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Abstract: The concept of “solvent polarity” is widely used to explain the effects of using different
solvents in various scientific applications. However, a consensus regarding its definition and quan-
titative measure is still lacking, hindering progress in solvent-based research. This study hopes to
add to the conversation by presenting the development of two linear regression models for solvent
polarity, based on Reichardt’s ET(30) solvent polarity scale, using Abraham solvent parameters and
a transformer-based model for predicting solvent polarity directly from molecular structure. The
first linear model incorporates the standard Abraham solvent descriptors s, a, b, and the extended
model ionic descriptors j+ and j−, achieving impressive test-set statistics of R2 = 0.940 (coefficient of
determination), MAE = 0.037 (mean absolute error), and RMSE = 0.050 (Root-Mean-Square Error).
The second model, covering a more extensive chemical space but only using the descriptors s, a, and
b, achieves test-set statistics of R2 = 0.842, MAE = 0.085, and RMSE = 0.104. The transformer-based
model, applicable to any solvent with an associated SMILES string, achieves test-set statistics of
R2 = 0.824, MAE = 0.066, and RMSE = 0.095. Our findings highlight the significance of Abraham
solvent parameters, especially the dipolarity/polarizability, hydrogen-bond acidity/basicity, and
ionic descriptors, in predicting solvent polarity. These models offer valuable insights for researchers
interested in Reichardt’s ET(30) solvent polarity parameter and solvent polarity in general.

Keywords: Reichardt’s dye; ET(30) solvent polarity parameter; hydrogen bonding; solvatochromism;
Abraham model; predictive modeling

1. Introduction

For over 50 years, researchers have employed the term “solvent polarity” to explain
variations in chemical reaction rates, spectroscopic properties, and thermophysical charac-
teristics of solute molecules dissolved in different solvents. However, despite its widespread
usage, “solvent polarity” lacks a universally accepted definition and quantitative measure
that the scientific community has agreed upon. In its broadest interpretation, the term
encompasses the entire range of intermolecular interactions, including Coulombic forces,
dispersion forces, charge transfer, hydrogen bonding, directional dipole–dipole interactions,
and solvophobic effects experienced by molecules and ionic species. It should be noted that
interactions leading to changes in the solute’s chemical identity through complex formation,
oxidation–reduction reactions, protonation, or other structural-altering processes do not
fall within the scope of this broad definition of “solvent polarity” [1].

More refined studies have attempted to distinguish and quantify the distinct sol-
vent effects originating from hydrogen-bonding interactions compared to dipole–dipole
interactions through spectroscopic and calorimetric measurements. Various empirical
scales for solvent polarity and acidity/basicity have been established using spectroscopic
probe molecules such as betaine-30 dye, 4-nitroanisole [2], N,N-diethyl-4-nitroaniline [2],
pyrene [3], and other large polycyclic aromatic hydrocarbons [4], 2-(N,N-dimethylamino)-
7-nitrofluorene [5], Brooker’s merocyanine dye [6], and N-ethyl-4-carbethoxypyridinium
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iodide [7]. Among these scales, the most notable one is based on the betaine-30 dye, com-
monly known as Reichardt’s Dye, which is used to define the ET(30) and normalized ÊT(30)
solvent polarity scales [8–10]:

ET(30) (kcal mol−1 ) = 2.8591 · 10−3 · ∼υmax (1)

ÊT(30)= (2.8591 · 10−3 · ∼υmax − 30.7 )/32.4 (2)

where
∼
υmax is the wavenumber of the maximum in the π to π* absorption band. The above

list of spectroscopic probe molecules is not exhaustive but serves to illustrate that numerous
organic molecules and ionic species exhibit solvatochromic behavior. A comprehensive
compilation of probe molecules can be found elsewhere [2,9].

Calorimetric probe studies [11–14] have been employed with some degree of success in
quantifying the strength of hydrogen bonding between a solute and solvent. By measuring
the enthalpies of solution for a reference compound that is incapable of forming hydrogen
bonds in the given solvent or by measuring the enthalpies of solution for the solute in
an “inert” solvent, it is possible to estimate the contributions from non-hydrogen bond-
ing interactions. Alternatively, mathematical expressions derived from semi-theoretical
solution models can be used to estimate the non-hydrogen bonding effects. Each estima-
tion method yields a different value for the hydrogen bond enthalpy. There is also no
universally accepted method for addressing non-hydrogen bonding contributions, nor is
there a single hydrogen-bonding interaction whose strength can be considered a universal
reference value.

Quantitative structure–property relationships and linear free energy relationships are
occasionally employed to mathematically elucidate the variations in a solute’s thermophys-
ical properties across different solvent media. Among the various proposed relationships,
the Abraham general solvation parameter model is one of the most widely utilized meth-
ods. This model’s popularity stems from both its ability to encompass a wide range of
solute properties and its foundation in the diverse molecular interactions that govern the
specific solute property under investigation. The Abraham model is constructed upon
two linear free energy relationships [15–18]. The first equation models the transfer of
neutral molecules and ionic species between two condensed phases:

SP = cp + ep · E + sp · S + ap · A + bp · B + vp · V + jp+ · J+ + jp− · J− (3)

and the second modeling of the transfer of neutral molecules from the gas phase to a
condensed phase:

SP = ck + ek · E + sk · S + ak · A + bk · B + lk · L (4)

where SP represents a “specific property” of solutes within a given solvent, partitioning
system, or biological/pharmaceutical process, and where the subscripts p and k distinguish
the solvent parameters between the two different transfer systems. In this study, SP
corresponds to the logarithm of the solute’s water-to-organic solvent partition coefficient
(log P) or gas-to-organic solvent partition coefficient (log K). Specifically, it refers to the
logarithm of the ratio between the solute’s molar solubility in two different solvents or
phases: log (CS,organic/CS,water) (Equation (3)) and log (CS,organic/CS,gas) (Equation (4)).
In these equations, CS,organic and CS,water represent the molar solubility of the solute in
the organic solvent and water, respectively, while CS,gas denotes the molar gas phase
concentration that can be calculated from the solute’s vapor pressure. It is important to note
that the numerical values of the lowercase equation coefficients in Equations (3) and (4)
will vary for each specific process.

The right-hand side of Equations (3) and (4) represent the different types of solute–solvent
interactions that are believed to govern the specific solute transfer process being described.
Each term quantifies a particular solute–solvent interaction as the product of the solute
property (uppercase alphabetic letters) and the complementary solvent properties (lower-
case alphabetic letters). It is the lowercase letters that contain valuable chemical information
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regarding the polarity/polarizability and hydrogen-bonding characteristics of the solvent.
The five solvent properties are defined as follows:

• e represents the ability of the solvent to interact with surrounding solvent molecules
through electron lone pair interactions;

• s is a measure of the dipolarity/polarizability of the organic solvent;
• a and b refer to the hydrogen-bond acidity and hydrogen-bond basicity of the solvent;
• v and l describe the solvent’s dispersion forces and cavity formation, providing the

space in which the dissolved solute resides.

The last two terms on the right-hand side of Equation (3) correspond to the interactions
between ions and the solubilizing medium. The term jp+ · J+ represents cations, while
the term jp− · J− represents anions. These terms are utilized to describe zwitterionic
compounds, such as amino acids and the betaine-30 dye. When the ionic coefficients jp+

and jp− are set to zero, Equation (1) reduces to the standard equation for neutral species.
That is, when jp+ and jp− are unavailable, the same set of numerical values (cp, ep, sp, ap,
bp, and vp) for a given solvent is employed to describe solute transfer for both neutral and
ionic solutes.

The complimentary solute descriptors on the right-hand side of Equations (3) and (4)
are defined as follows: E denotes the molar refraction of the given solute in excess of that of
a linear alkane having a comparable molecular size; S is a combination of the electrostatic
polarity and polarizability of the solute; A and B refer to the respective hydrogen-bond
donating and accepting capacities of the dissolved solute; V corresponds to the McGowan
molecular volume of the solute calculated from atomic sizes and chemical bond numbers;
and L is the logarithm of the solute’s gas-to-hexadecane partition coefficient measured at
298.15 ◦K. The solute descriptors and their calculation from measured experimental data
are described in greater detail elsewhere [16,19,20].

In the present study, our primary focus is on the lowercase solvent coefficients of
Equation (3) (c, e, s, a, b, v, j+, and j−). Note that since we are exclusively dealing with
the coefficients from Equation (3), we will drop the subscript p going forward. These
coefficients are determined by experimental partition coefficient data and molar solubility
ratios. Our investigation aims to explore potential correlations between these coefficients
and normalized ÊT(30) values.

Past studies have established that the ET(30) parameter is significantly correlated with:

• The H-bond donating and dipolarity/polarizability parameters of the Kamlet–Taft
scale [21,22];

• The solvent acidity and solvent dipolarity parameters of the Catalán scale [22,23].

The aforementioned scales are all based on the solvatochromism of select spectro-
scopic probe molecules. As such, the numerical values are based on the transition energy
corresponding to the promotion of an electron from the ground electronic state to an ex-
cited electronic state. Solute transfer between two phases does not involve an electronic
transition within the probe molecule.

The primary objective of this study is to explore whether the observed correlations
between the ET(30) parameter and solvent properties established through solute transfer
measurements hold true in general. By investigating the relationship between ET(30)
and solvent properties, our objective is to gain insights into the underlying chemistry
that influences the determination of ET(30) values. Additionally, we provide models that
enable the prediction of the ET(30) parameter using Abraham solvent coefficients. These
coefficients can be determined through experimental methods or, in the case of organic
solvents, predicted using open methods [24].

In addition to the primary objective, this study aims to develop a transformer-based
model capable of accurately predicting ÊT(30) values for a wide range of solvents directly
from structure information encoded in the “language” of SMILES. We aim to provide a prac-
tical and efficient tool for estimating ÊT(30) values without requiring extensive experimental
measurements or descriptor calculations. Specifically, we will create a predictive model
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by fine-tuning an explicit ChemBERTa-2 model [25] using ÊT(30) values as the endpoint.
This approach was previously employed to directly predict other physical–chemical end-
points from structure, exhibiting comparable accuracy to conventional machine-learning
techniques [26].

2. Materials and Methods

We compiled a comprehensive collection of unique ET(30) values and their corre-
sponding normalized ÊT(30) values by conducting an extensive literature search [9,27–30].
In cases where multiple measurements were found for the same solvent, we recorded
only the most recent value. This process resulted in a dataset of ET(30) measurements for
491 solvents, which we have made available as Open Data on Figshare [31]. The dataset
contains several types of solvents, including organic mono-solvents with various functional
groups, binary and ternary solvent mixtures with multiple volume ratios, complexes, salts,
and ionic liquids.

Similarly, we gathered Abraham solvent parameters, including the ionic parameters j+

and j− where applicable, from the relevant literature sources [20,24,32–35]. Once again, we
retained only the most recent values. This dataset has also been available as Open Data on
Figshare [36].

To create a combined measurement-parameter modeling dataset, we initially excluded
ten rows with ET(30) measurements obtained at temperatures greater than 40 ◦C. The
betaine-30 dye exhibits strong thermochromism, and ET(30) values determined at lower
temperatures are always larger than values measured at elevated temperatures [10]. We
then merged the two datasets by matching standard INCHIKEYs across tables. The result-
ing modeling dataset contains 481 ET(30)/ÊT(30) measurements, out of which 113 have
associated standard Abraham solvent parameters (c, e, s, a, b, v), of which 44 additionally
possess the ionic parameters j+ and j−. The modeling dataset is included as part of this
study’s Supplementary Materials.

To address the different amounts of available descriptor information in the subsets of
data, we developed three distinct models:

• Model 1: A linear model regressed on data from solvents that had all Abraham solvent
parameters (c, e, s, a, b, v, j+, j−) available;

• Model 2: A linear model regressed on data from solvents that had the standard set of
Abraham solvent parameters (c, e, s, a, b, v) available;

• Model 3: A fine-tuned transformer-based large language model (LLM) trained using
the “language” of SMILES.

Models 1 and 2 were optimized using a best subset selection technique with
five-fold cross-validation. For Model 3, we fine-tuned a transformer-based large-language
model (LLM) ChemBERTa-2 [25], specifically ChemBERTa-77M-MTR, which is openly
accessible on Hugging Face [37]. This enabled us to predict ÊT(30) values directly from
the solvent’s structural representation written using the SMILES format, bypassing the
need for descriptor derivation or calculation. Prior to fine-tuning, we eliminated duplicate
rows of mixtures, keeping only the 50:50 (by volume) mixtures, ensuring that each ÊT(30)
value was associated with a unique SMILES string, resulting in an AI modeling subset of
461 solvents. Mixtures in the dataset—alcohol–water mixtures in various volume ratios
and ionic liquids—are represented using the standard technique of separating the SMILES
strings with a period. For example, an ethanol-water mixture is represented by the SMILES
string CO.O.

We began by randomly splitting the dataset into training, validation, and test sets
(80:10:10) and trained the model using the Trainer class from the transformer’s library with
the adamw_torch optimizer. We optimized the performance of the fine-tuned model by
closely monitoring the model’s performance on the validation set every ten steps during
the training process. This approach allowed us to employ the early stopping technique,
effectively preventing overfitting without compromising model accuracy. We then used
five-fold cross-validation with the determined optimal training parameters to calculate
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comparable inter-model test-set statistics. Supplementary Materials accompanying this
article include the Python code used for fine-tuning the LLM.

We refined Model 3 to enhance its predictive power using an enumerated SMILES
technique [38]. This approach effectively increased the number of solvent SMILES/ÊT(30)-
value pairs from 461 to 5221. For each of the 461 solvents, we generated 30 random SMILES
using open-source Python code provided by Bjerrum [38], which preserved the original
chemical structure but introduced random spelling variations of the SMILES strings. Due
to the random generation process, duplicate SMILES were common, especially for smaller
molecules. To address this, we eliminated duplicate entries, resulting in 5221 unique
SMILES representations. These SMILES strings were then matched with their correspond-
ing ÊT(30) values and placed in the same fold as the solvent from which their alternative
SMILES spelling originated. This step was taken to prevent the same chemical structure
from appearing in multiple folds, which could potentially distort the results. That is, this
approach ensured that the same solvent was not utilized in both the training and testing
phases. Finally, we fine-tuned the transformer-based AI language model ChemBERTa-2
on this expanded dataset, using the same procedure and parameters as before, including
five-fold cross-validation.

For those interested in learning more about using LLMs and other AI techniques
for cheminformatics, we refer the reader to the excellently written tutorials available on
DeepChem [39].

3. Results

The base modeling dataset contains the SMILES strings and ET(30)/ÊT(30) values of
481 solvents. Within this dataset, we identified three distinct subsets:

• N = 461 solvents with unique SMILES strings. In cases where mixtures had multiple
ratios with the same SMILES, only the 50:50 volume ratio was retained;

• N = 113 solvents that possess all the standard Abraham solvent parameters (c, e, s, a,
b, v);

• N = 44 solvents with the complete set of Abraham solvent parameters, including j+

and j−.

In this section, we provide the results of developing three distinct models specific
to the three subsets. These models are presented from the most accurate yet less broadly
applicable, to the slightly less accurate but still highly effective, and finally, to the most
generally applicable model.

3.1. Predicting ET-Values Using Complete Abraham Solvent Parameters

Using a best subset linear regression technique on the subset of 44 solvents with
known extended Abraham solvent parameters (c, e, s, a, b, v, j+, j−), we found that the
optimal model is one with five significant descriptors (p < 0.05; s, a, b, v, j+, j−), with corre-
sponding 5-fold cross-validated test-set statistics of R2 = 0.940 (coefficient of determination),
MAE = 0.037 (mean absolute error), and RMSE = 0.050 (Root-Mean-Square Error). The
model coefficients are as presented in Equation (5):

ÊT(30) = 0.945 + 0.047 · s + 0.016 · a + 0.103 · b + 0.034 · j+ + 0.066 · j− (5)

Betaine-30 is a zwitterionic molecule used to measure ET(30) values. Despite being
overall neutral, it contains both a cation and an anion moiety. Therefore, it is reasonable that
the derived model incorporates the two additional ionic descriptors, j+ and j−, in addition
to the standard solvent polarity associated with the s-parameter and the hydrogen bond
donating/accepting-related parameters a and b. Unfortunately, there are relatively few
solvents for which these two additional ionic terms have been calculated.
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3.2. Predicting ET-Values Using Standard Abraham Solvent Parameters

Employing a best subset linear regression approach again but now on the more signifi-
cant subset of 113 solvents that possess the six standard Abraham solvent parameters (c, e,
s, a, b, v), we identified an optimal model with three significant descriptors (p < 0.05; s, a, b).
The corresponding five-fold cross-validated test-set statistics for this more generally appli-
cable model are equal to: R2 = 0.842, MAE = 0.085, and RMSE = 0.104. The corresponding
model coefficients are presented in Equation (6):

ÊT(30) = 1.090 + 0.051 · s + 0.081· a + 0.140 · b (6)

As with model one, we see the expected polarity-related descriptors and the hydrogen
bond donating/accepting-related descriptors a and b. This observation is in accord with
previous studies that found a link between the ET(30) parameter and the solubilizing
media’s acidity/basicity and dipolarity [21–23]. Unlike previous studies, solvent property
equation coefficients in the Abraham model are not deduced from spectroscopic properties
but rather from the experimental partition coefficient and solubility ratio data. The spectral
properties insofar as the betaine-30 dye molecule is concerned, particularly in the cases
where hydrogen-bond formation is possible, are influenced by more than a single dye-
solvent type of molecular interaction.

As an information note, Abraham model equation coefficients have been reported
for peanut oil and several mono-organic solvents lacking an experimental ÊT(30) value.
This provides the opportunity to illustrate the predictive nature of Model 2. The results
of our predictive computations are summarized in the second column of Table 1. While
the lack of experimental data prevents a comparison of observed versus predicted values,
we note that the calculated ÊT(30) values based on Model 2 differ only slightly from
experimental values of solvents having similar functional groups and molecular structures.
For example, the estimated values for isopropyl acetate (ÊT(30) = 0.319), pentyl acetate
(ÊT(30) = 0.290), tert-butyl acetate (ÊT(30) = 0.315), and isopropyl myristate (ÊT(30) = 0.322)
are comparable to experimental values for other monoester solvents such as methyl acetate
(ÊT(30) = 0.247), ethyl acetate (ÊT(30) = 0.225), propyl acetate (ÊT(30) = 0.210), and butyl
acetate (ÊT(30) = 0.241). The slightly larger estimated value of ÊT(30) = 0.361 for dimethyl
adipate likely arises because of the additional ester functional group [40].

Table 1. Calculated ÊT(30) values for select organic solvents based on models 2 and 3.

Solvent Model 2 Model 3

Undecane 0.011 0.052
Hexadecane 0.035 0.090

Methylcyclohexane 0.103 0.073
2,2,4-Trimethylpentane 0.032 0.122

Hexadec-1-ene 0.078 0.056
Deca-1,9-diene 0.202 0.013

1,2-Dimethylbenzene 0.140 0.153
1,3-Dimethylbenzene 0.123 0.153

Ethylbenzene 0.132 0.142
PGDP a 0.315 0.201

Isopropyl myristate 0.322 0.140
4-Methylpentan-2-ol 0.466 0.403

2-Ethylhexan-1-ol 0.474 0.563
2,2,2-Trifluoroethanol 0.778 0.941

2-Propoxyethanol 0.455 0.657
2-Isopropoxyethanol 0.448 0.634
3-Methoxybutan-1-ol 0.473 0.591

1-tert-Butoxypropan-2-ol 0.444 0.484
Isopropyl acetate 0.319 0.222

Pentyl acetate 0.290 0.170
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Table 1. Cont.

Solvent Model 2 Model 3

tert-Butyl acetate 0.315 0.210
N-Ethylformamide 0.515 0.748

N,N-Dibutylformamide 0.410 0.359
1-OctadecaZnol 0.446 0.459

N-Methyl-2-piperidone 0.524 0.341
N-Formylmorpholine 0.515 0.314

Peanut oil 0.301 0.257
2-(2-Ethoxyethoxy)ethanol 0.504 0.647
N,N-Dimethylacetamide 0.474 0.592
o-Nitrophenyl octyl ether 0.342 0.217

Dimethyl adipate 0.361 0.250
a PGDP is the abbreviation for propylene glycol dipelarginate.

3.3. Predicting ET-Values Directly from Structure by Fine-Tuning a Chemical Foundation Model

By fine-tuning a ChemBERTa-2 model on the largest subset of 461 solvents with unique
SMILES and employing five-fold cross-validation, we created a transformer-based model
that predicted ÊT(30) values directly from the structure. The resulting model exhibited
satisfactory performance, with the following test-set statistics: R2 = 0.808, MAE = 0.071,
RMSE = 0.099.

By employing SMILES enumeration [38], we achieved significant improvements in
model performance, as evidenced by the test-set statistics calculated on the same dataset as
before. Specifically, we calculated the test-set statistics from the measured and predicted
ÊT(30) values for the 461 original solvents using their original SMILES strings. The resulting
test-set statistics were as follows: R2 = 0.824, MAE = 0.066, RMSE = 0.095. The comparison
between the measured and enhanced transformer-based model predicted ÊT(30) values is
illustrated in Figure 1.
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To demonstrate its capabilities, we present the ÊT(30) values predicted by Model 3 for
several significant sustainable solvents sourced from Bradley et al. [24]. These solvents exhibit
a range of ÊT(30) values, including D-limonene (ÊT(30) = 0.035), 2-methyltetrahydrofuran
(ÊT(30) = 0.163), cyclademol (ÊT(30) = 0.244), oleic acid (ÊT(30) = 0.342), geraniol (ÊT(30) = 0.477),
propionic acid (ÊT(30) = 0.578), acetic acid (ÊT(30) = 0.623), propylene glycol (ÊT(30) = 0.761),
and glycerol (ÊT(30) = 0.815). It is evident that Model 3 is useful in predicting ÊT(30) values
and may be particularly valuable where direct measurement of ÊT(30) values is difficult. See
Table 1 for Model 3-predicted ÊT(30) values for solvents with Abraham solvent coefficients
but no experimentally determined ÊT(30) values. This allows a comparison between the
predictions of Model 2 and Model 3, highlighting the similarity in the obtained results and
reinforcing the utility of Model 3.

However, interpreting this model can be challenging because it does not rely on
correlations with parameters that encode known chemical information. Some information
can be gleaned by examining the attention mechanism of the model [41]. By analyzing the
attention patterns, it is possible to gain insights into the model’s attentional priorities and
understand which words (atoms) or phrases (functional groups) are deemed important
for generating specific outputs, possibly discovering new chemistry, see Figure 2 for an
example, selected at random.
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Figure 2. 3-methyl-2-oxazolidinone with scaled attention annotations and highlights averaged over
all layers and heads showing how the model has learned to focus on various atoms that are important
in determining ET(30) values.

The general analysis of the attention mechanism of Model 3 is beyond the scope of
this paper, though we list it as an area of future research.

During the analysis of model outliers, it was observed that for Model 2, the three ionic
liquids present in the modeling dataset ([BMIm]+ BF4

−, [BMIm]+ Tf2N−, [BMIm]+ PF6
−)

exhibited the highest absolute errors. These compounds demonstrated underpredicted
ÊT(30) values for Model 2, resulting in a mean absolute error of 0.152. It is worth mentioning
that none of these ionic liquids possessed available ionic descriptors, which are likely crucial
for achieving more accurate results.

In contrast, Model 3 exhibited a high level of accuracy in predicting the ÊT(30) values
for all three ionic liquids, as evidenced by a low mean absolute error of 0.051. However,
an apparent failure of Model 3, illustrated in Figure 1, was observed in the case of carbon
disulfide. In this instance, Model 3 significantly overpredicted the ÊT(30) value, yielding
a predicted value of 0.695 compared to the value of 0.065 collected from the literature,
resulting in a substantial AE (absolute error) of 0.630. Conversely, Model 2 provided a more
reasonable prediction for carbon disulfide, with an AE of 0.129. Model 2 had no significant
outliers, likely due to its relatively small chemical space.

4. Discussion

The Abraham solvent parameter-based models, models 1 (s, a, b, j+, j−) and 2 (s, a, b),
demonstrate strong predictive capabilities for compounds with measured Abraham solvent
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parameters. These models also exhibit good explanatory behavior regarding “solvent
polarity,” as indicated by significant Abraham solvent descriptors such as s (encodes
dipolarity/polarizability information) and descriptors a and b (which encode hydrogen-
bond acidity/basicity related information). Test-set statistics support this observation, with
Model 1 achieving an R2 of 0.940, MAE of 0.037, and RMSE of 0.050 (N = 44), while Model 2
achieves an R2 of 0.842, MAE of 0.085, and RMSE of 0.104 (N = 113).

These findings align with previous studies that have identified correlations between
ET(30) values and hydrogen-bond acidity/basicity and dipolarity/polarizability parame-
ters on different scales, such as the Kamlet–Taft scale [21,22] and the Catalán scale [22,23].
Additionally, we note that other factors like electron lone pair interactions and volume-
related dispersion forces, represented by the e and v parameters, respectively, do not
significantly contribute to ET(30) values.

Including ionic descriptors, j+ and j−, significantly improves the model’s performance,
although it is essential to note that the chemical space of the sample is limited. Nonetheless,
the poor performance of Model 2 in predicting ET(30) values for ionic liquids (which lack
available j+ and j− descriptor values) underscores the importance of these descriptors in
determining ET(30) values in general.

Abraham solvent parameters also have the advantage over some other descriptor-
based models in that they can be determined experimentally for most solvents (including
mixtures, ionic liquids) and even predicted themselves for mono-solvents using standard
machine learning techniques [24].

The optimized version of Model 3 exhibits strong predictive ability (R2 = 0.824,
MAE = 0.066, RMSE = 0.095). It stands out as the most versatile among all our mod-
els in that it can be applied to any solvent with an associated SMILES string, enhancing its
practical utility.

The predictive applicability of Model 3 will prove useful, particularly in those organic
solvents in which the betaine-30 dye has very limited solubility. The betaine-30 dye is
insoluble in perfluorohydrocarbons, alkanes, aliphatic ethers, thioethers, amines, and esters
having long alkyl chains. For these solvents, “experimental” ET(30) values are often based
on the absorption measurements of a lipophilic penta-tert-butyl substituted betaine dye,
whose solvatochromic behavior is highly correlated with that of the betaine-30 zwitterionic
molecule [30]. However, the interpretability of Model 3 poses challenges. In certain
scenarios, it may produce significant errors, as observed with carbon disulfide, or give
different predictions for molecules that exist in more than one tautomeric form. Further
investigation should focus on analyzing the attention heads of Model 3, as this exploration
may unveil new insights into chemistry and offer potential avenues for future research.

Finally, our use of an LLM is non-traditional and stands out in comparison to the
standard linear techniques also used in the paper. Our LLM model is designed to seamlessly
integrate into various workflows, adding a layer of abstraction that reduces the complexity
for end-users. By leveraging ontology, our model benefits from a structured approach,
enhancing its ability to understand, interpret, and generate predictions accurately. Agent
assistance, on the other hand, enables the model to provide actionable insights and maintain
interactive and dynamic communication with users. Knowledge engineering plays a
crucial role in our model by facilitating the extraction, structuring, and analysis of domain-
specific knowledge, enabling our model to make reliable predictions and offer a deeper
understanding of the underlying chemical phenomena.
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