
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