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Abstract: CT scans are currently the most common imaging modality used for suspected stroke
patients due to their short acquisition time and wide availability. However, MRI offers superior
tissue contrast and image quality. In this study, eight deep learning models are developed, trained,
and tested using a dataset of 181 CT/MR pairs from stroke patients. The resultant synthetic MRIs
generated by these models are compared through a variety of qualitative and quantitative methods.
The synthetic MRIs generated by a 3D UNet model consistently demonstrated superior performance
across all methods of evaluation. Overall, the generation of synthetic MRIs from CT scans using
the methods described in this paper produces realistic MRIs that can guide the registration of CT
scans to MRI atlases. The synthetic MRIs enable the segmentation of white matter, grey matter, and
cerebrospinal fluid by using algorithms designed for MRIs, exhibiting a high degree of similarity to
true MRIs.

Keywords: deep learning; image synthesis; image generation; machine learning; medical imaging;
image-to-image translation; CT to MRI; synthetic MRI; stroke

1. Introduction

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are the most
widely used imaging modalities for imaging the brain. Patients who present with suspected
stroke most commonly receive a CT scan for initial evaluation due to its lower cost and
shorter acquisition time compared to MRI. However, MRI has been shown to be more
accurate than CT for diagnosing stroke and can provide additional information that can
be useful for the diagnosis, treatment, and prognosis of stroke and other brain disorders.
Additionally, MRI can be used to detect other abnormalities in the brain that may contribute
to stroke risk, such as aneurysms, arteriovenous malformations, or tumours.

MRI is more sensitive than CT at detecting lesions in conditions such as stroke due to
its superior soft tissue contrast and ability to provide detailed anatomical information [1–4].
Once medical images are obtained, analysis is necessary to facilitate diagnosis. Comparing
the patient’s brain scans to a brain atlas can be helpful in understanding the location of
lesions or abnormalities with respect to the anatomical and functional structures of the
brain. Many commonly used brain atlases, including the MNI152 T1-weighted MRI brain
template [5], Talairach atlas [6], Brodmann atlas [7], and JHU DTI-based white-matter
atlases [8], are derived from MRI. However, cross-modality image registration between CT
and MRI is challenging due to the high variability of tissue and organ appearance caused
by the different imaging mechanisms. The pixel intensity, voxel size, image orientation,
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and field of view are also different between CT and MRI images, making multimodality
registration less straightforward than monomodality registration [9].

While MRI is more accurate than CT in diagnosing stroke, not all emergency rooms are
equipped with MRI scanners, especially in smaller or poorer areas. In such cases, it may be
beneficial to use deep learning techniques to generate a synthetic MRI from the patient’s CT
scan. Deep learning techniques are being increasingly applied to various areas of medicine,
including stroke diagnosis and treatment. One of the primary uses of deep learning in
this field is medical image segmentation, where an algorithm is trained to automatically
identify and segment lesions from a brain scan. This can help to improve accuracy and
efficiency in diagnosis and treatment planning for stroke patients.

Previous studies have primarily focused on MRI to CT generation [10–19], often for
the purpose of MRI-only radiotherapy. A survey of the literature revealed eight papers
which have studied CT-to-MRI synthesis [20–27]; these studies are detailed in Table 1.
Of these, only one study [27] investigated MRI generation for stroke patients, using a
dataset of 103 patients and only implementing GANs. In this paper, we use a dataset of
181 patients and implement many different models including CNNs and GANs, using
a variety of attention mechanisms including transformers. This is the first study using
CNNs for MRI generation for stroke patients and the first study using transformers for
CT-to-MRI synthesis. Moreover, this study improves on the previous studies of CT-to-MRI
synthesis in the brain by using the largest dataset, adjusting the CNN model architectures
from segmentation models to image generation models, comparing an extensive number of
state-of-the-art medical image techniques, and comprehensively evaluating the models for
their unique application to stroke patients. Finally, we provide code for all of the developed
models in an open-source repository [28].

Table 1. Related work.

Study Region of
Interest Number of Patients Paired GAN CNN Transformers

[20] Pelvis 17 X X X 7

[21] 140 X X 7 7

[22] Lumbar Spine 285 X X 7 7

[23] Head and Neck 118 X X 7 7

[24] 229 * 7 X 7 7

[25]

Brain

34 X X X 7

[26] 34 X X X 7

[27] 103 X X 7 7

Ours 181 X X X X

* CT scans from 202 Patients and MRIs from 27 different patients.

The purpose of this study is to investigate the use of different deep learning algorithms
to generate realistic and accurate MRIs of a patient from their CT scan while considering
the niche aspects of this problem in translating stroke lesions between the scans. This study
uses multiple versions of a UNet model adapted for image synthesis, as well as UNet++
and attention-based UNets, and compares 2D, 3D, and patch-based models. These paired
architectures are compared to the unpaired CycleGAN. The results are evaluated, and the
performance of the different models is compared by using a combination of qualitative and
quantitative methods.

2. Materials and Methods

The dataset used in this research consists of 181 patients who were treated for stroke
at Auckland City Hospital between 2009 and 2020. All patients received both a CT and
T1-weighted MRI scan, which were available on file. The dataset was formed by combining
multiple datasets from previous research studies. Each of the patients were required to
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be at least 18 years old and gave written informed consent. Patients with Ischaemic and
Haemorrhagic strokes were included.

The dataset consisted of 89 females and 92 males. The age range was 31–97 years with
a mean of 70 years, a median of 71 years, and a standard deviation of 15 years (Figure 1).
In total, 18 subjects suffered a Haemorrhagic stroke, and 163 suffered an Ischaemic stroke.
A total of 99 patients had a stroke in the right hemisphere and 82 had a stroke in the left
hemisphere. Table 2 gives the MRI acquisition parameters for the included studies. All
MRIs were acquired with a 1.0 × 1.0 × 1.0 mm resolution.

Table 2. MRI acquisition parameters for included studies.

Study n Scanner TR (ms) TE (ms) TI (ms) Flip (◦) Sequence *

1 55 Avanto 1.5 T 11 4.94 n/a 15 FLASH3D
2 47 Avanto 1.5 T 13 4.76 n/a 25 FLASH3D
3 8 Skyra 3 T 23 2.46 n/a 23 FLASH3D

4 18 Skyra 3 T 1900 2.07 900 9 FLASH3D,
MPRAGE

5 53 Avanto 1.5 T 2200 2.97 900 8 FLASH3D,
MPRAGE

* n—Sample Size, TR—Repetition Time, TE—Echo Time, TI—Inversion Time, Flip—Flip Angle.

Figure 1. Histogram of the ages of included subjects.

2.1. Preprocessing

A pipeline was developed to preprocess the data, which included registration to a
brain atlas and brain extraction. The following steps detail the preprocessing pipeline
(Figure 2):

1. Registration of the CT to the MRI using FSL Flirt [29–31] with 12 degrees of freedom
and a mutual information cost function.

2. Registration of the MRI to the ICBM152 T1w linear atlas using FSL Flirt [29–31]
with 12 degrees of freedom and a correlation ratio cost function, and saving the
transformation matrix.

3. Applying the transformation matrix from step 2 to the resultant CT from step 1.
4. Apply the runhdbet function of HD-BET [32] to the resultant MRI from step 2. The

resultant extraction brain and brain mask are then saved.
5. Using pixelwise multiplication between the resultant CT scan from step 3 and the

brain mask from step 4 to extract the brain from the CT.
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After the data were processed through the pipeline, the data underwent manual
quality control by overlaying the CT and MRI of each patient and visually inspecting the
alignment over multiple slices. Data that could not be successfully registered from CT to
MRI in FSL Flirt were attempted to be registered in 3D Slicer [33–36]. To ensure consistency
between the images, all MRI images were set to a data range of [0, 255] by dividing the
intensities of each image by its maximum intensity and multiplying by 255. CT scans were
kept in their original intensity range as they were in Hounsfield Units.

Figure 2. Preprocessing pipeline showing registrations of the CT to MRI and the MRI to MNI152
followed by brain extraction.
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2.2. Model Architectures

Eight models were implemented, including four models based on the original UNet [37].
UNet V1 (Figure 3) is a five-layer 3D UNet which we adjusted to be suitable for image
generation and which used convolution transposes as the upsampling operation. We
developed 3D UNet V2 (Figure 3), which uses upsampling and convolutions instead
of transpose convolutions as it has been demonstrated that this reduces checkerboard
artefacts [38]. We developed patch-based UNet (Figure 3) as a variation of UNet V1, which
was trained on nonoverlapping patches of the data to reduce memory usage of the model.
Similarly, 2D UNet (Figure 4) was developed based on UNet V1 to be trained on full size
axial slices.

Three further models based on improved versions of UNet were developed. UNet++
(Figure 5) is a five-layer 3D UNet which we developed based on the UNet++ architecture [39]
and adjusted to be suitable for image generation. Attention UNet (Figure 6) is a five-layer
3D UNet with attention blocks in the skip connections which we developed based on the
Attention UNet architecture [40] and adjusted to be suitable for image generation. Finally,
we introduce our novel implementation of transformers [41] into the encoder of a five-layer
3D UNet model designed for image generation to form Transformer UNet (Figure 7). These
three models were developed as patch-based models as the additional parameters made it
impossible to train with the full-size data due to memory limitations.

Finally, an implementation of CycleGAN by David Iommi [42] was used to compare
the UNet variations to a GAN. Table 3 summarises some of the differences between all the
models we utilised. Code for all of the models we have developed is publicly available [28].

Figure 3. Architecture of UNet V1, UNet V2, and patch-based UNet. The blue rectangles represent
the feature maps at each step and are annotated with the number of channels. Purple rectangles
represent the feature maps copied from the encoding path to the decoding path.

2.3. Training and Evaluation

Table 3 summarises the hyperparameters selected for each model and details infor-
mation about the training environment. The dataset of 181 stroke patients was split into
training, validation, and test sets with 144 patients in the training set, 18 patients in the
validation set, and 19 patients in the test set. CycleGAN did not use a validation set and
instead had the training and validation sets combined to form 162 patients in the training
set and 19 patients in the test set. Each model was evaluated on the data from the 19 test
subjects. The model was run with CT scans as inputs and the outputs were compared to
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the true MRIs through quantitative metrics: PSNR, SSIM, MAE, and MSE. The results were
visually compared, and the appearance of any lesions was analysed.

Figure 4. Architecture of 2D UNet. The blue rectangles represent the feature maps at each step and
are annotated with the number of channels. Purple rectangles represent the feature maps copied from
the encoding path to the decoding path.

Figure 5. Architecture of UNet++. The blue rectangles represent the feature maps at each step and
are annotated with the number of channels. Purple rectangles represent the feature maps copied from
the encoding path to the decoding path.
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Figure 6. Architecture of Attention UNet. The blue rectangles represent the feature maps at each step
and are annotated with the number of channels. Purple rectangles represent the feature maps copied
from the encoding path to the decoding path.

Figure 7. Architecture of Transformer UNet. The blue rectangles represent the feature maps at each
step and are annotated with the number of channels. Purple rectangles represent the feature maps
copied from the encoding path to the decoding path.

Table 3. Hyperparameters.

Model Number of Epochs Learning Rate Patch Based Input Dimension Batch Size Loss Function Training
Environment

UNet V1 400 5 × 10−5 7 176 × 192 × 176 1 MAE 1 × 80 GB Tensorflow
UNet V2 400 5 × 10−5 7 176 × 192 × 176 1 MAE 1 × 80 GB Tensorflow

UNet Patch 400 5 × 10−5 X 96 × 96 × 96 4 MAE 4 × 32 GB Tensorflow
UNet 2D 400 5 × 10−5 7 192 × 176 16 MAE 4 × 32 GB Tensorflow
UNet++ 400 5 × 10−5 X 96 × 96 × 96 4 MAE 4 × 32 GB Tensorflow

Attention UNet 400 5 × 10−5 X 96 × 96 × 96 4 MAE 4 × 32 GB Tensorflow
Transformer UNet 400 5 × 10−5 X 96 × 96 × 96 1 MAE 1 × 80 GB Tensorflow

CycleGAN 200 2 × 10−4 X 112 × 112 × 112 6 MAE/BCE * 6 × 32 GB Pytorch

* CycleGAN uses MAE as the loss function to measure the discriminator’s accuracy and BCE for the cycle-
consistent component. The total loss function combines these. MAE—Mean Absolute Error, BCE—Binary
Cross Entropy.
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The quantitative metrics were calculated only over the voxels within the brain—
excluding the background of the image. All voxels within the brain on the true MRIs had a
nonzero intensity, while the background was zero everywhere. To compute the evaluation
metrics over only the brain, voxels were only included in the calculation if the intensity of
the voxel in the true MRI was nonzero.

To ensure that the synthetic MRIs accurately portrayed lesions, we tested if the true
lesion(s) in the original MRI were present in the synthetic MRIs. In research settings,
lesion segmentation is often performed manually by medical professionals, but many
studies have aimed to automate this task by using machine learning; however, this is
generally not performed for T1w MRIs at the acute stage. As obtaining a well-trained lesion
segmentation model can be challenging, a pretrained model from the ATLAS dataset [43]
was used in this study. To assess the performance of the 8 models in generating synthetic
MRIs that accurately portrayed lesions, the pretrained segmentation model was applied to
the synthetic MRIs generated by each model and the original MRI scans of two patients in
the test set.

One of the main advantages of MRIs over CT scans for stroke diagnosis is the higher
contrast they provide between different types of tissue. To evaluate the ability of synthetic
MRIs to replicate this feature, the tissue segmentation of white matter, grey matter, and
cerebral spinal fluid was performed by using FSL FAST [44].

Registration of the CT, synthetic MRI, and true MRI was performed by using the
registration module in 3D Slicer to evaluate the usefulness of synthetic MRIs in reducing
cross-modal registration to monomodal registration. A randomly selected patient (Patient
Alpha) from the training set, whose original MRI was not registered to the MNI152 atlas
during the preprocessing, was chosen as the target registration space, as shown in Figure 8.
Brain extraction using the SwissSkullStripper module of 3D Slicer was performed on Patient
Alpha’s MRI to prepare it for registration. Patient H’s true CT, true MRI, and synthetic
MRIs from each of the eight models were individually registered to Patient Alpha’s MRI by
using the BRAINS Registration in 3D Slicer, with the transformation matrices and registered
volumes saved. All the transforms were applied to one volume to compare registration
results without being affected by differences between the synthetic and true MRIs. The
CT underwent all nine saved transformations, and the CT transformation matrix from the
true MRI was taken to be the optimal registration that all others were compared to. Matte’s
Mutual Information (MMI) was calculated by using the BRAINS metrics module in 3D
Slicer to compare the nine other transformations.

(a) (b)

Figure 8. (a) MRI of Patient Alpha. (b) Target MRI for the registration task.
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3. Results
3.1. UNet V1

Figure 9 shows a sample slice of the synthetic MRI generated by 3D UNet for three
patients in the test set, along with the corresponding true MRI and CT slices. Patient A
presents a large lesion, which can also be seen in the synthesised MRI, but with reduced
contrast and less-precise borders. Patient B shows a similar overall contrast to the true MRI.
Patient C displays a very large, faint lesion that is not clearly visible in the synthetic MRI.

True CT True MRI Synthesised MRI

Patient A

Patient B

Patient C

Figure 9. Axial slices of CT scans (Left), true MRIs (Centre), and synthetic MRIs generated by
UNet (Right).

3.2. UNet V2

Figure 10 shows a slice of the synthetic MRI generated by 3D UNet by using an
upsampling layer and a convolution layer instead of the Conv3DTranspose layer. The
lesion for Patient A is clearly visible and appears similar in shape to the true MRI. The
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lesion in Patient C is also discernible, albeit faint and lacking a clear outline. All three
synthetic images show good contrast and likeness to the original image.

True CT True MRI Synthesised MRI

Patient A

Patient B

Patient C

Figure 10. Axial slices of CT scans (Left), true MRIs (Center), and synthetic MRIs generated by UNet
V2 (Right).

3.3. Patch-Based UNet

Figure 11 presents the results of a patch-based 3D UNet. The edges of the patches are
clearly visible, and the patches do align smoothly but still differ in intensity. The lesion
can be clearly seen in the synthetic image for Patient A, appearing on both of the left-hand
side patches. It is difficult to tell whether the lesion is present for Patient C, although the
general region appears hypointense.

3.4. 2D UNet

Figure 12 shows the results of a 2D UNet trained on the axial slices of the dataset. All
three of the synthetic MRIs show a wide range of shades and detail across the brain while
maintaining suitable contrast. For Patient A, the lesion is clearly visible with an accurate
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boundary—however, it is quite faint, and the intensity is not consistent throughout. The
synthetic MRI for Patient C does not have a clearly visible lesion, but there appears to be a
boundary with a similar shape and size to the true lesion.

True CT True MRI Synthesised MRI

Patient A

Patient B

Patient C

Figure 11. Axial slices of CT scans (Left), true MRIs (Centre), and synthetic MRIs generated by
patch-based UNet (Right).

3.5. UNet++

Figure 13 shows the results from a 3D patch-based UNet++ model. In the synthesised
MRI for Patient A, the intensity varies between patches, making the patch edges very
visible and the presence of a lesion uncertain. On the other hand, Patient B’s synthesised
MRI presents an excellent and realistic level of contrast and detailing of the grey matter
structures. Patient C’s MRI lacks contrast, and the lesion seems to be absent.

3.6. Attention UNet

Figure 14 shows the results of a patch-based UNet with attention gates built into the
skip connections. In the synthesised MRI for Patient A, the intensity again varies between
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the patches, making the patch edges very visible. Patient B displays good contrast; however,
some of the grey matter structures are blurry. The lesions do not appear to be present for
Patients A and C.

True CT True MRI Synthesised MRI

Patient A

Patient B

Patient C

Figure 12. Axial slices of CT scans (Left), true MRIs (Centre), and synthetic MRIs generated by 2D
UNet (Right).

3.7. Transformer UNet

Figure 15 presents the results of a patch-based UNet using transformer blocks in the
encoder. In the synthetic MRI for Patient A, the lesion appears extremely dark with a sharp
but inaccurate boundary. Patient B’s synthetic MRI displays good contrast and accurately
captures many regions of grey matter. In the synthetic MRI for Patient C, the lesion is not
clearly visible.

3.8. CycleGAN

Figure 16 shows the results of a 3D CycleGAN [42] run with a patch size of 112 × 112 × 112.
The images display very good contrast; however, the shape of the sulci is not always
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accurate. The lesion for Patient A is faint and there is no lesion visible in Patient C. The
images also show a checkerboard pattern.

True CT True MRI Synthesised MRI

Patient A

Patient B

Patient C

Figure 13. Axial slices of CT scans (Left), true MRIs (Centre), and synthetic MRIs generated by
UNet++ (Right).

3.9. Qualitative Assessment

All the models except UNet++ and Attention UNet clearly depict the lesion for Patient
A; however, most of the lesions in the synthesised MRIs lacked contrast. CycleGAN
appeared to have the least contrast between the lesion and surrounding area. Transformer
UNet exhibited considerably higher contrast for the lesion; however, it failed to accurately
capture the lesion’s boundary. 2D UNet gave rise to a mottled effect over the lesion area.

Patient C presented with a notably large lesion; however, only UNet V2 and 2D UNet
managed to retain any indication of the lesion. Nevertheless, the presence of the lesion
remains subject to debate in both cases. The models encountered difficulties in accurately
reproducing other features of Patient C’s dataset. Additionally, with the exception of
CycleGAN, they lacked the necessary contrast between the various types of brain tissue.
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The inability to generate sufficient contrast was observed across multiple synthetic MRIs,
particularly in cases where the true MRI exhibited lower levels of contrast. CycleGAN
demonstrated good contrast across all synthetic MRIs; however, it often failed to replicate
the brain structures found on the true MRI. Specifically, CycleGAN seemed to have learned
the presence of sulci along the brain’s edge but generated them in a semirandom manner
rather than reproducing the patterns observed in the CT. The 2D UNet model exhibited
notable accuracy in modelling gyri and sulci in the synthesised MRI, displaying good con-
trast. On the other hand, the patch-based models faced challenges in accurately predicting
the edges of the patches, resulting in misalignment issues. Figure 17 shows seven axial
slices of the true MRI and the synthetic MRIs from each of the eight models for Patient D.

True CT True MRI Synthesised MRI

Patient A

Patient B

Patient C

Figure 14. Axial slices of CT scans (Left), true MRIs (Centre), and synthetic MRIs generated by
Attention UNet (Right).

Patch outlines in the nonoverlapping patch-based models are clearly visible. The
inaccurate patch alignments and difference in contrast between the patches stands out,
detracting from the contrast of lesions, different tissue types, and other features within the
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brain. Despite other issues, CycleGAN—which uses overlapping patches—does not suffer
from this.

True CT True MRI Synthesised MRI

Patient A

Patient B

Patient C

Figure 15. Axial slices of CT scans (Left), true MRIs (Centre), and synthetic MRIs generated by
Transformer UNet (Right).

3.10. Quantitative Assessment

Table 4 shows the four common image evaluation metrics (MAE, MSE, PSNR, and
SSIM) calculated between the synthetic MRIs and true MRIs averaged over the 19 patients
in the test set. Only the voxels in the brain were used to compute these metrics due to the
complexities of calculating the SSIM over only the brain voxels. The total SSIM (calculated
over the entire volume) is also listed. UNet achieved the best scores across all metrics,
while CycleGAN achieved the worst scores across all metrics.
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Table 4. Evaluation metrics for each model averaged over the test set along with standard deviations.
The best result for each metric is shown in bold.

Model MAE ↓ MSE ↓ SSIM ↑ PSNR ↑ Total SSIM ↑ *

UNet 18.29 ± 6.61 558.93 ± 405.03 0.687 ± 0.071 21.571 ± 2.724 0.882 ± 0.030
UNet V2 20.23 ± 7.29 671.03 ± 463.26 0.676 ± 0.062 20.659 ± 2.483 0.877 ± 0.028
2D UNet 19.23 ± 7.20 615.40 ± 509.75 0.613 ± 0.063 21.097 ± 2.491 0.834 ± 0.029
Patch-Based UNet 19.18 ± 8.00 632.61 ± 557.50 0.649 ± 0.071 21.176 ± 2.763 0.867 ± 0.031
Attention UNet 19.50 ± 7.77 653.92 ± 561.15 0.642 ± 0.068 20.964 ± 2.648 0.865 ± 0.030
UNet++ 20.28 ± 8.42 683.76 ± 562.59 0.657 ± 0.067 20.800 ± 2.751 0.870 ± 0.029
Transformer UNet 19.44 ± 7.56 651.78 ± 595.69 0.645 ± 0.077 23.990 ± 2.665 0.865 ± 0.034
CycleGAN 23.55 ± 10.57 978.71 ± 1075.83 0.467 ± 0.083 19.345 ± 2.591 0.780 ± 0.040

* Total SSIM is calculated over the entire volume. All other metrics are calculated over the voxels within the brain.

True CT True MRI Synthesised MRI

Patient A

Patient B

Patient C

Figure 16. Axial slices of CT scans (Left), true MRIs (Centre), and synthetic MRIs generated by
CycleGAN (Right).
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Figure 17. Four slices of an MRI of Patient D generated by each of the eight models along with the
True MRI.

3.11. Performance at Clinically Relevant Tasks
3.11.1. Registration

Figure 18 displays the resulting registrations for each MRI and the corresponding CT
in the first column, along with the CT that underwent the associated transformation in
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the second column. The mutual information between the presented CT and the CT which
underwent the true MRI transformation is provided for each case. All of the synthetic MRIs
achieved a suitable alignment to the target MRI, determined by a qualitative analysis of the
guided CT alignments and the mutual information scores. In contrast, the unguided CT
scans were not aligned accurately and required significantly more time when calculating
the transformation.

Figure 18. Registration of the true MRI and synthetic MRIs of Patient H and the associated registra-
tions of the CT of Patient H. The best mutual information result is shown in bold.

3.11.2. Lesion Segmentation

Figure 19 displays the results of the lesion segmentation algorithm applied to the syn-
thetic and true MRIs of two patients within the test set. Patient E exhibited a smaller lesion
that lacked significant contrast in any of the synthetic MRIs. Among the synthetic MRIs,
only those generated by UNet and UNet V2 produced lesion segmentations resembling
the original MRI for Patient E, with Dice Scores (DSC) of 0.662 and 0.615, respectively. The
next best performing model was Transformer UNet, achieving a DSC of 0.121. For Patient
A, all synthetic MRIs, except those generated by CycleGAN, yielded lesion segmentations
resembling the true MRI. The most accurate lesion segmentation for Patient E was obtained
from the UNet V2 synthetic MRI, with a DSC of 0.715.

3.11.3. Brain Tissue Segmentation

Figure 20 displays the results of the FAST algorithm applied to each MRI synthesis
model and the true MRI for two patients. FAST did not perform well when applied to
the CycleGAN results. Interestingly, the output classified most voxels as cerebrospinal
fluid (CSF) for both patients, despite and unknown reason for this behaviour. Furthermore,
in the patch-based models, it is evident that the FAST algorithm struggles to classify the
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regions around the edges of the patches. In the case of the 2D UNet synthetic MRI, the
FAST model fails to identify CSF around the edge of the brain and instead misclassifies
some areas outside the brain as CSF. Overall, UNet and UNet V2 demonstrate the best
performance. UNet achieved the highest DSC for the GM and WM for Patient F, as well as
the best WM DSC for Patient G. On the other hand, UNet V2 achieved the best WM DSC
for Patient F and the best GM DSC for patient G. UNet++ attained the highest DSC CSF
score for Patient G.

Figure 19. Lesion segmentations of the true MRI and synthetic MRIs for Patient E (Left) and Patient
A (Right). The best dice score for each patient is shown in bold.
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Figure 20. Segmentation maps of the true MRI and synthetic MRIs of Patient F and Patient G. The best dice score for each patient and segmentation class is shown
in bold.
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4. Discussion

This study evaluated the synthetic MRIs generated from CT scans using eight different
models. The synthetic MRIs, along with their lesion segmentation, tissue segmentation,
and registration outputs, were assessed and compared by using various metrics. Across all
metrics, UNet consistently outperformed the other models, while CycleGAN performed
the poorest. Visually, the results from CycleGAN appeared blurry with a noticeable
checkerboard effect, and the presence of lesions was barely discernible, if present at all. The
registration process of the CT scans was notably less successful as it required a considerable
amount of time and resulted in incorrect alignment. However, the findings demonstrate
that the synthetic MRIs generated through the methods employed in this study can be used
to guide the cross-modal registration of CT-to-MRI scans.

Overall, the generation of synthetic MRIs from CT scans by using the methods de-
scribed in this paper produces realistic MRIs that can aid in registering CT scans to an
MRI atlas. The synthetic MRIs enable the segmentation of white matter, grey matter, and
CSF by using algorithms designed for MRIs, exhibiting a high degree of similarity to true
MRIs. UNet and UNet V2 consistently demonstrated superior performance across all tasks,
surpassing the 2D and patch-based UNet implementations.

4.1. Different Architectures

CNNs require paired datasets to perform regression tasks, including image synthesis.
One attractive feature of GANs is their ability to produce high-quality images even when
trained on small unpaired datasets. This is attributed to the unique architecture of GANs,
which generally uses a CNN as the generator, which indirectly learns through the discrimi-
nator. The discriminator enforces close matching between the generated output and the
data distribution of the training data, resulting in high detail and contrast in the generated
images, and visual similarity between the generated and target images.

One issue with GANs is that they may overlook important relationships between the
input and target on an individual case basis. The impact of distribution statistics on the
output is significant, leading GANs to potentially include or exclude important structures,
such as lesions, which may be present at the individual level but are not adequately reflected
in the groupwise distribution. This is discussed at length in Cohen et al. [45].

GANs excel in cases where there is not a single correct answer—such as text-to-image
generation or translating photographs into different art styles. However, in scenarios like
MRI generation from a CT scan, where the focus lies not on the overall visual appearance
but on contrast and the presence of specific structures, it becomes imperative to retain the
necessary structures in the generated image. Due to this, CycleGAN is expected to struggle
with rigid objects containing soft tissue and therefore is not expected to perform well at
translating brain imaging. CycleGAN may perform differently when translating medical
imaging of other regions of interest.

Paired GANs, such as Pix2Pix, attempt to address these issues by incorporating terms
that compare the generated image to the true target. However, these are still susceptible
to the aforementioned challenges due to the tendency of GANs to fit to the distribution
of the training data. Training GANs is notoriously difficult, which could partly explain
why CycleGAN performed poorly in this study and did not achieve a similar level of
performance as observed in a previous similar study [20].

For the task of CT-to-MRI synthesis for stroke patients, accurately representing the
lesion(s) and surrounding structures is more important than image quality and fidelity,
making CNNs potentially more suitable. However, CNNs tend to exhibit worse image
quality than GANs due to the absence of a discriminator. Nevertheless, CNNs are easier
to train and do not suffer from the issues outlined above. The limited use of CNNs
in the literature is surprising, and this study demonstrates the value of exploring this
approach further.
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4.2. Limitations

The main limitation encountered during the development and implementation of the
models was memory issues. The MNI152 atlas used in preprocessing had dimensions of
181 × 217 × 181 voxels. To meet the requirements of the UNet model, the preprocessed
dataset had to be appropriately cropped and padded to ensure each dimension was a
multiple of 16. Inputting these to the five-layer 3D UNet model with a batch size of one
exceeded the memory limit of the 32 GB GPUs. One potential solution was downsampling
the data, but this resulted in a loss of information and introduced checkerboard artefacts
during model training. The downsampling process disrupted the data distribution of the
training data, ultimately leading to lower quality and contrast in the generated images.
Another workaround involved cropping the background of the images as much as possible.
By reducing the size to 176 × 192 × 176, the 3D UNet model could run with a batch size of
one on the 80 GB GPUs, yielding better results compared to using downsampled images.
However, the architectures of UNet++ and Attention UNet had more parameters than
UNet, which still caused memory errors, even with the cropped images on the 80 GB GPUs.

To address the issue of large images, two options were considered. The first option
involved using a 2D UNet model on 2D slices of the data. While this allowed for higher res-
olution images to fit on the GPU and be input into the model, it introduced a potential bias
in the output in the slice direction since the network does not consider spatial relationships
in that direction. The second solution was to feed smaller patches of the original data by
using a patch-based model, enabling the use of 3D models. The Patchify library was used in
this study to create nonoverlapping patches, resulting in clearly defined patch edges in the
synthetic MRIs. However, using overlapping patches and averaging the overlapping areas
would produce smoother final images and may help the model capture brain structures
more accurately.

Similarly, the images generated by the 2D UNet model exhibited intensity variations
between slices along the sagittal and coronal axes (Figure 21). To address this, it would
be preferable to train the model on axial, coronal, and sagittal slices and then average the
results across all three dimensions.

Another limitation of this study was the evaluation through clinically relevant tasks,
which were only performed on one or two of the patients in the test set. To obtain a
more reliable comparison of the performance of the synthetic medical images, it would be
beneficial to use synthetic MRIs from a larger number of patients in the test set. Furthermore,
the presence of errors in the lesion segmentation used on the true MRI may have resulted
in errors in the synthetic MRI lesion segmentations, further emphasising the importance of
accurately comparing them to the true lesion segmentations.

(a) (b)

Figure 21. (a) Coronal slices of an MRI generated by 2D UNet. (b) Sagittal slices of an MRI generated
by 2D UNet.

4.3. Input Data Quality

Small misalignments between the MRI and CT could potentially contribute to blurri-
ness and inaccuracies in the synthetic MRIs. A previous study [20] attempted to address
this issue by implementing a perceptual loss by using the VGG network. However, it was
found that this approach did not have a positive impact on model performance. Moreover,
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employing the perceptual loss requires significant computational power as the UNet results
need to be fed through a second network to calculate the loss before adjusting the network
again. Alternatively, investing more time and effort into the preprocessing pipeline may be
a more effective approach to improving image clarity.

The UNet model exhibited extreme sensitivity to the input data used. Depending
on the order and nature of the preprocessing steps, the model frequently got stuck in the
first epoch, with the loss and other metrics remaining unchanged throughout the training
process. In such cases, the model would often predict completely black volumes for every
CT scan. Furthermore, the inclusion or exclusion of normalisation and regularisation layers
had a significant impact on the stability of the model. When batch normalisation layers
were included, a problem arose where the background was predicted as grey, resulting in
significantly higher loss during the testing phase, even when evaluated on the training
data. This discrepancy occurred because batch normalisation operates differently during
training and testing phases. Due to the encountered issues and small batch sizes used,
batch normalisation was not used in the final models.

4.4. Metrics

During the adaptation of the different models, especially during the implementation
of the base UNet model, it was observed that accuracy metrics did not effectively represent
the performance of the model. The model could produce significantly different image
outputs, even when exhibiting similar accuracy metrics on the test and validation set. This
observation was also noted by Kalantar et al. [20], where they concluded that their best-
performing model did not have the highest scores on commonly used quantitative metrics.
Furthermore, there are no currently established benchmarks for quantifying the accuracy
of synthesised MRIs. The commonly used quantitative metrics are strongly influenced by
the background of the image, which spuriously inflates accuracy when calculated over the
entire synthesised image. One possible solution is to extract the brain region from the image
volume and calculate the metrics only for the voxels within the brain. Without employing
such an approach, it becomes challenging to compare model performance across different
studies and datasets.

As the SSIM employs a sliding window of 11 × 11 × 11 voxels, the voxels up to
11 voxels away from the perimeter of the brain contribute some information from the
both the brain and background. It could be argued that including these voxels in the
average might provide a more accurate representation, but it also introduces background
information into the SSIM calculation. A previous study also calculated the SSIM over a
specific region of interest [20] but did not report the methodology used for their calculation,
making it difficult to draw direct comparisons with the results.

4.5. Other Datasets

To enhance the diversity of the training dataset, it would be helpful to include a
larger amount of patient data, especially from patients with stroke mimics and healthy
individuals. When developing a model for use in clinical settings, it is important to train
it on a diverse range of inputs rather than solely relying on data from patients who were
ultimately diagnosed with strokes. This becomes particularly important when training
GANs since they aim to match the distribution of the training data. Moreover, even though
CycleGAN was trained exclusively on a dataset of stroke patients, it did not perform well
at translating lesions into the synthetic MRIs it generated.

4.6. Further Research

Introducing a term in the loss function that penalises gradients of intensities could
address the lack of clarity in the synthesised images. Such a term would reward sharp
intensity changes (boundary lines) or regions with similar intensity and promote increased
contrast. This approach could prove particularly helpful in making the outlines of lesions
and other brain structures more distinct. Furthermore, an appealing direction for further
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research could be to incorporate a lesion segmentation model into the loss function, which
would encourage the model to accurately model the lesion with improved accuracy and
contrast in the synthetic MRI.

Further investigation into the benchmarks that synthetic MRIs should aim to achieve
before considering the integration of CT-to-MRI synthesis into the clinical workflow for
stroke diagnosis and treatment is highly recommended. This area presents several open-
ended questions, such as what the optimal methods are for assessing the accuracy of MRI
generation models and establishing appropriate benchmarks for evaluation.
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