
 1

SUPPLEMENTARY MATERIALS

Assessing the computational load of training the RNN models

Assessing the computational load of training the RNN models is difficult and can have a large
margin of error because of the following reasons:

1- Testing the training time for different models requires providing identical environment
for CPU including having all programs closed and having all backend programs and
calculations suspended. The first is easy to satisfy but the second is not straightforward
in Windows environment. Using commands like “tic toc”, is available in both Matlab and
Python but is inaccurate in Python. In Matlab environment this command calculates “the
number of operations” as well as “the execution time”. The execution time is not going
to be a reliable because of the second problem stated above, but the “the number of
operations” is accurate. Unfortunately, this option is not available in Python environment
yet.

2- Backpropagation starts with randomizing all parameters of all NN models and the initial
values of these parameters highly affects the execution time. Each time the model is
trained, a different time is obtained. Only an approximate value will be obtained by
training the model multiple times and averaging the outcomes.

3- Terminating the training of a NN model is performed manually, based on inspecting the
learning curve and intuitively deciding when to terminate the training process. This causes
a biased interpretation of the execution times.

As a solution to the above issues, we compared the number of learnable parameters. These
values can be highly informative as the number of dropouts at each model is fixed and the
number of learnable parameters at each epoch (iteration) is invariant. The following table
summarizes the number of learnable parameters for each RNN model used in this study for one
randomly selected subject (Subject 10).

Table S1. The number of learnable parameters in various RNN models trained in this study.

LSTM Model Layers Learnable
parameters:

 LSTM 4600
 Dense#1 650
 Drop out #1 0
 Dense#2 650
 Drop out #2 0
 TOTAL 5900

 2

1D convolutional

layer+LSTM Layers Learnable
parameters:

 Time-distributed 1D
convolution #1 2112

 Time-distributed
Droup out #1 0

 Time-distributed
Maxpool #1 0

 Time-distributed 1D
convolution #2 8256

 Time-distributed
Droup out #2 0

 Time-distributed
Maxpool #2 0

 Time-distributed
Flatten 0

 LSTM 11920
 Droup out #3 0
 Dense 420
 Droup out #4 0
 Dense with Softmax 84
 TOTAL 22792

1D convolutional
Bi-LSTM Layers Learnable

parameters:

 Time-distributed 1D
convolution #1 2112

 Time-distributed
Droup out #1 0

 Time-distributed
Maxpool #1 0

 Time-distributed 1D
convolution #2 8256

 Time-distributed
Droup out #2 0

 Time-distributed
Maxpool #2 0

 Time-distributed
Flatten 0

 LSTM 23840
 Droup out #3 0
 Dense 820
 Droup out #4 0
 Dense with Softmax 84
 TOTAL 35112

 3

Conv2DLSTM Layers Learnable
parameters:

 ConvLSTM2D 41216
 Droupout #1 0
 Flatten 0

 Time-distributed 1D
convolution #2 2580

 Droupout #2 0

 Dense 420
 Droupout #3 0
 Dense with Softmax 84
 TOTAL 44300

The number of neurons, filters in convolution layers, kernel size (filters in convolution layers) vary
from subject to subject. They remain constant for running a model for a subject, with different
random seeds.

As a comparison between 1D convolutional LSTM and 1D convolutional Bi-LSTM, technically Bi-
LSTM uses one extra LSTM layer in the structure of the model. However, the extra LSTM layer is
not added to the model as a sequential layer. This layer is trained simultaneously with the other
LSTM layer, but in reverse direction and the outcome of each are merged to obtain the output
value. Hence, Bi-LSTM model has more parameters (equal to an extra LSTM layer) to be trained
and adjusted.

Based on the above tables, LSTMs are the most computational demanding blocks in the model.
A quick comparison between 1D conv-LSTM and 1D-Bi-LSTM, shows that the number of learnable
parameters increased by at least 54%, mainly stemmed from an extra embedded LSTM in
Bidirectional layer. While comparing adjustable parameters may not be the most accurate way
of assessing computational loads required for training models, it provides a good indication about
the relative variations in computational loads.

