
 1 

SUPPLEMENTARY MATERIALS 
 

Assessing the computational load of training the RNN models 
 
Assessing the computational load of training the RNN models is difficult and can have a large 
margin of error because of the following reasons: 
 

1- Testing the training time for different models requires providing identical environment 
for CPU including having all programs closed and having all backend programs and 
calculations suspended. The first is easy to satisfy but the second is not straightforward 
in Windows environment.  Using commands like “tic toc”, is available in both Matlab and 
Python but is inaccurate in Python. In Matlab environment this command calculates “the 
number of operations” as well as “the execution time”. The execution time is not going 
to be a reliable because of the second problem stated above, but the “the number of 
operations” is accurate. Unfortunately, this option is not available in Python environment 
yet. 

2- Backpropagation starts with randomizing all parameters of all NN models and the initial 
values of these parameters highly affects the execution time. Each time the model is 
trained, a different time is obtained. Only an approximate value will be obtained by 
training the model multiple times and averaging the outcomes.  

3- Terminating the training of a NN model is performed manually, based on inspecting the 
learning curve and intuitively deciding when to terminate the training process. This causes 
a biased interpretation of the execution times. 

As a solution to the above issues, we compared the number of learnable parameters. These 
values can be highly informative as the number of dropouts at each model is fixed and the 
number of learnable parameters at each epoch (iteration) is invariant. The following table 
summarizes the number of learnable parameters for each RNN model used in this study for one 
randomly selected subject (Subject 10). 
 
Table S1. The number of learnable parameters in various RNN models trained in this study. 
 

LSTM Model Layers Learnable 
parameters: 

 LSTM 4600 
 Dense#1 650 
 Drop out #1 0 
 Dense#2 650 
 Drop out #2 0 
 TOTAL 5900 
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1D convolutional 

layer+LSTM Layers Learnable 
parameters: 

  Time-distributed 1D 
convolution #1 2112 

 Time-distributed 
Droup out #1 0 

 Time-distributed 
Maxpool #1 0 

 Time-distributed 1D 
convolution #2 8256 

 Time-distributed 
Droup out #2 0 

 Time-distributed 
Maxpool #2 0 

 Time-distributed 
Flatten 0 

 LSTM 11920 
 Droup out #3 0 
 Dense  420 
 Droup out #4 0 
 Dense with Softmax 84 
 TOTAL 22792 

 
 

1D convolutional 
Bi-LSTM Layers Learnable 

parameters: 

  Time-distributed 1D 
convolution #1 2112 

 Time-distributed 
Droup out #1 0 

 Time-distributed 
Maxpool #1 0 

 Time-distributed 1D 
convolution #2 8256 

 Time-distributed 
Droup out #2 0 

 Time-distributed 
Maxpool #2 0 

 Time-distributed 
Flatten 0 

 LSTM 23840 
 Droup out #3 0 
 Dense  820 
 Droup out #4 0 
 Dense with Softmax 84 
 TOTAL 35112 
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Conv2DLSTM Layers Learnable 
parameters: 

 ConvLSTM2D 41216 
 Droupout #1 0 
 Flatten 0 

 Time-distributed 1D 
convolution #2 2580 

 Droupout #2 0 

 Dense  420 
 Droupout #3 0 
 Dense with Softmax 84 
 TOTAL 44300 

 
The number of neurons, filters in convolution layers, kernel size (filters in convolution layers) vary 
from subject to subject. They remain constant for running a model for a subject, with different 
random seeds. 
 
As a comparison between 1D convolutional LSTM and 1D convolutional Bi-LSTM, technically Bi-
LSTM uses one extra LSTM layer in the structure of the model. However, the extra LSTM layer is 
not added to the model as a sequential layer. This layer is trained simultaneously with the other 
LSTM layer, but in reverse direction and the outcome of each are merged to obtain the output 
value. Hence, Bi-LSTM model has more parameters (equal to an extra LSTM layer) to be trained 
and adjusted. 
 
Based on the above tables, LSTMs are the most computational demanding blocks in the model. 
A quick comparison between 1D conv-LSTM and 1D-Bi-LSTM, shows that the number of learnable 
parameters increased by at least 54%, mainly stemmed from an extra embedded LSTM in 
Bidirectional layer. While comparing adjustable parameters may not be the most accurate way 
of assessing computational loads required for training models, it provides a good indication about 
the relative variations in computational loads. 
 


