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Abstract: Transmembrane proteins (TMPs) are a class of essential proteins for biological and thera-
peutic purposes. Despite an increasing number of structures, the gap with the number of available
sequences remains impressive. The choice of a dedicated function to select the most probable/relevant
model among hundreds is a specific problem of TMPs. Indeed, the majority of approaches are mostly
focused on globular proteins. We developed an alternative methodology to evaluate the quality of
TMP structural models. HPMScore took into account sequence and local structural information using
the unsupervised learning approach called hybrid protein model. The methodology was extensively
evaluated on very different TMP all-α proteins. Structural models with different qualities were
generated, from good to bad quality. HPMScore performed better than DOPE in recognizing good
comparative models over more degenerated models, with a Top 1 of 46.9% against DOPE 40.1%, both
giving the same result in 13.0%. When the alignments used are higher than 35%, HPM is the best for
52%, against 36% for DOPE (12% for both). These encouraging results need further improvement
particularly when the sequence identity falls below 35%. An area of enhancement would be to train
on a larger training set. A dedicated web server has been implemented and provided to the scientific
community. It can be used with structural models generated from comparative modeling to deep
learning approaches.

Keywords: structural models; protein structures; membrane bilayer; DOPE; Modeller; AlphaFold2

1. Introduction

Protein structure knowledge allows the atomistic understanding of biological mech-
anisms. Nonetheless, most of the available protein structures in the Protein DataBank
(PDB) [1] are globular. Indeed, despite their great functional importance, e.g., 20% of all
human proteins [2], transmembrane proteins (TMPs) represent less than 0.7% of the PDB (at
8 December 2020). They are implicated in a large series of pathologies [3] and are targeted
by more than 60% of current drug [4]. Thus, methods to propose efficient structural models
of TMPs are of high importance [5,6].

Although the number of templates was limited, comparative modeling methods have
been applied to TMPs de novo, and now, deep learning protein structure predictions are
used with the most recent developments [7,8]. Whatever the approach, the major challenge
is to detect the structural model with the closest conformation to the native structure,
which is accomplished by the so-called model quality assessment programs (MQAPs). By
definition, free energy potentials would theoretically allow this selection. Physics-based
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potentials taken from molecular mechanics [9,10] might be considered. It was actually
proposed by Feig’s group [11], which calculated the energy of models as a sum of the force
field conformational energy of the membrane protein plus the interaction energy of the
protein with an implicit model of membrane environment. A web server (not available
at the present time) was developed to calculate what is designated as memscore. As
stated by the authors, the strategy was rather good for decoy close to the native state but
further improvements are required for models further from the native state. Thus, even
by accounting the membrane environment, force-field-based scoring functions are not the
most efficient ones in practice because most of them are not calibrated on free energies.

The statistical potentials derived from experimentally determined protein structures
remain the most efficient ones. MQAPs can be divided into different approaches; the most
important ones take into account the local 3D environment of the protein structures. Briefly
speaking, the scoring is based on the counting of the observed contacts and compared
to a reference. However, although based on the same spirit and the same datasets, the
formalism of the scoring function itself may be very different (see [12]). In this field,
the most widely used was discrete optimized protein energy, or DOPE [13], which was
implemented in the Modeller software [14,15]. It is mainly based on the distance between
atoms in the analyzed models compared to the ones observed in the dataset of reference.
Prosa [16] and its latest incarnation Prosa-web [17] are based on a classical potential of
mean force; the output provided by Prosa-web was interesting as it compared the quality
of the structural models in regard to a large dataset of X-ray and NMR structures. Verify3D
proposed a slightly different view by considering the compatibility of the model (3D) with
its sequence (1D) by looking at the environment (secondary structure, hydrophobicity, etc.)
as seen in known structures [18,19]. Since this first generation, different improvements
have been introduced; they consisted of adding different parameters, such as the residue
distance, solvent accessibility and secondary structure content [20–23]. The weighting of
these parameters was optimized with artificial neural networks, support vector machines or
machine learning approaches [24–27]. Consequently, they were in general more dependent
on the training procedure and on the training set than classical approaches.

TMPs structural models have often been assessed using this approach. However,
these MQAPs were often optimized on water-soluble proteins that bathe in a homogenous
environment. In the case of TMPs, the situation is more complex because they are in
contact with two very distinct environments; a water environment for the soluble part of
the protein and the lipid environment for the membrane embedded region, and even a third
one corresponding to the membrane interface. This also corresponds to a striking difference
in the amino acid distribution of TMPs [28]. Thus, to make sure these specificities were
taken into account, the IQ method was proposed. It is based on the analysis of four types of
inter-residue interactions within the transmembrane domains [29]. The ProQM approach
used support vector machines trained on contacts, solvent-accessible surface, secondary
structure, topology of TM region, Z-coordinate, and evolutionary information [30,31]. It
was sensitive to the side-chain positioning.

MEMEMBED is a dedicated statistical potential that considers the membrane depth
of residues [32]. More recently, MAIDEN proposed an interesting and innovative de-
velopment, computing the interatomic distance between all 20 standard residue types,
focusing on intramembrane residues [33,34]. QMEANBrane is a more simple approach
also using the delineation of a theoretical membrane region to focus on the transmembrane
region [35]. It was only tested on a GPCR, while MAIDEN was tested on the most diverse
set of protein folds.

In the RosettaMembrane/RosettaMP approach [36–38], a specific function for TMP
has been established in a Rosetta way, namely the force field is a linear combination of
a Lennard–Jones potential to model the VDW interactions, a backbone torsional term, a
knowledge-based pair interaction term for the electrostatic interactions, reference energies
to normalize the overall amino acid composition, an implicit atomic solvation term, and an
orientation-dependent hydrogen bonding term [39]. This development is highly dependent



BioMedInformatics 2023, 3 308

on the specific generation of the models by Rosetta. All these scoring functions can only
compare a set of equivalent structural models, but not different sequences. AlphaFold2 has its
own quality schema evaluation, called pLDDT, for “predicted local distance difference test”,
which is a per-residue confidence metric [40]. pLDDT is not a score for comparing models but
rather a local confidence measure of regions of the structural models [40]; it appears worse for
qualifying regions in membrane protein compared to those in globular proteins [8,41–44].

In a previous study [45], we learnt and analyzed the sequence–structure relationship of
TMPs with an unsupervised learning approach, called the hybrid protein model (HPM) [46,47].
HPM was also shown to be efficient in analyzing globular proteins, e.g., building of over-
lapping local structural prototypes [48–50] or the prediction [51–53] of flexibility. HPM was
used to analyze protein fragments present in a non-redundant databank of all-α transmem-
brane proteins. The method has many advantages, which are: (i) A simultaneous learning
of sequence (polarity, volume, and hydrophobicity) and structures (ϕ andψ dihedral angles)
properties, e.g., distribution of amino acids associated with different local conformations;
(ii) Unsupervised learning due to the given descriptors (sequence and structure), i.e., without
any a priori; and (iii) The learning of the overlapping of protein fragments, taking into
account the sequentiality (or continuity) essential in proteins, i.e., without any constraints.
After a fine-tuning of learning parameters, the sequence–structure relationship was ana-
lyzed in light of a structural alphabet, called protein blocks [54,55], underlining two helical
regions with very different hydrophobic patterns, identifying groups with properties spe-
cific to extremities of helices, or to loops, or to helices. Moreover, some groups showed
preferential localizations for the periphery of the membrane or inside the membrane. This
can be used for annotation as channel/non-channel, but also for the assessment of the
quality of structures and structural models.

In this study, we have generated a large set of structural models ranging from very
good to poor models for a various number of folds. The models were evaluated using
classical root mean square deviation (rmsd) and GDT_TS. The latter is the most classical
reference metric for comparing diverse structural models [56]. Its interest is to limit the
influence of poorly modeled substructures for the protein considered. We also used the
famous DOPE scores [13], as using them is one of the most classical approaches to selecting
protein structural models though comparative/homology modeling.

In some aspects, the HPM approach can be related to the Verify3D methodology, which
encompasses sequence, structure, and environment properties to evaluate the compatibility
of a given sequence with a given 3D structure. The Verify3D approach was never dedicated
to TMPs. HPM does not need, as is true of other approaches, to localize helical regions
and take into account the connecting loops. We then compared the discrimination of the
quality of the models using HPMScore values compared to DOPE scores, and we propose a
dedicated webserver HPMScore (https://www.dsimb.inserm.fr/dsimb_tools/hpmscore/
index.php, accessed on 1 March 2023).

2. Materials and Methods
2.1. Protein Structure Dataset

The membrane protein dataset was derived from the HOMEP dataset [57]. This set
of proteins is composed of 76 membrane proteins, separated in 23 categories, depend-
ing on their biological function (https://zenodo.org/record/2646540#.Y7b99C3pNTY,
accessed on 1 March 2023). This dataset was completed by 13 GPCR structures. The entire
dataset is composed of 89 proteins. The protein structures composed of all-α transmem-
brane domain were taken from the PDB [1]. For analysis purposes, the number of TM
domains and their boundaries over the whole protein sequence were predicted using
the PPM web server or directly imported from the orientation of protein in a membrane
(OPM) database [58,59]. We defined three main categories of protein structures according
to the transmembrane content: large (more than 40% of amino acids associated with the
transmembrane domain), medium (40%< and >15%), and few (>15%). Please notice that
HOMEP was later expanded in EncoMPASS [60].

https://www.dsimb.inserm.fr/dsimb_tools/hpmscore/index.php
https://www.dsimb.inserm.fr/dsimb_tools/hpmscore/index.php
https://zenodo.org/record/2646540#.Y7b99C3pNTY
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2.2. Generation of Alternative Structural Models

We have generated a large set of structural models ranging from good quality to
bad, i.e., to mimic what often happens in daily research. For a given protein, the original
sequence from the PDB was extracted and duplicated to create an ideal alignment where
the template and the target sequence are initially identical. The alignment was further
processed to reproduce point mutations or gap insertions using two strategies. First, we
created a similar sequence by randomly picking an amino acid position and exchanging
it with another position. This procedure kept the amino acid composition, but varied the
sequence identity with the template sequence. The procedure was repeated until a target
percentage of identity was obtained or a maximum number of iterations was reached.
This iteration number was set arbitrarily at twice the length of the amino acid sequence
to save time. The second strategy consisted of perturbing the alignment by random gap
modifications, up to 5 random gaps of length between 1 and 8, either on the parent sequence
or on its children. Once the alignment was produced, its overall percentage of identity was
calculated using BioPerl [61]. The structural models for each alignment were created using
Modeller v9.18 [14,15] (the entire process of generation and evaluation of structural models
is presented in Figure A1).

2.3. Assessment Scores

DOPE scores [13] are directly provided by Modeller [14,15]. HPM scores [45] are
determined as follows: (i) The protein structures are cut into fragments of length L (L = 13,
as obtained in [45] and recommended from previous studies [46,47,54], see next paragraph);
(ii) Each fragment is translated in terms of polarity, volume, and hydrophobicity for their
sequence and in the cosine and sine functions of their dihedral angles for their structure;
(iii) The fragment and its local environment are then compared to each position of the opti-
mal HPM matrix (determined in [45]); (iv) The maximal score provides the best matching
between this position and the HPM matrix that reflects our current knowledge of TMP
sequence–structure relationship. The HPMScore value is the sum of all these maximum
scores. For further analyses, local DOPE and local HPMScore values were also investigated
per domain, i.e., transmembrane region or not, using the segments defined as membranous
in OPM [58,59].

From a practical point of view, HPM depends on its total length and the length of the
fragments presented. These two parameters were tested in [45] to end with a total length of
100 and fragments of L = 13 positions. With several simulations, these two choices made
it possible to have a sufficient occurrence number at each position, and also two distinct
types of helices. Then, with these parameters, 100 independent simulations were carried
out with a high learning rate similar to the self-organizing maps (SOM) type [62,63]; this
high value limits the importance of initializing. The most central HPM (with a minimum
distance from all the others) was then taken up as a new initial HPM for a new training.
Here, the learning coefficient was quite limited to fix the optimal HPM. These two stages
have a strong analogy with the two main phases of learning the SOMS, i.e., diffusion
then specialization.

2.4. Data Analyses

The 3D structure representation is generated using the PyMOL software (http://
www.pymol.org, accessed on 1 March 2023) [64]. The protein superimposition was carried
out using the iPBA software [65] based on the protein block description [54]. RMSD
was computed using profit [66], through the iPBA software. In the following step, the
computation of the GDT_TS and PBscore alignment was performed [65]. TMalign was also
used for comparison [67]. The GDT_TS value is a reference metric for comparing diverse
structural models [56]. It weights close to large local RMSD variations to limit the influence
of poorly modeled substructures for the protein considered. An ideal GDT_TS value is 100
for a “perfect” match between the model and the experimental structure; the worst value is 0.
For each experiment, the best model is defined by the highest GDT_TS in regard to the true

http://www.pymol.org
http://www.pymol.org
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3D structure. It is named “G-model” in the following. Most of the analyses were carried out
using the Python language and R software [68]. We have made available a companion website
that contains a large number of analyses (https://clipperton.ufip.univ-nantes.fr/hpmeval/,
accessed on 1 March 2023). The analyses can be viewed at the level of the whole dataset, but
also by a single protein and by protein type. Various data analyses have been performed.
The most classic is the calculation of the Top 1, Top 5, and Top 10. The metric is simple
and corresponds to the number of times that for the same simulation, the HPM or DOPE
method allow you to select the best model. For Top 1, it is a direct comparison, while for
Top 5 and Top 10, it is the best as selected by DOPE and/or HPM within their best 5 and
10 scores. The only specificity of these results is that sometimes DOPE and HPM can select
the same result (hence, the category HPM and DOPE).

2.5. Scripting and Web Server of HPMScore

The original code of HPMScore was developed with the use of a local PDB reader coded
in C language that generated a flat file with all the information (sequence in terms of polarity,
volume, and hydrophobicity, and structure in terms of ϕ and ψ dihedral angles). The latter
is used by the HPM program (also coded in C language) that performs the evaluation. A
dedicated web server that encompasses all these properties is made available to the scientific
community. It provides a simple interface with a nice visualization (https://www.dsimb.
inserm.fr/dsimb_tools/hpmscore/index.php, accessed on 1 March 2023).

3. Results
3.1. Generation of a Set of Structural Models for Sequences with Various Sequence Identities
with Templates

The assessment of protein model quality is essential to guide computational biologists
to select the best structure for further evaluation and analysis. The main idea was to
simulate a large sampling of structural models derived from TMP resolved structures,
ranging from sequences close to the sequence of a known structure to sequences far from
any structural template sequences leading to very poor models, as it may occur. To mimic
the drift of protein sequences through evolution, the initial protein sequence of each protein
model was subjected to permutations or mutations to reach a given percentage of identity.

For example, a 100amino-acid-length protein sequence will attain 99% of sequence
identity if one mutation is virtually performed, or 98% with a permutation since two
positions are exchanged between different amino acids. This degenerated sequence and
the original protein structure is then used as inputs for Modeller [14] for producing 3D
models of the “drifted” protein. We will detail below how the models are assessed using
our original method, HPMScore [45] and DOPE [13].

From the dataset of 89 proteins, a total of 29,571 alignments were generated, which cor-
respond to an average value of 332 degenerated alignments per protein. This value depends
on the protein length. The distribution of scrambled sequences ranked by sequence identity
is shown in Figure 1. The average sequence identity is 38.9% (for a median of 32.55%) and
reaches a peak for the 10–15% interval with more than 3500 alignments available. As the
generation of sequences with very low identity percentages (<10%) can be time-consuming,
we limited the number of sequence generation, which resulted in a drop in this category.
This distribution, which looks roughly as an extreme value distribution, shows that it is
easier to generate sequences with low sequence identity than with high sequence identity.
It also underlines the interest of categorizing 3 main classes of alignments: good for a
sequence identities higher than 75% (3682 sequences), bad for sequence identities less than
35% (15,786 sequences), and medium for the sequences between them (10,102 sequences).
For each alignment, 25 models were built using Modeller [49].

Thus, a particularly large number of structural models of very different quality have
been proposed, allowing a broad view of all the different types of protein folding of TMPs.
This approach allows the evaluation of HPMScore and its comparison with DOPE.

https://clipperton.ufip.univ-nantes.fr/hpmeval/
https://www.dsimb.inserm.fr/dsimb_tools/hpmscore/index.php
https://www.dsimb.inserm.fr/dsimb_tools/hpmscore/index.php
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3.2. HPM Selects Better Models Than DOPE

To determine which model is the closest to the experimental structure, GDT_TS
values [56] were computed for all models proposed from the degenerated sequences. In
ideal situations, we should observe a correlation between the scoring functions and the
GDT_TS values. Consequently, we addressed two questions: (i) What is the capacity of
each scoring function to rank the model with the highest GDT_TS score first? and (ii) What
is the quality of the best model (Rank 1) defined by each scoring function? For the first
question, we found that both DOPE and HPM can identify the absolute G-model (the one
with the highest GDT_TS) with a very limited prediction rate of 7.4% for HPM and 3.7%
for DOPE. Although the capacity of each scoring function to identify the absolute G-model
is limited, HPM appears slightly more efficient than DOPE.

This result still stands when addressing the second question, i.e., the quality of the
model ranked best by each method. Indeed, the first model ranked by HPM has a lower
GDT_TS score in 46.9% of cases compared to 40.1% for DOPE, and both select the same in
13.0% of the cases (see Table 1(A)). If the first 5 HPM or DOPE best scores are considered,
HPM still outperforms DOPE (48.4% vs. 44.0%), and this situation stands true even if
the first 10 models are considered (48.4% vs. 45.5%). This average lower sensitivity of
DOPE may be attributed to a more important weight of loop regions in the scoring function.
In contrast, when only transmembrane segments are taken into account (see Table 1(B)),
DOPE slightly outperforms HPM (47.2% vs. 45.6%) only if the best model is considered.
Indeed, when more models are considered (Top 5 or 10 models selected by each method),
the differences between the two scoring functions are small but systematically in favor of
HPM (46.8% vs. 46.4%, and 47.0% vs. 46.3%, respectively).
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Table 1. Relative performance of HPM vs. DOPE. The percentages of best models, i.e., best GDT_TS
found by HPM, DOPE or both within TOP 1, TOP 5 and TOP 10 results, are provided. (A) For the
complete structure. (B) Only on transmembrane segments.

(A)

Scoring Method/Models Considered for Ranking TOP 1 TOP 5 TOP 10

DOPE 40.1% 44.0% 45.5%
HPM 46.9% 48.4% 48.4%

HPM and DOPE 13.0% 7.6% 6.1%

(B)

Scoring Method/Models Considered for Ranking TOP 1 TOP 5 TOP 10

DOPE 47.4% 46.4% 46.3%
HPM 45.6% 46.8% 47.0%

HPM and DOPE 7.0% 6.8% 6.7%

In a second step, we examined the influence of the sequence identity on the capacity
of identifying the best model and the quality of the ranked models for each method (see
Table 2). For models produced with medium sequence identity (35–75% of sequence
identity), or with high sequence identity, i.e., good sequence alignment (75–100%), the
quality of the best ranked model by HPM largely outperforms the quality of the best ranked
model by DOPE, with about 52% for models in both medium and good categories detected
by HPMScore, 36% detected using DOPE, and 12% where both models find the same
model. For sequences below 35% of sequence identity, considered as poor alignments,
DOPE (43.8%) performs slightly better than HPM (42.6%), and both methods find the best
model in 13.6% of alignments.

Table 2. Relative performance of HPM vs. DOPE. The percentages of best models, i.e., the best
GDT_TS, found by HPM, DOPE or both when the sequence percentage id of the reference model is
taken into account, are provided.

Scoring Method/%
Sequence Identity Range

Poor Alignments
(0–35%)

Average Alignments
(35–75%)

Good Alignments
(75–100%)

Sequence count 15,786 10,102 3682
DOPE 43.8% 35.5% 36.8%
HPM 42.6% 51.8% 52.6%

HPM and DOPE 13.6% 12.7% 10.6%

In summary, for target sequences with a sequence identity compatible with compara-
tive modeling (>35%), HPM is on average more effective than DOPE. When the sequence
identity decreases, the differences between the two scoring schemas are much lower, and
slightly in favor of the DOPE scoring function. Please note that for poor alignment quality,
it is difficult to be sure that the aliasing is properly preserved. It is certain that a significant
number of cases are not correct TMPs.

Figure 2 illustrates an example of the putative metal-chelate type ABC transporter
(PDB ID 2NQ2) and the relationship between the generated alignments, the HPMScore
value of the corresponding structural models, and the structural approximation (evaluated
here by the GDT_TS). The protein is a homodimer, each monomer being composed of a
large transmembrane domain containing eight TM helices and an intracellular domain
composed of α-helices mainly and a few β-sheets (Figure 2a). Only Chain A has been
evaluated, since Chain B is similar. Figure 2b shows the dependence of the HPM score
with the percentage of identity of the target sequences with the template sequences. Since
the HPM score is equivalent to a distance, the lower the HPMScore value, the better it is.
Figure 2b clearly illustrates the nice correlation between the HPMScore and the sequence
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identity. Figure 2c shows that the quality of the models (evaluated with the GDT_TS score)
is obtained after a strong randomization of the sequence alignment. This figure points
out that even with a low sequence identity, the GDT_TS score can be very high, which
means that it is possible to keep a native fold. It is clear, however, that the better the
alignment, the lower the standard deviation of the category (good, medium, and bad).
Figure 2d highlights the correlation between scores from HPMScore and GDT_TS scores. It
is clear that for the lowest HPMScore values (associated with good quality alignments), the
structural approximation is the best. Moreover, the HPMScore is able to distinguish the
best ones from the worst.
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identity of the alignments (%), and (d) GDT vs. HPM scores (103). (b–d) good alignment (green),
intermediate alignment (blue) and bad alignment (red).

Hence, the example in Figure 2 shows the complexity of proposing structural models
of different quality, but also how essential it is. TMPs are more often difficult cases than
simple ones. The analysis of Top 1 to Top 10 shows that the HPMScore allows on average a
better selection of models. The analysis of the alignments compatible with the comparative
modeling (average and good quality) shows that the HPMScore gives a better selection in
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52% of the cases, 12% are common with DOPE, and DOPE performed better in 36% of the
cases. The difference is clear.

3.3. Assessment of Protein Model Quality

After evaluating how HPM correlates with a robust global measure, such as the
GDT_TS, we go further in the evaluation of the quality of the models ranked by HPM and
DOPE, respectively. An example of the models obtained for medium sequence identity
to the reference protein (38%) is presented in Figure 3. The best model according to HPM
is more compact and possesses slightly more secondary structures than the model with
the best DOPE score. A closer inspection reveals a more consistent architecture of the
seven transmembrane segments, a better orientation of the third intracytoplasmic loop
characteristic of GPCR proteins, and the conservation of the extracellular loop involved as
a lid for the ligand binding pocket. Overall, both models are of poor quality and would not
be considered as sufficient for further use as support models, but the HPM-selected models
are better candidates for further modeling studies.
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Figure 3. Comparison of models identified using HPM or DOPE. Cartoon representation of the
models selected by HPM ((a), in cyan) or DOPE ((b), in pink) for a degenerated sequence of 38.8%
sequence identity with the human M2 muscarinic acetylcholine receptor (PDB ID 3UON). The
HPM-selected model is more compact than the DOPE-selected model.

All analyses for all proteins have been made available on the companion site (https://
clipperton.ufip.univ-nantes.fr/hpmeval/, accessed on 1 March 2023). The analyses can be
viewed at the level of the whole dataset, but also by single protein and by protein type.

3.4. Web Server Usage and Example

The web server can be accessed at the following url: https://www.dsimb.inserm.fr/
dsimb_tools/hpmscore/index.php, accessed on 1 March 2023). The main page gives a
small introduction and a direct access to the section for uploading the structural models
(see Figure 4). Two options are possible that consist of: (i) Analyzing models one by one
(see Figure 4B); or (ii) A set of models uploaded from an archive (see Figure 4A). Please
note that structural models must be provided in a classical PDB format, as generated
by Modeller [14], Robetta [69], RoseTTAfold [70], AlphaFold2 [40], I-Tasser and other
classical approaches.

https://clipperton.ufip.univ-nantes.fr/hpmeval/
https://clipperton.ufip.univ-nantes.fr/hpmeval/
https://www.dsimb.inserm.fr/dsimb_tools/hpmscore/index.php
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files being in an unique archive or (B) added one by one. Links to the different pages are shown on
the top of the page (C) this page, (D) a description of the methodology, (E) a dedicated example and
(F) the contact page.

At the top, links to access other pages are found on all pages. The first page is the
Home page (see Figure 4C), followed by a page of explanation of the HPM methodology
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(see Figure 4D), a concrete example of usage and analysis (see Figure 4E), and finally, the
last page contains the contacts of the people involved in this research (see Figure 4F).

When the files have been loaded, the program launches an intermediate note page
stating ‘Please wait while HPMScore is computed’. Each job is associated with a temporary
directory, which will be kept for two months.

The results page (see Figure 5) is divided into six main parts. The example proposed
here can be found on the website, and corresponds to a putative Halorhodopsin with no
known structure and less than 40% sequence identity to related ones, i.e., a classical case of
structural modeling.
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Figure 5. HPMScore results. The page results have been split in two columns. (A) The list of the
different models ranging from best (smallest HPM score) to worst is provided; (B) A histogram of
these HPM scores is provided; (C) A local plot of HPM score is shown for the best model (it can be
found in the archive files for the other models); (D) Two orientations of the best structural models
colored with the local HPM score are provided with an extra one within the protein surface; (E) An
interactive visualization; and (F) Links to the different files and archive. The example shown here is
provided on the website and corresponds to a Halorhodopsin far away from other related sequences
and structures.

The first section lists the structural models by HPM score in descending order (the
best being the first, see Figure 5A). Then, a histogram shows the distribution of the HPM
scores of the different models (see Figure 5B). This information allows the user to carry
out analyses, for example, to compare the best and the worst model, or other ranking
questions. HPM, like DOPE score or Verify3D and PROSA, computes a local score, it uses
an overlapping sequence window of 13 residues. The third section provides this information
for the first model with a plot (see Figure 5C). It could allow comparing alternative proposed
conformations. The fourth part shows the 3D model in two orientations (and an extra one
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with the surface) thanks to the software PyMOL. The structural model is colored according
to the quality considered by the HPM score (see Figure 5D). The user can directly interact
with the structural model (see Figure 5E). An essential point is the availability of an archive
summarizing all this information (see Figure 5F), which can be downloaded locally. It
contains all the information detailed here, but also provided for every model not shown on
the website. Structural models are provided with an HPM score. It is possible to observe
them with visualization software, such as the PyMOL software. All of this information
makes it easy to choose the model that seems the most relevant, knowing the difficulty of
this type of question for transmembrane proteins.

Thus, the HPMScore webserver allows the specialist and the neophyte (it has been
particularly used in several training sessions) to evaluate models in a simple way. It then
allows visualizing the areas considered as the most successful. The specialist can also use it
to go further in comparative modeling by combining multiple models according to their
local HPMScore values.

3.5. Use with Structural Models Coming from Different Approaches

We have assessed the interest of our approach based on comparative modeling, while
new approaches of interest exist (see Figure 6). We have so built a 3D structural model of
the putative Halorhodopsin used in Figure 5 with the threading approach Phyre [71] and
deep learning approaches RoseTTAfold [70], ESMFold [72], and AlphaFold2 [40]. Other
approaches were tested but they cannot provide complete models.
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Figure 6. Comparison of different structural models coming from different methodologies for a
Halorhodopsin. (a) The list of the different methodologies is provided, (b) the corresponding HPM
score histogram with (c) the visualization of different structural models from Modeller, RoseTTAfold,
Phyre, ESMFold, and AlphaFold2. Please notice that PDB files of RoseTTAfold have been saved in
proper PDB format with PyMOL.
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We have only added the best Modeller results. This works well and shows the diversity
and difficulty of proposing TMP structural models. HPMScore values are distant, so the
lower the better. Hence, AlphaFold2 [40] is very far away (and close to ESMFold) with
the highest HPMScore values. Phyre is the intermediate when our supervised Modeller is
the one associated with the lowest (best) HPMScore value. Interestingly, RoseTTAfold is
not too far away but has a wrong local topology. This last example clearly underlines the
interest of HPMScore, which is a specific development for protein of high pharmaceutical
interest. Structure models were evaluated on a large scale with a very large set of model
quality showing its stability. The HPM scoring function, performing on average better than
DOPE, is the reference scoring function in the Modeller suite [14] (that can be used to rank
models made from other approaches).

This example highlights the importance of having an external and simple tool to test
results from different tools, even in this period of Deep Learning with AlphaFold2 and
related methods.

4. Discussion

The modeling of TMPs has existed for a long time, even when the number of structures
was very limited [7,73]. To analyze the properties of TMPs, the first step has long been the
prediction of the transmembrane segments. PHDtm was the first method linking artificial
neural networks (ANNs) and evolutionary data [74,75]. PsiPred [76,77] is a widely used
platform for secondary structure prediction, which uses position-specific scoring matrices
(PSSMs) with ANN [78]. Although this approach is hardly specific to TMPs, it has shown
good results. Initially, the addition of hydrophobicity scales to the prediction of secondary
structures gave better results [79,80]. An impressive number of methods were proposed,
such as MEMSAT [81,82], HTP [83], DAS [83], SOSUI [84], HMMTOP [85,86], TMHMM
1.0 [87], PRED-TMR [88], OCTOPUS [89], TOPCONS [90,91], MINNOU [92], SVMtm [93],
TUPS [94], Localizome [95], MemBrain [96], AllesTM [97], TMPSS [98], and TMbed [99].
The most recent approaches also take into account other features, such as the regions of the
protein that actually face the membrane, the cytosolic or extracellular sides, and the motifs
responsible for the interactions [97,100–102].

These approaches do not provide 3D structural models but they provide interesting
behaviors. The first and most common proposition of TMP structural models is homol-
ogy modeling with Modeller [14] and SwissModel [103]. Based on sequence alignment
with a structural template, it remains essential in the TMP area. Some methods have
been developed specifically for TMP. For instance, MEMOIR (membrane protein modeling
pipeline) [104], and MEDELLER [105], which proposed only high-quality regions and did
not complete others. Threading was used in TMFoldWeb [106], a web implementation of
TMFoldRec [107]. Rosetta had interestingly incorporated a specific membrane-specific ver-
sion of the original Rosetta energy function, which considers the membrane environment as
an additional variable next to amino acid identity, inter-residue distances, and density [108].
It was included in RosettaMP [98]. In fact, all structural modeling methods, e.g., Phyre [71],
Modeller [14], SwissModel [103], RoseTTAfold [70], ESMFold [72], and AlphaFold2 [40]
can be used for TMPs (see Section 3.5).

However, a quasi-systematic bias is the use of score functions related to globular
proteins and not to transmembrane proteins, such as DOPE. Independent tools, such as
Verify3D [18] or Prosa II [16,17], are based on data that mainly emphasize globular proteins
largely over-represented in PDB globular proteins compared to TMPs.

It is worth noting some studies of interest. Postic and collaborators have, thus, set
up an empirical energy function for the structural assessment of protein transmembrane
domains [33]. This statistical potential quantifies the interatomic distance between residues
located in the lipid bilayer. Following a leave-one-out cross-validation procedure, they
show that their method outperforms statistical potentials in discriminating correct from
incorrect membrane protein models. The approach must be locally installed. Studer and
coworkers proposed an equivalent method named QMEANBrane [35] derived from the



BioMedInformatics 2023, 3 319

original QMEAN scoring function [20,109]. It is integrated in the SwissModel environment
but cannot be used with external models [103]. More recently, AlphaFold2 had proposed its
pLDDT scores [40] associated with the quality of the proposed structural models. However,
it cannot be used with results from other approaches. It seems so interesting to see if the
HPMScore could be interesting for the scientific community.

Our work can easily raise three questions: (i) Which proteins can be used? (ii) Which
structural models can be generated? and (iii) How can the results be assessed?.

Transmembrane proteins are difficult to obtain experimentally. In 2000, only one
structure was in the protein data bank. Thanks to new methodologies, their number had
greatly increased. Now, 1561 unique PTM structures can be found, for all-α and all-β
TMPs, as stated by mpstruct [110,111] (https://blanco.biomol.uci.edu/mpstruc/#news,
accessed on 17 January 2023). However, the number of different folds had not really
increased, and redundancies exist. We have kept the HOMEP dataset as we know it very
well and represent correctly the different known TMP folds.

From this dataset, we need to generate a series of structural models. Different ap-
proaches have been proposed to generate decoys that deviated from the real structure. As
no dataset was available, we generated our own. To do this, we decided to make point
mutations, insertions, and deletions to move further and further away from the real struc-
ture. Of course, this does not represent a directed (or rather degenerated) evolution [112],
but it does allow for an important sampling of conformational space. The conservation
of the membrane part plays on a weaker amino acid alphabet [113] than the one we used.
Figure 2c shows how complex this is. Even with a 25% alignment, it is possible to have
GDT_TS ranging from 10 to 90.

Finally, we have analyzed the results with RMSD [114], PBscore [65], and GDT_TS [56].
They all provide the same trends. Top 1, Top 5 and Top 10 underline the interest of the
HPMScore to select the best models. As discussed before, we are in the idea of comparative
modeling, i.e., for sequence alignment higher than 35%; the HPMScore gives a better
selection in 52% of the cases, 12% are common with DOPE, and DOPE is associated with it
in 36% of the cases. Figure 7 shows a visualization of the quality of the prediction by a slice
of 5% of sequence identity. A regression is performed for the HPM results of DOPE and
cases where both give the same result. The direction of the lines highlights the superiority
of HPM. This evaluation unequivocally demonstrates the value of the approach. A Welsh
test on the question of whether HPM is better than a DOPE score alone (data in Figure 7)
gave a significant positive answer (0.01). A rather complex point to apprehend is the
variability of the results simply by protein. The generation of unsupervised alternative
alignments gives very different results depending on the topology of the protein, its amino
acid composition or the impacts of insertions–deletions.

Lastly, we should remember that the HPMScore is built on the HPM matrix, fully
described in [45]. The HPM strategy is based on a learning process combining sequence
and structural properties, which depends on a few parameters.

In the present work, we kept the optimal HPM matrix finely tuned after an extensive
grid search of the parameters and trained on 52 PDB files. Despite its small size, this dataset
contains most of the representative folds of α-helical TM protein. Given the good results
with the present version of the HPM matrix, we may reasonably expect improvement with
new training on a larger dataset that includes 3D structures solved since. This will be the
subject of a forthcoming study. For convenience, we have made available an additional
website (https://clipperton.ufip.univ-nantes.fr/hpmeval/, accessed on 1 March 2023) with
a large number of analyses, which highlights this complexity.

The HPMScore web server allows a simple and efficient use; we used it regularly (and
also for courses). The example presented with results from very different predictive tools
clearly demonstrates the usability of the methodology.

https://blanco.biomol.uci.edu/mpstruc/#news
https://clipperton.ufip.univ-nantes.fr/hpmeval/
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5. Conclusions

When one wants to produce a model and evaluate its quality, it is important to under-
stand how the scoring procedure will indicate the overall quality of the model. Most of
the proposed structural models have been created using comparative modeling [7], while
AlphaFold2 can provide an interesting alternative [41,115,116]. In our study, we first simu-
lated the evolutionary drift in protein sequence between homologous proteins by creating
degenerated sequences using amino acids mutations or permutations. For each resulting
sequence, we modeled the putative target protein from the template protein where the 3D
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structure was available. We then assessed the performance of our new method against
the reference DOPE function, reportedly very effective for membrane proteins. Our new
scoring function is based on the hybrid protein model approach, trained on a set of repre-
sentative membrane proteins. It is widely accepted that membrane proteins are difficult to
model since the amino acids forming the transmembrane segments are densely packed due
to the hydrophobic environment and the lipid compaction surrounding the protein, whilst
the extra- and intra-cellular amino acids are exposed to a more hydrophilic medium.

This study is interesting as the HPMScore is a non-classical approach, and was tested
with the greatest number of different TMPs and the largest number of generated models.
Moreover, Top 1 was used, but also Top 5 and Top 10; sequence identity rate influence was
evaluated and even the analysis of the transmembrane region was assessed. It is, therefore,
a systematic large-scale study.

A server is up for model validation. It can take as input a single model or a large
number of models coming from various prediction methods. Interestingly, it can be used to
select models and to analyze them at residue level (and so potentially combine different
structural models).
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