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Abstract: In the era of digitalization, the biomedical sector has been affected by the spread of artificial
intelligence. In recent years, the possibility of using deep and machine learning methods for clinical
diagnostic and therapeutic interventions has been emerging as an essential resource for biomedical
imaging. Digital pathology represents innovation in a clinical world that looks for faster and better-
performing diagnostic methods, without losing the accuracy of current human-guided analyses.
Indeed, artificial intelligence has played a key role in a wide variety of applications that require the
analysis of a massive amount of data, including segmentation processes in medical imaging. In this
context, artificial intelligence enables the improvement of image segmentation methods, moving
towards the development of fully automated systems of analysis able to support pathologists in
decision-making procedures. The aim of this review is to aid biologists and clinicians in discovering
the most common segmentation open-source tools, including ImageJ (v. 1.54), CellProfiler (v. 4.2.5),
Ilastik (v. 1.3.3) and QuPath (v. 0.4.3), along with their customized implementations. Additionally,
the tools’ role in the histological imaging field is explored further, suggesting potential application
workflows. In conclusion, this review encompasses an examination of the most commonly segmented
tissues and their analysis through open-source deep and machine learning tools.

Keywords: segmentation; digital pathology; deep learning; machine learning; open-source software;
histological segmentation; WSI; histological images

1. Introduction

Biomedical imaging represents the key for the diagnosis and subsequent treatment
of many pathologies, since it includes fundamental processes to obtain visible features
about the human body. Hence, the aim of this research field is to support clinicians in
more rapid and accurate diagnostic and therapeutic intervention processes [1]. In this
context, artificial intelligence (AI) has played a key role in a broad variety of applications
that involve the examination of a huge amount of data, including medical imaging [2–4].
Deep and machine learning, accompanied by pattern recognition tools, are developing into
important components for extracting information that improve clinical diagnosis and predict
disease progression [5]. Typically, AI is applied for the analysis of regions of interest (ROI) on
a radiation therapy (RT) simulation scan, but also for computed tomography (CT), magnetic
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resonance (MR)-guided RT, MR scans and other imaging techniques [6–9]. AI replaces some
iterative analysis steps and enhances the efficiency and accuracy of the results [10,11]. In
radiology and pathology fields, imaging experts support clinicians in order to recognize and
detect lesion grading, highlighting specific features through mathematical filters [2,12,13].
In recent years, AI has also shown important results in the diagnosis and prognosis of
emerging diseases, including COVID-19. In fact, several studies have been carried out to
demonstrate the efficacy of AI-based diagnostic and prognostic models on CT medical
images of COVID-19 patients [14–16].

Recently, the application of AI algorithms has been considered not only in the radio-
logical area, but also in histopathology, giving rise to an emerging field of interest known
as digital pathology [2,17–20]. Microscopic imaging still represents the gold standard for
many bio-medical assessments [21–23]. In the era of precision medicine, digital pathology is
a crucial tool in pathologists’ daily activity, complementing their work rather than replacing
it. In fact, the role of digital pathology is pivotal in addressing diagnostic challenges, pro-
viding unbiased and faster information that pathologists can leverage in decision making
for a precise diagnosis, reducing the diagnostic variability [24–26].

First of all, the histopathological whole-slide images (WSIs) represent the supporting
platform for the employment of AI algorithms and are derived by the acquisition and
digitalization of tissue slides [27–29]. These last are obtained through laboratory steps,
comprising paraffin-embedded tissues, sectioned into thin slices (of the order of µm),
mounted on slides and stained [30–32]. Hence, digital pathology involves the acquisition,
handling and interpretation of pathology knowledge, wherein image segmentation finds
its broadest application [3,33,34]. This particular process consists of dividing images into
several regions, in order to extract the features of interest. The criteria used are based on
similar pixel information or intrinsic characteristics, including texture color and contrast.
Thus, the images are separated into different groups, objects and background, which are
decomposed in a meaningful way. This allows a more accurate analysis to be obtained and
to take into consideration several features, including area, volume, shape, morphological
irregularities, eliminating noise and weak edges issues [1,29,35–37].

While the segmentation process represents a great resource for digital pathology, on
the other hand, segmentation has turned out to be one of the most pervasive issues in
biomedical image analysis [38]. This explains the need to make segmentation an automa-
tized and unbiased procedure, which may be utilized by users with low experience too.
In order to solve the biological issue, researchers are working to develop innovative tools
able to provide a fully automatic procedure [39]. However, images are currently processed
through three different kinds of segmentation: manual, semi-automatic and fully automatic
segmentation [40–42].

Manual measurements are applied in many areas of daily life: partitioning images are
employed even in video surveillance, augmented reality or in the biomedical field, where
tumor boundaries or tissue volumes are extracted, just to name a few applications [3].

In biomedical imaging, manual segmentation results are accurate, but extremely
time-consuming. In fact, it sometimes takes several hours per patient, leading to critical
delays in proceeding with RT treatment and impacting on the overall survival rate [40,43].
Also, the success of manual segmentation can be biased, since it is closely linked to the
clinician’s experience. For this reason, the introduction of semi-automatic or fully automatic
segmentation methods has been necessary to enhance the achievement of better results [44].

Semi-automatic segmentation requires manual intervention, especially in the first steps
of the procedure, while fully automatic procedures do not involve manual annotations. These
methods provide expedients for high-throughput and quantitative investigations in digital
pathology. Furthermore, assorted criteria of automatic or semi-automatic image segmentation
include edge detection, threshold and Neural Network Image Segmentation [2,39,45].

Owing to the progression of digital pathology, several detection and classification
tools have been suggested, such as for brain and breast tumor classification, and for the
histopathological assessment of kidney tissue [46,47]. However, the full automatic seg-
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mentation of histological WSI presents a challenge for many kinds of tissue, including
liver and soft tissues, especially when the biospecimen structure is complex and heteroge-
neous [48,49]. The full characterization of histological tissues, especially for muscle and
adipose ones, provides relevant information about the health status of the tissues. Indeed,
morphological tissue modifications, such as anomalous fiber size distribution and aberrant
plasticity, are important signals of onset disease that can be easily detected by digital
pathology tools, which replace the time-consuming manual analyses [50]. In fact, some
authors focused their studies on muscle and adipose tissue segmentation, implementing
and customizing well-known open-source imaging tools, including ImageJ, as will be
discussed in the next chapters [51].

To the best of our knowledge, not many reviews are focused on open-source segmenta-
tion tools applied on histological tissues. Therefore, the aim of this review is to investigate
and to explore the emerging field of digital pathology and the most common open-source
segmentation software employed, considering the last 10 years. Starting from the hundreds
of articles found, exclusion and inclusion criteria were applied to obtain an optimal num-
ber of articles (about 180 articles available). Notably, we excluded proprietary software,
customized algorithms and less used software. Instead, we have included the most used
and intuitive software employed in histological segmentation. Some articles have been
included in the introduction section, while the others focused on the in-depth application
of software and were essential for the other sections of the review. It is worth noting that
QuPath and Fiji are the most employed open-source software in digital pathology, among
those taken into consideration (Scheme 1).
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Specifically, this review comprises three main sections where we will summarize the
main segmentation software applied in histopathology, different software workflows and
the features of the most segmented histological tissues, in order to assist biologists and
clinicians who want to explore this emerging field.

2. Software in Histological Segmentation

In recent years, the interest in digital pathology has been growing in order to overcome
the impediments of visual analyses in histological tissues, through the acquisition of WSI,
high-resolution images of histological sections obtained by tissue slides scans [52–54].

Recent advancements in hardware development have brought huge advantages for
biomedical imaging. As aforementioned, segmentation, classification and detection meth-
ods represent the main applications of AI to digital pathology [1]. These segmentation
techniques are not limited to whole-tissue analysis; they can also be applied to intracellu-
lar compartments, providing valuable quantitative insight into cell functions. Standard
segmentation is based on edge recognition, threshold procedure, region growing and
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morphology algorithms, and applied to nuclei detections, cell counts and cell type identifi-
cation [1,55]. For instance, nuclear shape and texture can predict a patient’s prognosis and
recurrent risk in estrogen receptor (ER)-positive breast cancer patients [29].

In this context, the use of deep and machine learning is broadly required with a large
amount of data, resulting in the need to develop innovative tools and software for this
purpose [1]. The iterative training of AI algorithms is essential for automating cell and
tissue segmentation, facilitating the analysis process [2]. These algorithms encompass
pattern recognition, texture analysis and densitometry. Importantly, the algorithms need to
be simple, intuitive and manageable, allowing beginner users to achieve their aims without
practical issues [25]. In addition, these algorithms give rise to software solutions designed
to discriminate tumor and healthy tissues, through manual and semi-automatic commands,
showing data in a faster and more manageable manner. In this chapter, we will delve into
four widely used open-source segmentation software including ImageJ, CellProfiler, Ilastik
and QuPath, providing an overview of their main features and applications in histological
imaging. Additionally, we will suggest specific workflows for each of these tools (Section 3).
This may be useful to aid biologists and clinicians in performing and improving their
analyses in the histopathological field [25].

2.1. ImageJ

ImageJ is open-source software widely adopted worldwide by biologists and pathol-
ogists in order to perform quantitative analyses. This analytical tool was presented by
Wayne Raspband in 1997 and extended by several international groups of supporters,
whose contribution plugins may sometimes be included in the main software source, giv-
ing rise to innovative versions and packages, including the well-known Fiji that consists of
an innovative distribution of ImageJ [56–58].

ImageJ (v. 1.54) consists of an image-processing Java script that allows the user to
visualize, edit and analyze 8, 16 and 32- bit images. Many versions are available for different
operating systems, including Windows, Mac OS X and Linux, with the requirement of Java
1.4 or a later version installed. Moreover, different file formats are supported, including TIFF or
raw data, as suggested at https://imagej.net/ij/index.html (accessed on 25 September 2023)
(Table 1) [59].

The software are user friendly, with an intuitive interface that supplies several pipelines
with many different functions [60]. In addition, ImageJ allows the development of cus-
tomized pipelines to ease software activities based on the aim of analysis. In fact, some
script modifications are performed to add new methods and types of analysis [56].

Although this software is used for many functions and data quantification, we will
focus on its relevance in the histological segmentation field. The application of ImageJ to the
histological field drove the researchers to focalize their activity on developing customized
tools in order to analyze a particular tissue or histological section, through specific pipelines,
in a simpler and more efficient manner. This is the case for MyoSight and AdipoSoft, which
are specific for muscle and adipose tissue, respectively [61–63]. All these software and
many others have the property of being able to take into account relevant features of each
specific tissue, aiding the biologists and clinicians in the recognizing and analysis process.

ImageJ allows many other purposes to be achieved, including manual segmentation,
through intuitive commands but also with semiautomatic plugins, such as Trainable Weka
Segmentation [64,65], which aids the operator in performing accurate and faster segmen-
tation. In fact, these machine learning algorithms can be trained to learn and repeat the
same operation in new unknown data, called “test”, and this is applied in order to simplify
radiological diagnoses [66,67]. However, it is applied to histological segmentation, too [65].
In addition, manual segmentation can also be performed through the freehand selection
tool in Fiji in order to trace accurate lineage around the moiety of interest, whose workflow
will be explained in the next chapter [65].

In the paragraph below, we will show some examples of ImageJ/Fiji implementation in
order to perform customized analyses for a specific tissue, such as muscle or adipose tissue.

https://imagej.net/ij/index.html


BioMedInformatics 2024, 4 177

Table 1. Summary table of ImageJ, CellProfiler, Ilastik and QuPath general information.

Software ImageJ CellProfiler Ilastik QuPath

Programming
Language Java Python Python Java

Customized im-
plementations

MyoSight, MyoSoft,
MuscleJ, Adiposoft

Muscle Analyzer,
Muscle2View N/A MyoSOTHES

Open Source Yes Yes Yes Yes

Download

https://imagej.nih.
gov/ij/download.html
(accessed on 25
September 2023)

https://cellprofiler.org/
(accessed on 25
September 2023)

https://www.ilastik.org/
(accessed on
25 September 2023)

https://qupath.readthedocs.
io/en/0.4/docs/intro/
installation.html
(accessed on
25 September 2023)

Advantages

Possibility of
developing customized
plug-in;
highly flexible
functionality

High performance in
detection of nuclei and
cells in biological images

High performance in
image segmentation

Intuitive interface
Specific for histology and
WSI analysis
High performance in H&E
images analyses

Limitations Less specific for WSI
Specific for cell biology
Difficulties in complex
image analysis

Not specific for WSI
Size limitations: object
classifier training applied
only in small images

Limits in plug-in
customization

2.1.1. ImageJ Implementations

As mentioned above, ImageJ has been expanded by an international group of contrib-
utors and their customized plugins are useful when performing specific tissue analyses.

MyoSight, MuscleJ and MyoSoft represent the most common extensions for Im-
ageJ/Fiji, in order to analyze histological muscle images through a semi-automated pro-
cedure [51,61,68]. Since these ImageJ implementations show similar proficiency in the
histological imaging analyses, in this paragraph we will take MyoSight and Adiposoft
as models of ImageJ implementation in muscle tissue and in adipose tissue, respectively.
We will deal with MuscleJ (developed for Fiji version 1.51n) and other muscle software
in Section 4.

MyoSight

MyoSight (for Fiji version 1.53c) is an ImageJ plugin and is downloadable at https://github.
com/LyleBabcock/MyoSight, which contains the instruction manual, some test images and the
application file, which requires the previous installation of ImageJ/Fiji [69].

The software was developed by algorithms able to identify muscle cell edges, using
a combination of threshold parameters. Processing the histological sections through an
immunofluorescence (IF) assay, such as a laminin staining, would be appropriate to mark
the edges of muscle cells, in order to obtain a more careful and accurate segmentation [24,70].
However, no-staining images may be analyzed too. Indeed, the software allows for manual
revision and correction of the segmentations in the case of automatic mistakes. The goal
of imaging software should be the minimization of user input, but sometimes it is still
necessary. MyoSight is employed for the analysis of cross-sectional area (CSA), the fiber-
type distribution and nuclei detection, identifying the number of central and peripheral
nuclei based on their position, since the nuclei position represents an essential element for
determining damage in muscle tissue [68].

The identification of peripheral and central nuclei is facilitated by specific staining,
including DAPI, a laboratory procedure that allows the blue staining of nuclei in IF images [71].

https://imagej.nih.gov/ij/download.html
https://imagej.nih.gov/ij/download.html
https://cellprofiler.org/
https://www.ilastik.org/
https://qupath.readthedocs.io/en/0.4/docs/intro/installation.html
https://qupath.readthedocs.io/en/0.4/docs/intro/installation.html
https://qupath.readthedocs.io/en/0.4/docs/intro/installation.html
https://github.com/LyleBabcock/MyoSight
https://github.com/LyleBabcock/MyoSight
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Adiposoft

Adiposoft is a fully automated open-source software developed with the purpose of
performing adipose tissue analyses in histological slides. It is a plugin for Fiji, just like
the software discussed previously. It is downloadable at http://imagej.net/Adiposoft
(accessed on 25 September 2023), where many other information is available too [72]. As
for the other ImageJ/Fiji plugins, the installation of Fiji is required to run Adiposoft.

Adiposoft allows the user to perform an accurate analysis of hematoxylin and eosin (H&E)-
stained histological sections, especially in case of obesity, which is associated with an increase in
the adipocyte number and expansion, hyperplasia and hypertrophy, respectively [62,73].

Adiposoft is often compared to AdipoCount, which is a free open-source software that
performs a fully automatic segmentation, not developed by ImageJ and downloadable at
http://www.csbio.sjtu.edu.cn/bioinf/AdipoCount/ (accessed on 25 September 2023) [74].
Adipocount is used for the ability to recognize and count the adipocytes present in histo-
logical images. In fact, it consists of three modules that allow membrane segmentation to
be recognized, performing a re-segmentation and cell counting [62].

According to Xuhao Zhi et al., Adipocount outperforms Adiposoft in cell counting
segmentation, since several cells are not well detected and counted by Adiposoft. How-
ever, Adipocount does not reveal area measurements and thresholding setting functions,
contrary to ImageJ and its plugin [62]. For this reason, the better solution lies in combining
methods, finding experimental settings that merge the strength points of AdipoCount
and Adiposoft [40].

2.2. CellProfiler

CellProfiler is an open-source software whose first version was released in 2005 and
was written in MATLAB. Over the years, more updated versions rewritten in Python
have been released, up to the current version (CellProfiler v.4.2.6), which supports high-
throughput 3D images analyses, already introduced in CellProfiler 3.0 [56,75]. In addition,
since the combination of CellProfiler and ImageJ functions allows better results to be obtained,
Lee Kamentsky et al. have developed a bridge to link CellProfiler pipelines to ImageJ plugins,
since 2011 [76,77]. In addition, the CellProfiler source code and documentation are available
at https://cellprofiler.org/ (accessed on 25 September 2023) [78]. The software is compatible
with Windows, Mac and Linux operating systems, requiring Java installation before starting.
Moreover, this open-source software supports a broad range of image formats, which are
listed in the Bio-Formats library below https://docs.openmicroscopy.org/bio-formats/5.7.0/
supported-formats.html (accessed on 25 September 2023) and that include even TIFF format
(Table 1) [79,80].

CellProfiler represents a worthwhile resource in the biological field, since it allows an
automatic segmentation to be performed with the feasibility to modify eventual software
mistakes. In addition, after the segmentation process, the software allows the analysis of
quantifiable cell measurements, such as CSA, centrally nucleated fibers (CNF) percentage
and fiber size distribution, according to the shape, size, texture and intensity detection,
providing morphological information, too [56]. These parameters are essential, especially
in the skeletal muscle tissue analysis, as we will discuss in Section 4.

Like ImageJ, CellProfiler is open-source software that can be implemented by inno-
vative pipelines, often customized for specific histological tissues. Among them, Muscle-
Analyze and Muscle2View represent two CellProfiler-based pipelines suitable for skeletal
muscle investigations [79]. Sharing the same interface as CellProfiler, MuscleAnalyzer al-
lows measurements to be performed in less time than manual segmentation with a suitable
application in skeletal muscle studies [71].

Regarding its performance, CellProfiler is designed to perform many image analyses
at the same time, demonstrating its utility in high-throughput data investigations. Its
reproducibility is also accompanied by analysis speed and accuracy, as demonstrated
by Yeh Siang Lau et al., who performed a manual segmentation analysis of 67 muscle

http://imagej.net/Adiposoft
http://www.csbio.sjtu.edu.cn/bioinf/AdipoCount/
https://cellprofiler.org/
https://docs.openmicroscopy.org/bio-formats/5.7.0/supported-formats.html
https://docs.openmicroscopy.org/bio-formats/5.7.0/supported-formats.html
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histological images in about 3 h, while CellProfiler took about 11 min to complete the same
analysis, proving its superior efficiency [56,71].

The organization of CellProfiler consists of modules that allow the user to access
different kinds of functionalities. In the manual, all these functions are explained in an
easy-to-understand manner in order to assist the beginners, and a community has also
been created to provide assistance and answers to the user’s questions [56,77].

2.3. Ilastik

Ilastik (v. 1.3.3) is open-source software written in Python and operating in image
analysis. It is available for Windows, Mac and Linux and requires a 64-bit system and at
least 8 GB of RAM, with more RAM recommended for 3D images [81]. The free software
is downloadable at https://www.ilastik.org/ (accessed on 25 September 2023) where the
manual is available too, in order to guide the beginner user’s first steps (Table 1) [82]. Ilastik
supports many formats that are listed on https://www.ilastik.org/documentation/basics/
dataselection#formats (accessed on 25 September 2023) [83].

This software allows different imaging analyses to be made, such as an evaluation of
pixel intensity, a classification of objects, density counting, thresholding procedures and
size filters. All these functions are tightly connected to the segmentation process, which
can be applied to microscopic images derived from cell culture or histological tissue [81].

In the first case, Ilastik is able to perform organelle segmentations, especially mito-
chondrial assessment, as described by Christian A. Fischer et al., in HeLa cell culture [84].
These segmentations showed that the average mitochondrial area was larger in untreated
cells, compared to HeLa cells treated with oligomycin and antimycin. However, Ilastik does
not achieve the results of other specific software, such as MitoSegNet 1.0 [84]. Although
Ilastik is not specific for WSI analysis, researchers apply this software in order to analyze
histological images, too. This is the case for Sharon C. Yates et al., who demonstrated the
possibility of applying Ilastik segmentation to rodent brain tissues previously subjected
to immunohistochemistry (IHC) staining [85]. Ilastik also allows image processing, dis-
tinguishing the background from the objects, counting the objects of interest, evaluating
the pixel intensity, nuclei segmentation and training images. This latter analysis is due
to the machine learning approach of this software. However, the object classifier can be
trained only in small images, including tiles of WSI. For this reason, this software is not
very often used in WSI analyses. However, the high throughput Ilastik tile segmentation
has been shown to be accurate, compared with manual segmentation and other software,
including Quint, developed for quantification and spatial analysis for high throughput
investigations [84,86].

2.4. QuPath

Quantitative PATHology (QuPath) is open-source software written in Java whose
0.4.4 version is available at https://qupath.readthedocs.io/en/0.4/ (accessed on 25 Septem-
ber 2023) [87,88]. It supports many formats, like the other above-mentioned software, which
are listed at https://qupath.readthedocs.io/en/0.4/docs/intro/formats.html (accessed on
25 September 2023) (Table 1) [89].

QuPath exploits deep learning in order to become one of the most used tools in the
field of histological segmentation. Unlike the previously mentioned software, which can
also perform other types of analyses, QuPath was primarily developed to assist pathologists
in the diagnostic process. Its intuitive interface is especially useful when working with WSI
and a large amount of 2D data [87,88,90].

The functionalities of QuPath applied to histological sections are multiple: in fact,
it allows annotations, training classifications and cell and nuclei identifications to be
performed. In this context, QuPath represents a valid alternative to CellProfiler and Fiji
for nuclei detections in the histological field, especially for cancer diagnosis [91]. In order
to attest to the software’s accuracy, QuPath segmentation has been compared to manual

https://www.ilastik.org/
https://www.ilastik.org/documentation/basics/dataselection#formats
https://www.ilastik.org/documentation/basics/dataselection#formats
https://qupath.readthedocs.io/en/0.4/
https://qupath.readthedocs.io/en/0.4/docs/intro/formats.html
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practices in different conditions, including in breast cancer, where QuPath segmentation
analyses had similar results to the manual segmentation assessments [92].

QuPath is “object-based” software, in which an object consists of a region or an
element that can be individuated and segmented into the image. Moreover, the objects
can be classified and related each other, and are called object “parent” and object “child”.
This is the case in nuclei and cell classifications, which are often related to improve the
analysis results [87].

The automatic nuclei segmentation can be easily performed by H&E staining, without
the need for ancillary techniques such as IF and IHC. This is an advantage, since H&E
staining is a low-cost and quick procedure which is routinely used for histological diagno-
sis [91,93]. Further, QuPath is applied in many different research areas, such as nephrology,
neurology and oncology, as we will discuss in Section 4.

QuPath Extension: MyoSOTHES

Not many QuPath plug-ins have been implemented over the years. Marie Reinbigler et al.
developed a new software called MyoSOTHES, derived from the combination of QuPath
and CellPose, another deep learning-based segmentation tool [94].

MyoSOTHES (Myofibers Segmentation wOrkflow Tuned for H&E Staining) allows
the performance of automatic segmentation applied to muscle fibers and it was tested on
groups of 50 mice affected by Sarcoglycanopathy, in order to evaluate the phenotypical
effects of the proposed treatment on the fibers [94,95]. In this case, MyoSOTHES was
compared with CellPose and QuPath, reporting promising results. In fact, fiber damage
has been detected through segmentation analyses, highlighting the peripheral location of
the nuclei in the muscle fibers and the high CNF ratio, which are indicators of anomalies in
muscle tissue [94].

MyoSOTHES is accessible from Windows, Mac and Linux, with low requirements
including 2 GB of RAM and 2 GB of GPU. However, there are not so many studies related
to the usage of this software.

3. Proposed Workflows
3.1. Tissue Preparation

Tissues need to undergo processing before being analyzed, whether they are human or
mouse tissue. In the case of a mouse or rat model, tissues are collected after animal sacrifice.
The organs are fixed in paraformaldehyde (PFA) 4% or formalin, and then processed
through paraffin or Optimal Cutting Temperature (OCT) embedding, cut and mounted on
slides, according to traditional protocols [73,92] (Figure 1).

3.2. Staining Process

The importance of the staining process resides in highlighting the structures and
elements needed for the analysis (Figure 1). WSIs are usually acquired in brightfield,
after a H&E staining [96,97]. This staining is important for the characterization of tissue
morphology, although it lacks cell-related molecular information. However, biomarker
detection is possible through immunolabeling processes, including IF or IHC. These tech-
niques are employed to distinguish cell types, characterizing predictive and diagnostic
biomarkers [24,70].

Furthermore, in IF, DAPI staining is essential to perform nuclei detection, since this
technique allows the presence of nuclei to be highlighted through blue coloration [71].
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Figure 1. Representative workflow of the histological segmentation process. After tumor detection,
a biopsy is performed and processed through paraffin or OCT embedding, cutting process and
slide montage. The slide is stained with specific procedures and observed through the microscope.
Through the digitalization process, the visualization of histological tissue and the use of segmentation
software are allowed, in order to analyze the histological sample by segmentation. Then, data
analyses are performed to obtain diagnostic results.

3.3. Image Acquisition and Dataset

Tissue digitalization may be performed by capturing WSIs through many kinds of
scanners, which allows images to be acquired with different parameters, including size and
illumination, and to be saved in many file formats (Figure 1). Using the same file format
assures a more homogeneous and reproducible analysis. In radiology, the widespread
image format is represented by DICOM, which allows examination and access to a large
amount of image data. Digital pathology has not adopted a unique file format yet, even if
the progress is moving towards that direction [70]. However, according to the biomedical
applications, the TIFF format represents one of the most common image formats used to
perform histological segmentation imaging, for easier image processing, although many of
the previously mentioned software also support JPEG, PNG, SVS and other formats [98].
In fact, the TIFF format is able to support a large amount of data and it proved to be
worthwhile in high throughput analyses [53].

In addition, the capture process is fundamental for the success of analysis. Usu-
ally, clinicians observe the WSI at 5× magnification, in order to survey the potential
tissue alterations. Then, these findings are analyzed using major magnification, including
20× or 40× [93].

Another important aspect of the acquisition is the field of view (FOV), which varies
based on the magnification and the optical system. According to Robert Paulik at al., a
standard microscopic FOV may be around 1–1.5 mm2 for 20× magnification images and
0.2–0.3 mm2 for a 40× magnification setting [99].
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3.4. Proposed Software Workflows
3.4.1. ImageJ/Fiji—Proposed Workflow

Assuming the necessity to segment muscle tissue images, following laminin stain-
ing after the importation of images on ImageJ/Fiji, we propose some commands that
may be useful to perform manual segmentation analysis, according to Jenna M. Kasten-
schmidt et al.:

• Make binary: allows the conversion to binary images.
• Wand Tool: allows the operator to design the edges of myofibers.
• Measure function: allows the calculation of the area (µm2), the minimum Feret diame-

ter (µm) and all the measurements that the analysis requires.

In addition, an important step during imaging analysis is the setting scale. In order to
realize this step, we suggest loading an image containing a known linear scale bar. In this
way, it is possible to set the scale drawing as a line overlapping the scale bar of the image.

The set scale option is used to set the known distance: if the ratio is 1:1, the “pixel
aspect ratio” is required to be 1 and the “Known Distance” parameter needs to be completed,
inserting the known distance. Clearly, the measurement unit depends on the scale bar
(i.e., µm).

Finally, the “Global” preference assures the maintenance of the setting for all following
images, considering all the images with the same magnification [100].

3.4.2. CellProfiler—Proposed Workflow

The many modules provided by CellProfiler allow the user to achieve the set goals.
According to Yeh Siang Lau et al. and assuming the need to analyze muscle section IF
images, after laminin and DAPI staining, we will discuss the most used modules in the
segmentation process [71,92]:

• In order to perform muscle fiber analysis:

Muscle fibers can be identified through the Identify Primary Objects Module, filtering
the diameter of fibers in order to exclude every object out of the diameter range. Then,
the threshold may be applied through the Robust Background Module, adjusting the
parameters and including the threshold and size of the smoothing filter, to obtain a more
accurate fiber identification.

In case of IF staining, the Measure Object Intensity Module is suitable to detect the
intensity of fluorescence and the Measure Object Size Shape Module allows the total muscle
fiber number and area of segmented moieties to be obtained [92].

• In order to identify nuclei and their position:

The Identify Primary Objects Module may be used to identify the nuclei stained with
DAPI, taking into account the previously mentioned parameters, and the Expand Or Shrink
Object Module may be used to perform a more accurate nuclei classification, discriminating
central nuclei from the de-centered ones. The ratio between central nuclei fibers and lateral
nuclei fibers is important in many pathological conditions, as we will discuss in Section 4.
For this purpose, the Relate Objects Module is a valid alternative to the manual count.
This function allows two objects to be related: the first object will be the “child object”,
which is represented by the number of nuclei; the second one is the “parent object”, which
represents the number of fibers in the case under consideration. It is useful to count the
number of nuclei associated with the muscle fibers.

Then, the Classify Objects Module allows the fiber containing central nuclei to be
distinguished from the others [71].

3.4.3. Ilastik—Proposed Workflow

The Ilastik segmentation workflow is congruent with segmentation performed by
other software, including ImageJ [85].
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Assuming the need to segment IHC-stained images, the Pixel Quantification module
is essential to discriminate the immunoreactive moiety from the background. This module
takes into account all the accessible features, including the intensity of the pixel, texture and
edge. The first image analyses are performed as training, in order to apply the annotations
to the whole image dataset.

After the Pixel Quantification phase, the Object Quantification can aid the user to
differentiate the immunoreactivity from artefacts that may disrupt the signal. This classifi-
cation is carried out by filtering the objects according to their features, such as shape and
size. Then, the trained classifier has to be applied to the total image set.

This workflow allowed Yates et al. to complete segmentation analyses with 95%
confidence within 0.32% of error, compared to other segmentation methods for an image
series consisting of immunostained brain tissue images [85].

3.4.4. QuPath—Proposed Workflow

According to Paola S. Apoulauza et al., who used QuPath for pancreas histological
analyses, we propose a general workflow for using QuPath [101].

Assuming the need to perform IHC-stained segmentation analyses, the first step
consists of carrying out a Pixel classifier in order to obtain tissue detection, exploiting the
intensity thresholder functionality.

The object detection is performed through Pixel classification and training Pixel clas-
sification processes that let QuPath be trained to discriminate between different kinds of
objects (or cells).

Finally, the cell detection procedure is performed through the cell detection command,
followed by the nucleous threshold, segmentation and the addition of smoothed features,
which allows only objects within a specific measure (i.e., 25 µm, according to the kinds of
analyses and dataset) to be taken into account.

Then, annotations can be exported as an CSV file to be processed using Excel (Figure 1).

4. Histological Tissue Segmentation

Digital pathology represents an important resource for clinicians who need to obtain
answers about biopsy tissues in a very short time. Thus, the use of AI is also useful for
biologists and other researchers who have large amounts of data to analyze [70] (Figure 1).

In this chapter, we will focus on the most segmented histological tissues, taking into
account the tools and methods used to perform these kinds of analyses.

Although the previously reported software are the most used in digital pathology,
many other segmentation tools have been developed for this purpose, exploiting the proper
features of each tissue. It is challenging to determine which of these methods performs
best in segmentation analyses. Thus, we decided to carry out a brief excursus of the most
common segmentation tools applied in the tissues of interest.

4.1. Skeletal Muscle Tissue

Skeletal muscle is a high complex tissue, organized in bundle of fibers called my-
ofibers. Each of these constitutes a muscle cell whose functional unit is represented by the
sarcomere. Myofibers are organized in fascicles, forming muscle tissue that is enveloped
by connective tissue. The maintaining of this organization is essential to the preserva-
tion of the physiological functions in muscle tissue. In fact, little perturbations of this
balance may lead to the loss of muscle health, followed by the onset of severe pathological
conditions [102,103].

Among the myopathy disorders, an example is represented by Duchenne muscular
dystrophy (DMD), which is a severe dystrophinopathy due to the deficit of dystrophin
expression, caused by genetic mutations and followed by sarcomere strains and sarcolemma
tears [104–106]. In order to study this X-linked fatal myopathy, dystrophin deficient mice,
including a muscular dystrophy X-linked (mdx) mouse model, are enrolled in preclinical
research. Owing to this model, many studies have been focused on the continuous cycle of
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muscle injury and regeneration, which leads to an increasing heterogeneity in myofiber
size and organization, also associated with central nuclei localization. On the other hand,
Wild Type mice show a uniform myofiber size and distribution [61,68,107]. In particular,
according to Alicia Mayeuf-Louchart et al., in a dataset of injured and healthy skeletal
muscle images, MuscleJ analyses revealed that only about the 4% of fibers showed central
nuclei in controls, against about 58% in injured muscles. The results are compatible with
manual segmentation analyses undertaken by five experts [61]. These injury muscle features
are confirmed by many other studies, using different dataset and segmentation software,
developed with the purpose of facilitating the myofiber segmentation and the following
measurements. This is the case for MyoVision, which is an approved software to assess
the CSA, myofiber type and myonuclei detection. However, it does not analyze the CNF
parameters, contrary to QuantiMus, a machine learning-based tool that was developed
for this purpose. In fact, it integrates the analytical characteristics of previous software,
including the ability to calculate fluorescence intensity in myofibers [100]. Moreover, in
the field of sarcoglucanopathies, a fully automated software called MyoSOTHES was
developed in order to analyze large amounts of WSI data. In this case, the investigation
was performed in H&E images, carrying out a deep study through phenotype indicators
such as CNF ratio and Feret’s diameter measurements [94].

All this software often need to be associated with the preprocessing of the sample,
which consists of highlighting specific characteristics through staining processes. Among
them, the myosin heavy chain (MyHC) is useful to discriminate the fiber types and Laminin
α2 represents an effective method to recognize the myofiber edges. This preprocessing aids
the automatic software to discriminate the objects of interest from the background [64,71].
In addition, DAPI staining is strictly recommended for nuclei detection, as suggested
in Section 3.

Although many preclinical studies have been performed in relation to mdx mice,
clinical research is progressing in this field, too. In fact, recent studies have been per-
formed in human patients. This is the case for Perla C. Reyes-Fernandez et al., who have
developed an innovative, fully automated macro in Fiji in order to perform an automatic
detection of myofibers in slides of muscle deltoid biopsies derived from patients with
dermatomyositis (DM), necrotizing autoimmune myopathy (NAM) and anti-synthetase
myopathy (ASM) [108].

4.2. Renal Tissue

Kidneys are paired organs localized in the retroperitoneum that play important role in
excretory functions, maintaining the homeostasis of extracellular fluids [109,110]. Indeed,
their main function involves blood ultrafiltration, with the consequent production of urine,
useful for the preservation of metabolites, ions and water balance. This role is played
by renal glomeruli, which are located on the renal cortex and provide the ultrafiltration
of capillary blood. Aberrations at glomeruli levels may lead to serious diseases, causing
potential renal failure and cardiovascular dysfunctions. Thus, the prompt recognition of
renal dysfunctions and morphological irregularities may be an important resource to avoid
severe physiopathological conditions [111].

In the overall context, even in this field the need to find innovative methods is emerging
to improve and accelerate diagnoses, owing to AI approaches.

The most used deep learning method applied to digital pathology consists of the
employment of convolutional neural networks (CNN), owing to their notable performance
in several analyses, such as histology segmentation and nuclei detection. In particular,
deep and machine learning methods are often applied to the detection and segmentation
of glomeruli in WSIs of kidney slices [90]. While the initial application of CNN merely
regarded the segmentation of glomeruli, to date CNN applications have also been extended
to other parts of the kidney, such as tubuli and interstitium, investigating both healthy
and pathological tissues and showing glomerular size variability, interstitial and tubular
expansion and atrophy in aberrant tissue [47,90]. In this context, two algorithms have been
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developed, known as RENFAST (Rapid Evaluation of Fibrosis And vessels Thickness) and
RENTAG (Robust Evaluation of Tubular Atrophy and Glomerulosclerosis). RENFAST is
designed for detecting vessels and interstitial fibrosis, while RENTAG focuses on detecting
and classifying glomeruli and tubules [112,113]. Other researchers have also introduced
similar semantic segmentation CNN models, albeit with slight variations. These models
were trained on relatively small datasets of pre-implantation kidney biopsies stained with
Periodic Acid-Schiff (PAS). They were initially utilized for the detection of vessel and tubu-
lar structures, employing binary classifier classifications. Further progress has been made
by incorporating the use of Local Binary Pattern (LBP) and Haralick features, which enabled
the consideration of a wider range of features. However, the most notable advancements
were made through the utilization of models based on SegNet and DeepLab networks [113].

Consequently, the accurate classification of glomerular conditions holds significant
importance in the diagnosis of various kidney ailments. Moreover, these models have
proven instrumental in the domain of transplant kidney biopsies, facilitating the detec-
tion of organ quality, the prediction of rejection risks and the diagnosis of other related
conditions [112,114]. Many other CNN algorithms are applied in kidney histological in-
vestigations, such as U-Net algorithms that were shown to be particularly relevant for
segmentation processes [115–118]. U-Net training can be supported by other software,
including QuPath. As shown by Nassim Bouteldja et al., QuPath software can be used to
perform segmentation and pre-annotations, reducing the need for a manual annotation
process. Also, the QuPath support in the annotation process accelerated the training phase
of U-Net. The annotations have been supervised by expert nephrologists [90,119].

Furthermore, a total open-source approach provides for the combination of Ilastik and
ImageJ software in order to perform an automatic segmentation procedure, followed by
digital image measurements. Indeed, this software provides the skill to analyze multiple
images at the same time, allowing batches of images to be processed at once. Susan M.
Sheehan et al. have applied this approach on human tissue, through the analyses of
121 images derived from 12 patients, obtaining promising results although the detection of
many false positive cases, probably due to the poor visibility of the nuclei in the tissue [120].

4.3. Cancer Tissue

The recognition of cancer tissue represents one of the most frequent activities for
pathologists. However, the identification of subtle neoplastic changes can be challenging;
in this setting, the use of digital pathology may be helpful. Owing to the advent of digital
pathology, this process has undergone many improvements, leading to a widespread use
of deep and machine learning methods for segmentation processing [121].

Many studies have been carried out to develop innovative pipelines and tools in order
to analyze and distinguish healthy from cancerous tissue.

4.3.1. Breast Cancer

Breast cancer is one of the most pervasive tumors in women, associated with a dif-
ferent rate of overall survival based on the kind of tumor and a timely diagnosis. In fact,
early diagnosis represents the essential element to ameliorate patients’ prognosis and it
is encouraged to prevention screening through mammography and ultrasound imaging,
following by a biopsy of breast tissue in the case of suspected cancer advance [122–124].
Then, the crucial role of the pathologist consists of the prompt recognition of the tumor
tissue, also assisted by specific biomarkers, including ER, the type-2 epidermal growth
factor receptor (HER2) and the progesterone receptor (PR), which characterize the type of
breast neoplasm. In combination, other biomarkers of prognostic and therapeutic interest,
such as Ki-67, provide an indication about the proliferation rate of tumor cells [99,124–126].

Therefore, classifications into benign and malignant tissue results are extremely im-
portant for the diagnosis and are often performed through manual segmentation, a time-
consuming practice performed by expert pathologists [124]. Some semi-automatic ap-
proaches allow classification to be performed, aiding the clinician in the segmentation
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process. The pixel classifier of QuPath was applied to H&E breast cancer images in order to
segment the tumor epithelium, stroma and fat tissue [127]. This approach was also applied
in a preclinical xenografted mouse model, where cell classification was performed using
a combination of Fiji and QuPath functionalities [128]. Fiji, in particular, has also been
employed for pixel classification and the detection of brain metastasis of breast cancer [129].

Although digital pathology has not been widely adopted in clinical practice, some
pathologists have shown interest in semi-automatic or fully automatic approaches. This
is the case for Lieze Berben et al., who carried out studies about the characterization
of immune infiltrates in breast cancer, confirming the accurate method analyses of the
aforementioned software, QuPath. The validation of this software was also performed
through manual counting, showing promising results. In fact, following the staining of
positive and negative lymphocytes, QuPath analysis revealed a correct identification of
the evaluated markers, such as CD8 and CD20, with a little overestimation of negative
stained immune cells. However, regarding the other parameters taken into consideration,
the positively stained immune cell evaluation did not show relevant differences between
manual and QuPath counting; rather, a tight correlation was observed in the results of the
assessed protocols [130].

4.3.2. Glioblastoma

Glioblastoma (GBM) is an aggressive tumor, composed by complex heterogeneity
features that make personalized therapeutic approaches difficult, leading to an overall
survival of 15–18 months [131,132]. Moreover, GBM is characterized by a hypoxic microen-
vironment that is related to the reduced efficacy of therapies and leading to a probable
relapse with poor prognosis [133]. Digital pathology may provide valuable support to
GBM diagnosis, although only a limited number of software have been employed for this
purpose. Among them, QuPath was used for cell segmentation, classification and staining
quantification in histological slides of GBM [134].

An interesting study was conducted by Valentina Brancato et al., who investigated the
potential cross-talk between radiomic and pathomic features in GBM patients. Hence, the
authors established correlations between radiomic features obtained from functional MR
images and histological features extracted from H&E tissue slides. These studies focused
on key radiomic features in MR, such as Apparent Diffusion Coefficient (ADC), which is
considered a biomarker for estimating cellularity. This radiomic biomarker was compared
with pathomic features, including nuclei count. The investigations showed an inverse
correlation between ADC and nuclei counts, along with a positive correlation between
ADC and extracellular space, confirming previous studies [135,136]. In order to perform
these analyses, QuPath and PyRadiomics have been employed for pathomics and radiomics
extraction, respectively. In particular, a QuPath implementation script was used to carry
out nuclei segmentation and the extraction of features. In addition, annotations have been
performed in relation to the WSI area and nuclei identification [135].

Beyond QuPath, other software has been applied to histological segmentation in GBM.
In this context, PathoFusion is open-source software for the identification of morphological
signatures in pathological tissues. In particular, Alzoubi et al. highlighted the PathoFusion
role in the WSI patch classification and segmentation of individual GBM cells [55]. However,
other GBM studies demonstrated that PathoFusion may offer a relevant aid to train CNNs
in recognition of pathological conditions in histological slides [137].

4.3.3. Colorectal Cancer

Colorectal cancer (CRC) still represents a cause of death worldwide, in which early detec-
tion and grade identification represent an opportunity to improve overall survival [13,138,139].
Early diagnosis is supported by the exploitation of specific biomarkers associated with
radiological imaging analyses. Thus, several authors have proposed prognostic prediction
models through tumor segmentation, which has reported a more significant analysis than
the model without tumor segmentation [139,140]. Relevant studies have been carried out,



BioMedInformatics 2024, 4 187

employing CellProfiler and QuPath for the nuclei classification of colorectal cancer slides,
showing promising results [52]. QuPath was also used to train H-DAB images, exploiting
the ability to create annotations to classify the different ROIs of the tumor slide [141].

Moreover, other studies have been carried out using QuPath as a manual annotation
tool in the analyses of 312 H&E stained histological sections belonging to patients with
second stage colon cancer. In this context, the open-source software was associated with
scripts able to automatize the background identification and the intensity of image channels,
which were different according to the scanner used. This standardization plays an impor-
tant role in imaging analyses [87]. It is an essential process for the analysis reproducibility.
In fact, standardization is relevant for preserving the quality and integrity of image data,
minimizing the impact of noise, artifacts and errors [142].

QuPath was employed to perform an SLIC superpixel segmentation, a procedure
that generates superpixels. In particular, the combination of this procedure with the
“Add intensity features” and the “Add smoothed features” QuPath commands allows a
multitude of information about the tissue to be accessed and the classification process to be
ameliorated [87]. In addition, QuPath can be also used as training software. This is the case
for et al.’s study on WSI images of colorectal cancer, stained with hematoxylin and DAB.

5. Discussion

In the era of precision medicine, digital pathology plays a pivotal role in addressing
diagnostic challenges by providing faster and more accurate information. Pathologists can
leverage this information in decision-making for a precise diagnosis, thereby reducing the
diagnostic variability.

In this context, we have identified the most used open-source segmentation software,
including ImageJ, QuPath, Ilastik and CellProfiler, able to perform the most requested
analyses in digital pathology (Table 2).

Comprehension of the mentioned software, combined with the propensity to employ
these tools, is essential in advancing digital pathology progress, a goal that this review
aims to achieve. The innovation of this review consists of the distinctive contribution to the
rising knowledge in digital pathology and the potential applications within this emerging
field. In addition, this review is designed to serve as a resource for newcomers to this area,
leading them through workflows and illustrating functionalities applicable to different
tissues.

In the diagnostic field, all the mentioned software provide relevant advantages com-
pared to manual image analysis, which is highly labor-intensive and liable to variabil-
ity [71,85,101,143].

According to our research, Fiji emerges as the predominant open-source software in
image analysis. Notably, the other mentioned software have Fiji plugins, aiding analysis
combinations. Fiji is versatile software that carries out different kinds of image analyses
compared to QuPath, which is specifically designed for WSI and histological analysis.
QuPath is more intuitive for pathologists compared to the other software, including Ilastik,
CellProfiler and the broader functionality of Fiji. In fact, they lack specific functions
developed for WSI [141].

On the other hand, Fiji excels in flexibility, allowing the users to develop specific plug-
in, as in the case for MuscleJ, MyoSight, MyoSoft and the other plug-in aforementioned in
the review [23,34,41].

CellProfiler and Ilastik are less commonly employed for WSI. Notably, Ilastik is not
specifically designed for WSI, but boasts different functionalities, enabling the user to eval-
uate local signals including light, colors and structure of images [81]. Its versatility extends
to cell segmentation, thereby assisting in the annotation process. Consequently, Ilastik finds
applicability across various imaging field, including histological analysis [144,145]. Con-
versely, CellProfiler is tailored towards the specific task of identifying and quantifying cells
and nuclei [91,98]. This software offers clinicians and biologists a relevant aid in obtaining
extensive phenotypic data related to the shape, size and counts of cells [146] (Table 2).
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Table 2. Recent advancements in ImageJ, CellProfiler, QuPath and Ilastik implementations.

Software Plug-in Tissues Image
(WSI or ROI) Main Analyses References

ImageJ/Fiji

Fiji and
WEKA plugin

Kidney,
Muscle,
Breast,
Brain metastasis

ROI and WSI

Object quantification;
Nuclei segmentation;
Detection of brain metastasis;
Cell classification;

[77,91,120,
128,129]

BoneJ Bone. ROI Measurement of osteoclast area and
trabecular thickness. [63]

AdipoCount Adipose tissue ROI Adipocytes quantification [62]

MuscleJ
MyoSight
MyoSoft

Muscle ROI

CSA;
Fiber quantification and distribution;
Myonuclei localization and
quantification.

[51,61,68]

CellProfiler

MuscleAnalyzer
Muscle2View Muscle ROI

CSA;
Fiber quantification and distribution;
Myonuclei localization and
quantification.

[71,79]

CellProfiler
Muscle,
Gastrointestinal,
Colorectal cancer.

ROI

Object detection and classification;
Nuclei segmentation and
classification;
Quantification of muscle parameters;
Cell segmentation.

[52,77,91,
92,107]

QuPath

MyoSOTH Muscle ROI
CSA;
Myonuclei localization;
CNF ratio.

[94]

Muscle,
Kidney,
Brain,
Cancer tissues:
Breast, GBM,
Liver, pancreatic,
colorectal.

ROI and WSI

Object detection and classification;
Nuclei segmentation and
classification;
Cell segmentation;
Staining quantification.

[90,91,101,
119,128,130,
134,141]

Ilastik
Gastrointestinal;
Brain;
Kidney.

ROI

Object detection and classification;
Counting and tracking;
Cell Segmentation;
Training classifier.

[85,92,120]

To the best of our knowledge, not many reviews focused on the comprehensive
comparison of these software, excepted for a limited number of studies that have employed
a broader spectrum of software options [52,77,85,91].

However, comparing software used in different studies represents a great challenge.
One of the main limitations of digital pathology consists of the poorly standardized pro-
cesses of acquisition and pre-acquisition, leading to limited analysis reproducibility. The
lack of image and parameter standardization hinders meaningful comparisons between
different tools. In fact, digital pathology is still far from being used in the daily clinical
routine [54,147].

Thus, this review aims to address these gaps by providing a thorough exploration of
various software platforms and presenting several application examples. The goal is to
provide a wide range of information about these software options, enabling the users to
make informed decisions based on their specific needs.

6. Conclusions

Digital pathology represents an innovative method of analysis for pathologists and
clinicians. The importance of this area is dictated by the necessity of finding faster and
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more effective procedures to make diagnostic and therapeutic areas more accessible and
productive [2,3,33,54].

In this context, segmentation represents an essential process in imaging analyses. The
latter procedure allows for the individuation and definition of a specific ROI to analyze.
Already used in radiological and other medical applications, segmentation is taking hold in
digital pathology as well, through the introduction of a series of open-source software able
to aid in the analyses through semi-automatic or fully automatic segmentation methods,
improving the time-consuming manual process and allowing large amounts of data to be
analyzed in high-throughput investigations [40,43].

Aware that machine and deep learning algorithms have already been employed in
the biomedical field for years, in this review we have summarized the most common
open-source segmentation software, including ImageJ, CellProfiler, Ilastik and QuPath, in
order to aid clinicians and biologists with their segmentation analyses, as well as providing
workflow methods of analyses. In fact, this software allow many purposes such as edge
and nuclei detection, thresholding process and CSA measurements to be achieved in a
faster and more intuitive way than in the past [1].

Given the promising results of the currently used software, the future direction looks
to the development of innovative, fully automatic tools which will support the clinicians’
decision-making, reducing inter- and intra- operator variability and ensure the repro-
ducibility of the results through unbiased procedures. The pathologists maintain their
crucial role and will be involved in the development of innovative workflows, aiding the
standardization processes.

Currently, digital pathology is still far from clinical application. However, given its fast
spread, the expectation is that the guidelines for pathologists’ practice may move towards
standardization in the near future. This process will pave the way for a new era of digital
pathology in clinical practice.

Until that moment, the use of open-source software emerges as an optimal choice to
perform histological analyses, in order to develop crucial skills in this emerging area, which
may become a valuable resource in the coming years.
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Abbreviations

AI artificial intelligence
CT computed tomography
MR magnetic resonance
ROI region of interest
WSI whole-slide images
CSA cross-sectional area
H&E hematoxylin and eosin
CNF centrally nucleated fibers
DMD Duchenne muscular dystrophy
Mdx muscular dystrophy X-linked
MyHC myosin heavy chain
DM dermatomyositis
NAM necrotizing autoimmune myopathy
ASM anti-synthetase myopathy
CNN convolutional neural networks
RENFAST rapid evaluation of fibrosis and vessel thickness
RENTAG robust evaluation of tubular atrophy and glomerulosclerosis
GBM glioblastoma
ADC apparent diffusion coefficient
CRC colorectal cancer
IF immunofluorescence
IHC immunohistochemistry
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