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Abstract: Objective: The interpretation of time series data collected in free-living has gained impor-
tance in chronic disease management. Some data are collected objectively from sensors and some are
estimated and entered by the individual. In type 1 diabetes (T1D), blood glucose concentration (BGC)
data measured by continuous glucose monitoring (CGM) systems and insulin doses administered can
be used to detect the occurrences of meals and physical activities and generate the personal daily liv-
ing patterns for use in automated insulin delivery (AID). Methods: Two challenges in time-series data
collected in daily living are addressed: data quality improvement and the detection of unannounced
disturbances of BGC. CGM data have missing values for varying periods of time and outliers. People
may neglect reporting their meal and physical activity information. In this work, novel methods for
preprocessing real-world data collected from people with T1D and the detection of meal and exercise
events are presented. Four recurrent neural network (RNN) models are investigated to detect the
occurrences of meals and physical activities disjointly or concurrently. Results: RNNs with long
short-term memory (LSTM) with 1D convolution layers and bidirectional LSTM with 1D convolution
layers have average accuracy scores of 92.32% and 92.29%, and outperform other RNN models. The
F1 scores for each individual range from 96.06% to 91.41% for these two RNNs. Conclusions: RNNs
with LSTM and 1D convolution layers and bidirectional LSTM with 1D convolution layers provide
accurate personalized information about the daily routines of individuals. Significance: Capturing
daily behavior patterns enables more accurate future BGC predictions in AID systems and improves
BGC regulation.

Keywords: recurrent neural networks; event detection; data preprocessing; outlier removal; type 1
diabetes

1. Introduction

Time series data are widely used in many fields, and various data-driven modeling
techniques are developed to represent the dynamic characteristics of systems and forecast
the future behavior. The growing research in artificial intelligence has provided powerful
machine learning (ML) techniques to contribute to data-driven model development. Real-
world data provide several challenges to modeling and forecasting, such as missing values
and outliers. Such imperfections in data can reduce the accuracy of ML and the models
developed. This necessitates data preprocessing for the imputation of missing values,
down- and up-sampling, and data reconciliation. Data preprocessing is a laborious and
time-consuming effort since big data are usually stacked on a large scale [1]. When models
are used for forecasting, the accuracy of forecasts improve if the effects of future possible
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disturbances based on behavior patterns extracted from historical data are incorporated
in the forecasts. This paper focuses on these two problems and investigates the benefits
of preprocessing the real-world data and the performance of different recurrent neural
network (RNN) models for detecting various events that affect blood glucose concentration
(BGC) in people with type 1 diabetes (T1D). The behavior patterns detected are used for
more accurate predictions of future BGC variations, which can be used for warnings and
for increasing the effectiveness of automated insulin delivery (AID) systems.

Time series data captured in daily living of people with chronic conditions have many
of these challenges to modeling, detection, and forecasting. Focusing on people with
T1D, the medical objective is to forecast the BGC of a person with T1D and prevent the
excursion of BGC outside a “desired range” (70–180 mg/dL) to reduce the probability of
hypo- and hyperglycemia events. In recent years, the number of people with diabetes has
grown rapidly around the world, reaching pandemic levels [2,3]. Advances in continuous
glucose monitoring (CGM) systems, insulin pump and insulin pen technologies, and in
novel insulin formulations has enabled many powerful treatment options [4–9]. The current
treatment options available to people with T1D range from manual insulin injections to AID.
Manual injection (insulin bolus) doses are computed based on the person’s characteristics
and the properties of the meal consumed. Current AID systems necessitate the manual
entry of meal information to give insulin boluses for mitigating the effects of meal on the
BGC. A manual adjustment of the basal insulin dose and increasing the BGC target level
and/or consumption of snacks are the options to mitigate the effects of physical activity.
Some people may forget to make these manual entries and a system that can nudge them to
provide appropriate information can reduce the extreme excursions in BGC. Commercially
available AID systems are hybrid closed-loop systems, and they require these manual
entries by the user. AID systems, also called artificial pancreas (AP), consist of a CGM, an
insulin pump, and a closed-loop control algorithm that manipulates the insulin infusion rate
delivered by the pump based on the recent CGM values reported [10–23]. More advanced
AID systems that use a multivariable approach [10,24–26] use additional inputs from
wearable devices (such as wristbands) to automatically detect the occurrence of physical
activity and incorporate this information to the automated control algorithms for a fully
automated AID system [27]. Most AID systems use model predictive control techniques
that predict future BGC values in making their insulin dosing decisions. Knowing the habits
of the individual AID user improves the control decisions since the prediction accuracy
of the future BGC trajectories can explicitly incorporate the future potential disturbances
to the BGC, such as meals and physical activities, that will occur with high likelihood
during the future BGC prediction window [24,26]. Consequently, the detection of meal and
physical activity events from historical free-living data of a person with T1D will provide
useful information for decision making by both the individual and by the AID system.

CGM systems report subcutaneous glucose concentration to infer BGC with a sampling
rate of 5 min. Self-reported meal and physical activity data are often based on diary entries.
Physical activity data can also be captured by wearable devices. The variables reported by
wearable devices may have artifacts, noise, missing values, and outliers. The data used in
this work include only CGM values, insulin dosing information, and diary entries of meals
and physical activities.

Analyzing long-term data of people with T1D indicates that individuals tend to
repeat daily habitual behaviors. Figure 1 illustrates the probability of physical activity
and meal (indicated as carbohydrate intake) events, either simultaneously or disjointly,
for 15 months of self-reported CGM, meal, insulin pump, and physical activity data of
individuals with T1D. Major factors affecting BGC variations usually occur at specific time
windows and conditions, and some combinations of events are mutually exclusive. For
example, insulin-bolusing and physical activity are less likely to occur simultaneously
or during hypoglycemia episodes, since people do not exercise when their BGC is low.
People may have different patterns of behavior during the work week versus weekends or
holidays. Predicting the probabilities of exercise, meal consumption, and their concurrent
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occurrence based on historical data using ML can provide important information on the
behavior patterns for making medical therapy decisions in diabetes.

Figure 1. The probabilities of meal and physical activity events during one day obtained by analyzing
15 months of the pump–CGM sensor, meal, and physical activity data collected from a randomly
selected person with T1D.

Motivated by the above considerations, this work develops a framework for predict-
ing the probabilities of meal and physical activity events, including their independent
and simultaneous occurrences. A framework is built to handle the inconsistencies and
complexities of real-world data, including missing data, outlier removal, feature extraction,
and data augmentation. Four different recurrent neural network (RNN) models are de-
veloped and evaluated for estimating the probability of events causing large variations in
BGC. The advent of deep neural networks (NNs) and their advances have paved the way
for processing and analyzing various types of information, namely: time-series, spatial,
and time-series–spatial data. Long short-term memory (LSTM) NN models are specific
sub-categories of recurrent NNs introduced to reduce the computational burden of storing
information over extended time intervals [28,29]. LSTMs take advantage of nonlinear
dynamic modeling without knowing time-dependency information in the data. Moreover,
their multi-step-ahead prediction capability makes them an appropriate choice for detecting
upcoming events and disturbances that can deteriorate the accuracy of model predictions.

The main contributions of this work are the development of NN models capable of
estimating the occurrences of meals and physical activities without requiring additional
bio-signals from wearable devices, and the integration of convolution layers with LSTM
that enable the NN to accurately estimate the output from glucose–insulin input data. The
proposed RNN models can be integrated with the control algorithm of an AID system to
enhance its performance by readjusting the conservativeness and aggressiveness of the
AID system.

The remainder of this paper is organized as follows: the next section provides a short
description of the data collected from people with T1D. The preprocessing step, including
outlier removal, data imputation, and feature extraction is presented in Section 3. Section 4
presents various RNN configurations used in this study. A case study with real-world data
and a discussion of the results are presented in Section 5 and Section 6, respectively. Finally,
Section 6 provides the conclusions.
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2. Free-Living, Self-Reported Dataset of People with T1D

A total of 300 self-collected T1D datasets were made available for research, and each
dataset represents a unique individual. Among all of the datasets, 50 T1D datasets include
CGM-sensor–insulin-pump recordings and exercise information such as the time, type, and
duration of physical activity recorded from either open or closed-loop insulin-pump–sensor
data. Meal information is reported as the amount of carbohydrates (CHO) consumed in the
meal as estimated by the subject. An over or underestimation of CHO in meals is common.

The subjects with T1D selected for this study used insulin-pump–CGM-sensor ther-
apy for up to two years, and some of them have lived with diabetes for more than fifty
years. Tables 1 and 2 summarize the demographic information of the selected subjects
and the definition of the variables collected, respectively. Separate RNN models were
developed for each person in order to capture personalized patterns of meal consumption
and physical activity.

Table 1. The general demographic information of 11 subjects with T1D and the durations of
recorded samples.

Subject Gender Age Duration of Data 1 Missing Samples (%) Max Gap Size 2

1 M 36 283 days 12.36% 273
2 M 33 368 days 7.11% 71
3 F 72 280 days 1.10% 28
4 M 43 468 days 10.03% 435
5 F 52 655 days 4.91% 233
6 F 26 206 days 14.45% 107
7 M 51 278 days 6.12% 34
8 - 41 390 days 8.87% 177
9 - 42 279 days 19.70% 311
10 M 27 695 days 14.32% 571
11 F 35 413 days 8.97% 147

1 The duration of data is calculated after imputation of missing data and counting gaps between samples.
2 Number of samples, sampling time 5 min.

Table 2. The name and the definition of measured variables.

Variable/Symbol Definition Units

Continuous glucose monitoring values sampledCGM every five minutes mmol/L

Smbg Self-monitored BGC for sensor mmol/Lcalibration
Rate (InsBasal) The basal insulin rate unit/h

Bolus (InsBolus) The actual delivered amount of normal bolus insulin unit
Format:Time UTC time stamp yyyy-mm-yy hh:mm:ss

The actual duration of a suspend, basal, orDuration dual/square bolus milliseconds

Activity.name The type of physical activity -
Activity.duration (AD) The duration of a physical activity milliseconds

Distance.value (DV) The value of the distance traveled miles
Energy.value (EV) The amount of energy spent during activity kilocalories

Nutrition.carbohydrate The carbohydrates entered in a health
(CHO) kit food entry grams

3. Data Preprocessing

This is a computational study for the development of detection and classification of
infrequent events (eating, exercising) that affect the main variable of interest in people
with diabetes: their blood glucose concentrations. It is based on data collected from
patients in free living; hence, it contains many windows of data with missing values and
outliers. Using real-world data for developing models usually has numerous challenges:
(i) the datasets can be noisy and incomplete; (ii) there may be duplicate CGM samples in
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some of the datasets; (iii) inconsistencies exist in the sampling rate of CGM and insulin
values; (iv) gaps in the time and date can be found due to insulin pump or CGM sensor
disconnection. Therefore, the datasets need to be preprocessed before using them for model
development.

3.1. Sample Imputation

Estimating missing data is an important step before analyzing the data [30]. Missing
data are substituted with reasonable estimates (imputation) [31]. In dealing with time-series
data such as CGM, observations are sorted according to their chronological order. Therefore,
the variable “Time”, described in Table 2, is converted to “Unix time-stamp”, samples are
sorted in ascending order of “Unix time-stamp”, and gaps without observations are filled
with pump–sensor samples labeled as “missing values”.

Administered basal insulin is a piecewise constant variable and its amount is calculated
by the AID system or by predefined insulin injection scenarios. Applying a simple forward
or backward imputation for basal insulin with gaps in duration lasting a maximum of two
hours gives reasonable reconstructed values for the missing observations. Gaps lasting
more than two hours in missing recordings are imputed with basal insulin values recorded
in the previous day at the same time, knowing that insulin injection scenarios usually
follow a daily pattern [32].

The variable “Bolus” is a sparse variable (usually nonzero only at times of meals) and
its missing samples were imputed with the median imputation approach, considering that
the bolus injection policy is infrequently altered. Similarly, missing recordings of variables
“Nutrition.carbohydrate”, “Smbg”, “Duration”, “Activity.duration”, and “Distance.value”
were imputed with the median strategy. A multivariate strategy that uses CGM, total
injected insulin, “Nutrition.carbohydrate”, the “Energy.value”, and “Activity.duration”
was employed to impute missing CGM values.

This choice of variables has to do with the dynamic relationship between CGM and
the amount of carbohydrate intake, the duration and the intensity of physical activity, and
the total injected insulin. Estimates of missing CGM samples were obtained by performing
probabilistic principal component analysis (PPCA) on the lagged matrices of the CGM data.
PPCA is an extension of principal component analysis, where the Gaussian conditional
distribution of the latent variables is assumed [33]. This formulation of the PPCA facilitates
tackling the problem of missing values in the data through the maximum likelihood estima-
tion of the mean and variance of the original data. Before performing PPCA on the feature
variables, the lagged array of each feature variable, Xk,j, k ∈ {CGM, Ins, CHO, EV, AD}, at
the jth sampling index was constructed from the past two hours of observations as:

Xk,j =
[
Xk,j, Xk,j−1 . . . Xk,j−24

]
1×25, k ∈ {CGM, Ins, CHO, EV, AD}

Xj = [X1,j, . . . ,Xk,j . . . ,XM,j]
T , X =

[
X1, . . . , XN

]
M×N

(1)

For an observed set of feature variables Xj, let Tj = [T1,j, . . . , Tq,j]
T be its q-dimensional

(q ≤ M) Gaussian latent transform [34] such that

Xi,j = WiTj + µi + εi,j (2)

where Wi = [Wi,1, . . . , Wi,q] ∈ Rq and µ = [µ1, . . . , µM]T ∈ RM represent the ith row of the
loading matrix W ∈ RM×q and mean value of the data. εi,j ∈ R is also the measurement
noise with the probability distribution

p(εi,j|σ2) = N (εi,j|0, σ2) . (3)
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Based on the Gaussian distribution assumption of Tj and the Gaussian probability
distribution of εi,j, one can deduce that

p(Tj) = N (Tj|0, Iq)

p(Xi,j|µi, Wi, σ2) = N (Xi,j|µi, WiWT
i + σ2)

p(Xi,j|Tj, µi, Wi, σ2) = N (Xi,j|WiTj + µi, σ2)

. (4)

The joint probability distribution p(Xi,j, Tj, µi, Wi, σ2) can be derived from (4) and
Bayes’ joint probability rule as

p(Xi,j, Tj, µi, Wi, σ2) =
1

(2πσ2)
M
2

exp
(Xi,j −WiTj − µi)

2

−2σ2
1

(2π)
q
2

exp
−T T

j Tj

2
(5)

Define the set η = {(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ N, Xi,j 6= NaN}. The log-likelihood of
the joint multivariate Gaussian probability distribution of (5) is calculated over all available
observations as

ln(p(Xi,j, Tj|µi, Wi, σ2)) = ∑ ∑
i,j∈η

[ln(p(Xi,j|Tj, µi, Wi, σ2)) + lnp(Tj)]

= ∑ ∑
i,j∈η

−M
2

ln(2πσ2)− q
2

ln(2π)−
(Xi,j −WiTj − µi)

2

2σ2 −
T T

j Tj

2

(6)

where the log-likelihood (6) is defined for all available observations Xi,j, i, j ∈ η. By
applying the expectation operation with respect to the posterior probability distribution
over all latent variables Tj, j ∈ ηi, where ηi = {j|1 ≤ j ≤ N, Xi,j 6= NaN}, (6) becomes

E{L} =−∑ ∑
i,j∈η

M
2

ln(σ2) +
1
2
E{T T

j Tj}+
1

2σ2 (Xi,j − µi)
2

− 1
σ2 E{T

T
j }W

T
i (Xi,j − µi) +

1
2σ2 E{T

T
j Tj}WiWT

i

(7)

Maximizing (7) is feasible by setting all partial derivatives ∂E{L}
∂σ2 , ∂E{L}

∂µ2
i

, and ∂E{L}
∂W2

i
, i =

1, . . . , M, j = 1, . . . , N to zero [34].

CvarTj =
σ2

(σ2 Iq + ∑i∈ηj
WiWT

i )

µTj =
CvarTj

σ2 ∑
i∈ηj

WT
i (Xi,j − µi)

µi =
1
|ηi| ∑

j∈ηi

[Xi,j −WiµTj ]

Wi =
1

∑j∈ηi
[µTj µ

T
Tj
+ CvarTj ]

∑
j∈ηi

µTj(Xi,j − µi)

σ2 =
1
|η| ∑

i,j∈η

[(Xi,j −WiµTj − µi)
2 + WiCvarTjW

T
i ]

(8)

Parameters µi, σ2, and Wi in (8) are updated recursively until they converge to their
final values. The final estimation of missing CGM samples is obtained by performing a
diagonal averaging of the reconstructed lagged matrix X̂ ∈ RM×N over rows/columns
filled with CGM values. Long gaps in CGM recordings might exist in the data, and
imputing their values causes problems in accuracy and reliability. Therefore, CGM gaps
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of no more than twenty-five consecutive missing samples (approximately two hours) are
imputed by PPCA.

3.2. Outlier Removal

Signal reconciliation and outlier removal are necessary to avoid misleading interpre-
tation of data and biased results, and to improve the quality of CGM observations. As a
simple outlier removal approach for a variable with Gaussian distribution, observations
outside ±2.72 standard deviations from the mean, known as inner Tukey fences, can be
labeled as outliers and extreme values [35]. The probability distribution of the CGM data
shows a skewed distribution compared to the Gaussian probability distribution. Thus,
labeling samples as outliers only based on their probability of occurrence is not the proper
way of removing extreme values from the CGM data since it can cause a loss of useful CGM
information, specifically during hypoglycemia (CGM < 70 mg/dL) and hyperglycemia
(CGM > 180 mg/dL) events. As another alternative, extreme values and spikes in the
CGM data can be labeled from the prior knowledge and by utilizing other feature variables,
namely: “Smbg”, “Nutrition.carbohydrate”, “Bolus”, and “Activity.duration”. Algorithm 1
is proposed to remove outliers from CGM values. Usually, BGC is slightly different from
the recordings of the CGM signal because of the delay between BGC and the subcutaneous
glucose concentration measured by the CGM device and sensor noise. The noisy signal can
deteriorate the performance of data-driven models. Therefore, Algorithm 2, which is based
on eigendecomposition of the Hankel matrix of CGM values, is used to reduce the noise in
the CGM recordings.

Algorithm 1 Outlier rejection from CGM readings

1: procedure OUTLIERREJECTION(CGM,Smbg,CHO,AD,InsBolus)
2: for i = 1 : N do . Removing samples outside of the calibration range
3: if CGMk > 400 mg/dL or CGMk < 0 mg/dL then
4: CGMk ← NaN
5: end if
6: end for
7: for i = 2 : N do
8: ∆CGMk ← CGMk − CGMk−1
9: if ∆CGMk > 30 mg/dL & all ({CHOk, . . . , CHOk−9} == 0) then

10: CGMk ← NaN
11: end if
12: if ∆CGMk < 30 mg/dL & all ({InsBolus,k, . . . , InsBolus,k−6} == 0) then
13: CGMk ← NaN
14: end if
15: if ∆CGMk < 30 mg/dL & all ({ADk, . . . , ADk−6} == 0) then
16: CGMk ← NaN
17: end if
18: if Smbgk 6= NaN & CGMk 6= NaN & abs(Smbgk − CGMk) > 18 mg/dL then
19: CGMk ← NaN
20: end if
21: end for
22: return CGM
23: end procedure
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Algorithm 2 Smoothing CGM recordings

1: procedure CGMDENOISING(CGM) . Smoothing CGM recordings
2: Qi = [CGMd, . . . , CGMd+qi−1] . Qi ∈ Rqi is ith consecutive CGM recordings
3: qi ← |Qi|, pi ← f loor

( qi
2
)
, wi ← qi − pi + 1

4: [Ui, Si, Vi] = SVD(Ai) . Ai ∈ Rwi×pi is the Hankel matrix made of Qi
5: Ŝi ← zeros(pi, pi)

6: η ← cumsum([s1,...,spi ])
sum([s1,...,spi ])

. sj > 0 are eigenvalues of Si in descending order

7: for j=1:pi do
8: if ηj > 0.95 then
9: Ŝi(j, j)← 0

10: else
11: Ŝi(j, j)← Si(j, j)
12: end if
13: end for
14: Âi = UiŜiVT

i

15: Q̂i ← Diagonalaveraging
(

Âi

)
. Q̂i =

[
CĜMd, . . . , CĜMd+qi−1

]
16: return CĜM
17: end procedure

3.3. Feature Extraction

Converting raw data into informative feature variables or extracting new features is an
essential step of data preprocessing. In this study, four groups of feature variables, including
frequency domain, statistical domain, nonlinear domain, and model-based features, were
calculated and added to each dataset to enhance the prediction power of models. The
summarized description of each group of features and the number of past samples required
for their calculation are listed in Table 3.

A qualitative trend analysis of variables can extract different patterns caused by
external factors within a specified time [36,37]. A pairwise multiplication of the sign and
magnitude of the first and second derivatives of CGM values indicates the carbohydrate
intake [38,39], exogenous insulin injection, and physical activity. Therefore, the first and
second derivatives of CGM values, calculated by the fourth-order backward difference
method, were added as feature variables. The sign and magnitude product of the first
and second derivatives of CGM, their covariance, Pearson correlation coefficient, and
Gaussian kernel similarity were extracted. Statistical feature variables, e.g., mean, standard
deviation, variance, skewness, etc., were obtained from the specified time window of CGM
values. Similar to the first and second derivatives of CGM values, a set of feature variables,
including covariance and correlation coefficients, from pairs of CGM values and derivatives
was extracted and augmented to the data.

As a result of the daily repetition in the trends of CGM and glycemic events and the
longer time window of CGM values, samples collected during the last twenty-four hours
were used for frequency-domain feature extraction. Therefore, magnitudes and frequencies
of the top three dominant peaks in the power spectrum of CGM values, conveying past
long-term variation of the BGC, were included in the set of feature maps.
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Table 3. The type and definition of the extracted feature variables and the length of time window
required for their calculations.

No. of RequiredDomain Feature Description Samples

First derivative calculated by 4th backward differences 5
Time Second derivative calculated by 4th backward differences 6

Sign-product of the 1st and the 2nd derivatives 6
Nonlinear Magnitude-product of the 1st and the 2nd derivatives 6

Statistical measures, namely mean, variance, median, etc.,
of windowed CGM values 24

Pair-wise covariance and correlation coefficient between CGM
Statistical

and its 1st and 2nd derivatives 24

The magnitudes and frequencies of three dominant peaks inFrequency
the power spectrum of CGM 288

Model-based Plasma insulin concentration (PIC) and gut absorption rate (Ug) [40,41]. 1

The plasma insulin concentration (PIC) is another feature variable that informs about
the carbohydrate intake information and exogenous insulin administration. PIC accounts
for the accumulation of subcutaneously injected insulin within the bloodstream, which
is gradually consumed by the body to enable the absorption of carbohydrates released
from the gastrointestinal track to various cells and tissues. Usually, dynamic physiological
models are used to describe and model the glucose and insulin concentration dynamics in
diabetes. The main idea of estimating PIC from physiological models stems from predicting
the intermediate state variables of physiological models by designing a state observer and
utilizing the total infused insulin and carbohydrate intake as model inputs, and CGM
values as the output of the model [40–42]. In this work, the estimation of the PIC and
glucose appearance rate were obtained from a physiological model known as Hovorka’s
model [43]. Equation (9) presents this nonlinear physiological (compartment) model:

dS1(t)
dt

= Ins(t)− S1(t)
tmax,I

dS2(t)
dt

=
S1(t)
tmax,I

− S2(t)
tmax,I

dI(t)
dt

=
S2(t)

tmax,IVI
− Ke I(t)

dx1(t)
dt

= kb,1 I(t)− ka,1x1(t)

dx2(t)
dt

= kb,2 I(t)− ka,2x2(t)

dx3(t)
dt

= kb,3 I(t)− ka,3x3(t)

dQ1(t)
dt

= Ug(t)− Fc
0,1(t)− FR(t)− x1(t)Q1(t) + k12Q2(t) + EGP0(1− x3(t))

dQ2(t)
dt

= x1(t)Q1(t)− (k12 + x2(t))Q2(t)

dGsub(t)
dt

=
1
τ

(
Q1(t)

Vg
− Gsub(t)

)

(9)

Model (9) comprises four sub-models, describing the action of insulin on glucose
dynamics, the insulin absorption dynamics, plasma–interstitial-tissue glucose concentration
dynamics, and the blood glucose dynamics.The state variables of (9), the nominal values of
the parameters, and their units are listed in Table 4 [43].



Biomedinformatics 2022, 2 306

Table 4. The description of variables and parameters and the nominal values of parameters in
Hovorka’s model [43].

Variable/Parameter Description Value/Unit

Two-compartment chain representing absorptionS1(t), S2(t) of subcutaneously administered short-acting insulin mU

Ins(t) Subcutaneously infused insulin mU min−1

I(t) Plasma insulin concentration (PIC) mU L−1

x1(t) The remote effect of insulin on glucose distribution min−1

x2(t) The remote effect of insulin on glucose disposal min−1

The remote effect of insulin onx3(t) endogenous glucose production (EGP) min−1

Q1(t) The mass of glucose in accessible compartments mmol
Q2(t) The mass of glucose in non-accessible compartments mmol

Gsub(t) Measurable subcutaneous glucose concentration mmol L−1

UG(t) Gut absorption rate mmol min−1

Ke The fractional elimination rate of PIC 0.138 min−1

ka,1 0.006 min−1

ka,2 0.06 min−1

ka,3

The deactivation rate constants
0.03 min−1

S f
ID The sensitivity of insulin disposal 0.00082 L min−1 mU−1

S f
IT The sensitivity of insulin distribution 0.00512 L min−1 mU−1

S f
IE The sensitivity of EGP 0.052 L mU−1

kb,1 ka,1 × S f
IT

kb,2 ka,2 × S f
ID

kb,3

The activation rate constants
ka,3 × S f

IE
EGP extrapolated to 0.0161

EGP0 zero insulin concentration mmol kg−1 min−1

The transfer rate constant from the non-accessiblek12 to the accessible compartment 0.066 min−1

The time constant of subcutaneous
τ glucose concentration dynamic min

The glucose distribution volumeVg in the accessible compartment 0.16× BW(L)

The insulin distribution volumeVI in the accessible compartment 0.12× BW(L)

The renal glucose clearance above
FR(t) the glucose threshold of 9 mmol L−1

{
0.003(Gsub − 9), Gsub ≥ 9

0, Gsub < 9
0.0097

F01 Non-insulin-dependent glucose flux mmol kg−1 min−1

The total non-insulin-dependentFc
0,1(t) glucose flux (mmol min−1)

{
F01, Gsub ≥ 4.5

F01(Gsub/4.5), Gsub < 4.5

Body weight has a significant effect on the variations in the PIC and other state
variables as it is used for determining the amount of exogenous insulin to be infused.
Although estimating body weight as an augmented state variable of the insulin-CGM model
is an effective strategy to cope with the problem of unavailable demographic information,
estimating body weight from the total amount of daily administered insulin is a more
reliable approach. As reported in various studies, the total daily injected insulin can have a
range of 0.4–1.0 units kg−1 day−1 [44–46]. A fair estimation of body weight can be obtained
by calculating the most common amount of injected basal/bolus insulin for each subject
and using a conversion factor of 0.5 units kg−1 day−1 as a rule of thumb to estimate the
body weight.

The insulin–glucose dynamics (9) in discrete-time format are given by

X′k+1 = f ′(X′k, Uk) + Gkωk, ωk ≈ N(0, Q)

Y′k = h′(X′k) + νk, νk ≈ N(0, R)
(10)

where X′k = [S1,k, S2,k, Ik, x1,k, x2,kx3,k, Q1,k, Q2,k, Gsub,k, tmax,I,k, ke,k, UG,k] ∈ Rnx denotes the
extended state variables and Uk is the total injected exogenous insulin. Symbols ωk and
νk denote zero-mean Gaussian random process and measurement noises (respectively),
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representing any other uncertainty and model mismatch that are not taken into account.
Further, Q ∈ Rnx×nx and R ∈ R represent the positive definite system uncertainty and
measurement noise covariance matrices, respectively.

Tracking the dynamics of the internal state variables of the model (10) is feasible by
using a class of sequential Monte Carlo algorithms known as particle filters. A generic
form of the particle filter algorithm proposed by [47] with an efficient adaptive Metropolis–
Hastings resampling strategy developed in [48] was employed to predict the trajectory of
the PIC and other state variables. In order to avoid any misleading state estimations, each
state variable was subjected to a constraint to maintain all estimations within meaningful
intervals [41].

3.4. Feature Selection and Dimensionality Reduction

Reducing the number of redundant feature variables lowers the computational burden
of their extraction and hinders over-parameterized modeling. In this work, a two-step
feature selection procedure was used to obtain the optimal subset of feature variables that
boost the efficiency of the classifier the most. In the first step, the deviance statistic test
was performed to filter out features with low significance (p-value > 0.05). In the second
step, the training split of all datasets was used in the wrapper feature selection strategy
to maximize the accuracy of the classifier in estimating the glycemic events. A sequential
floating forward selection (SFFS) approach [49] was applied on a random forest estimator
with thirty decision tree classifiers with a maximum depth of six layers to sort out features
with the most predictive power in descending order. Consequently, the top twenty feature
variables with the highest contribution to the classification accuracy enhancement were
used for model development.

4. Detection and Classification Methods

Detecting the occurrence of events causing large glycemic variations requires solv-
ing a supervised classification problem. Hence, all samples required labeling using the
information provided in the datasets, specifically using variables “Activity.duration” and
“Nutrition.carbohydrate”. In order to determine the index sets of each class, let N be the
total number of samples and T(k) = ceil

(
AD(k)/(3× 105)

)
be the sample duration of

physical activity at each sampling time k. Define sets of sample indexes as:

Label.Index{1,1} := {i|k ≤ i ≤ k + T(k)− 1, k = 1, . . . , N, T(k) 6= 0,
Nutrition.carbohydrate(j) 6= 0, j = k + 1, . . . , k + T(k)}

Label.Index{0,1} := {i|k ≤ i ≤ k + T(k)− 1, k = 1, . . . , N, T(k) 6= 0,
Nutrition.carbohydrate(j) = 0, j = k + 1, . . . , k + T(k)}

Label.Index{1,0} := {k|1 ≤ k ≤ N, T(k) = 0, Nutrition.carbohydrate(k) 6= 0}
Label.Index{0,0} := {k|1 ≤ k ≤ N, T(k) = 0, Nutrition.carbohydrate(k) = 0}

(11)

The label indexes defined by (11) corresponds to classes “Meal and Exercise”, “no
Meal but Exercise”, “no Exercise but Meal”, “neither Meal nor Exercise”, respectively.

Four different configurations of the RNN models were studied to assess the accuracy
and performance of each in estimating the joint probability of the carbohydrate intake and
physical activity. All four models used 24 past samples of the selected feature variables, and
event estimations were performed one sample backward. Estimating the co-occurrences
of the external disturbances should be performed at least one step backward as the effect
of disturbance variables needs to be seen first, before parameter adjustment and event
prediction can be made.

Since the imputation of gaps with a high number of consecutive missing values ad-
versely affects the prediction of meal–exercise classes, all remaining samples with missing
values after the data imputation step were excluded from parameter optimization. Exclud-
ing missing values inside the input tensor can be carried out either by using a placeholder
for missing samples and filtering samples through masking layer or by manually removing
incomplete samples.
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Each recurrent NN models used in this study encompasses a type of LSTM units [50]
(see Figure 2) to capture the time-dependent patterns in the data. The first NN model
consists of a masking layer to filter out unimputed samples, followed by a LSTM layer,
two dense layers, and a softmax layer to estimate the probability of each class. The LSTM
and dense layers undergo training with dropout and parameter regularization strategies
to avoid the drastic growth of hyperparameters. Additionally, the recurrent information
stream in the LSTM layer was randomly ignored in the calculation at each run. At each layer
of the network, the magnitude of both weights and intercept coefficients was penalized by
adding a L1 regularizer term to the loss function. The rectified linear unit (ReLu) activation
function was chosen as a nonlinear component in all layers. The input variables of the
regular LSTM network will have the shape of N×m× L, which denotes the size of samples,
the size of lagged samples, and the number of feature variables, respectively.

(a)

(b)

(c)

Figure 2. Structures of a regular LSTM unit (a), a Bi-LSTM unit (b), and schematic demonstration of a
2D ConvLSTM cell (c) [50].
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The second model encompasses a series of two 1D convolution layers, each one
followed by a max pool layer for downsampling feature maps. The output of the second
max pool layer was flattened to achieve a time-series extracted feature to feed to to the
LSTM layer. A dense layer after LSTM was added to the model and the joint probability of
events was estimated by calculating the output of the softmax layer. Like the first RNN
model, the ReLU activation function was employed in all layers to capture the nonlinearity
in the data. A L1 regularization method was applied to all hyperparameters of the model.
Adding convolution layers with repeated operations to an RNN model paves the way for
extracting features for the sequence regression or classification problem. This approach
has shown a breakthrough in visual time-series prediction from the sequence of images or
videos for various problems, such as activity recognition, textual description, and audio
and word sequence prediction [51,52]. Time-distributed convolution layers scan and elicit
features from each block of the sequence of the data [53]. Therefore, each sample was
reshaped into m× n× L, with n = 1 blocks at each sample.

The third classifier has a 2D convolutional LSTM (ConvLSTM) layer, one dropout
layer, two dense layers, and a softmax layer for the probability estimation of each class
from the sequences of data. A two-dimensional ConvLSTM structure was designed to
capture both temporal and spatial correlation in the data, moving pictures in particular, by
employing a convolution operation in both input-to-state and state-to-state transitions [50].
In comparison to a regular LSTM cell, ConvLSTMs perform the convolution operation by
an internal multiplication of inputs and hidden states into kernel filter matrices (Figure 2c).
Similar to previously discussed models, the L1 regularization constraint and ReLU activa-
tion function were considered in constructing the ConvLSTM model. A two-dimensional
ConvLSTM import sample of spatiotemporal data in the format of m× s× n× L, where
s = 1 and n = 1, stands for the size of the rows and columns of each tensor, and L = 20 is
the number of channels/features on the data [54].

Finally, the last model comprises two 1D convolution layers, two max pooling layers,
a flatten layer, a bidirectional LSTM (Bi-LSTM) layer, a dense layer, and a soft max layer
to predict classes. Bi-LSTM units capture the dependency in the sequence of the data in
two directions. Hence, as a comparison to a regular LSTM memory unit, Bi-LSTM requires
reversely duplicating the same LSTM unit and employing a merging strategy to calculate
the output of the cell [55]. The use of this approach was primarily observed in speech
recognition tasks, where, instead of real-time interpretation, the whole sequence of the data
was analyzed and its superior performance over the regular LSTM was justified [56]. The
joint estimation of glycemic events was made one step backward. Therefore, the whole
sequence of features were recorded first, and the use of an RNN model with Bi-LSTM units
for the detection of unannounced disturbances was quite justifiable. The tensor of input
data is similar to LSTM with 1D convolutional layers. Figure 2 is the schematic diagram of
a regular LSTM, a Bi-LSTM, and a ConvLSTM unit.

Figure 3 depicts the structure of the four RNN models to estimate the probability of
meal consumption, physical activity, and their concurrent occurrence. The main difference
between models (a) and (b) in Figure 3 is the convolution and max-pooling layers added
before the LSTM layer to extract features map from time series data. Although adding
convolutional blocks to an RNN model increases the number of learnable parameters,
including weights, biases, and kernel filters, calculating temporal feature maps from input
data better discriminates the target classes.
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(a) (b)

(c) (d)

Figure 3. Systematic structures of the different RNN models included in the study: (a) LSTM NN
model, (b) LSTM with 1D convolutional layers, (c) 2D ConvLSTM NN model, and (d) Bi-LSTM
with 1D convolutional layers. Color dictionary: Yellow: tensor of data, Orange: Masking to exclude
missing samples, Magenta: Relu activation, Light blue: LSTM layer, Red: dropout, Grey: dense layer,
Green: softmax activation, Blue: flatten layer, Purple: max pool layer, Dark green: kernel filter, Light
red: the matrix of intermediate states.

5. Case Study

Eleven datasets containing CGM-sensor–insulin-pump, physical activity, and carbo-
hydrate intake information were selected randomly from subject records for a case study.
Data imputation and reconciliation, RNN training, and an evaluation of the results were
conducted individually for each subject. Hence, the RNN models were personalized, using
only that person’s data. All datasets were preprocessed by the procedure elaborated on in
the data preprocessing section and feature variables were rescaled to have zero-mean and
unit variance. Stratified six-fold cross-validation was applied to 87.5% of samples of each
dataset to reduce the variance of predictions. Weight values proportional to the inversion
of class sizes were assigned to the corresponding samples to avoid biased predictions
caused by imbalanced samples in each class. In order to better assess the performance of
each model and to avoid the effects of randomization in the initialization step of the back
propagation algorithm, each model was trained five times with different random seeds.
Hyperparameters of all models were obtained through an adaptive moment estimation
(Adam) optimization algorithm, and 2% of the training sample size was chosen as the size
of the training batches. In model training with different random seeds, the number of
adjustable parameters, including weights, biases, the size and number of filter kernels, and
the learning rate remained constant.

One difficulty associated with convolution layers in models (b) and (d) is the opti-
mization of the hyperparameters of the convolutional layers. Usually, RNN models with
convolution layers require a relatively high computation time. As a solution, learning
rates with small values are preferred for networks with convolutional layers since they
lead to a more optimal solution compared to large learning weights, which may result in
non-optimality and instability.
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The data preprocessing part of the work was conducted in a Matlab 2019a environment,
and Keras/Keras-gpu 2.3.1 were used to construct and train all RNN models. Keras is
a high-class API library with Tensorflow as the backend; all are available in the Python
environment. We used two computational resources for data preparations and model
training. Table 5 provides the details of hardware resources.

Table 5. Hardware specifications.

Data Preprocessing Task Model Training Task

CPU Model Intel i9 9900 k Intel i7 8700 k
CPU Frequency 3.6–5.0 GHz 3.7–4.7 GHz

Threads 16 12
RAM Capacity 64 GB (DDR IV) 32 GB (DDR IV)

Graphics Processor RTX 2080 Ti × 2 GTX 1050 Ti (GDDR5)
Graphics Memory 11 GB 4 GB
Clock Frequency 1545–1750 MHz 1290–1392 MHz

Cuda Kernels 4352 768

6. Discussion of Results

Each classifier was evaluated by testing a 12.5% split of all sensor and insulin pump
recordings for each subject, corresponding to 3–12 weeks of data for a subject. The average
and the standard deviation of performance indexes are reported in Table 6. The lowest per-
formance indexes were achieved by 2D ConvLSTM models. Bi-LSTM with 1D convolution
layer RNN models achieve the highest accuracy for six subjects out of eleven, and LSTM
with 1D convolution RNN for three subjects. Bi-LSTM with 1D convolution layer RNN
models outperformed other models for four subjects, with weighted F1 scores ranging
from 91.41–96.26%. Similarly, LSTM models with 1D convolution layers achieved the
highest weighted F1 score for another four subjects, with score values within 93.65–96.06%.
Glycemic events for the rest of the three subjects showed to be better predicted by regular
LSTM models, with a weighted F1 score between 93.31–95.18%. This indicates that 1D
convolution improves both the accuracy and F1 scores for most of the subjects. Based on
the number of adjustable parameters for the four different RNN models used for a specific
subject, LSTMs are the most computational demanding blocks in the model. To assess the
computational load of developing the various RNN models, we compared the number of
learnable parameters (details provided in Supplementary Materials). These values can be
highly informative, as the number of dropouts in each model and the number of learnable
parameters at each epoch (iteration) are invariant.

A comparison between 1D conv-LSTM and 1D-Bi-LSTM for one randomly selected
subject shows that the number of learnable parameters increases by at least 54%, mainly
stemming from an extra embedded LSTM in the bidirectional layer (Table S1). While
comparing adjustable parameters may not be the most accurate way of determining the
computational loads for training the models, they provide a good reference to compare the
computational burden of different RNN models.

Figure 4 displays a random day selected from the test data to compare the effectiveness
of each RNN model in detecting meal and exercise disturbances. Among four possible real-
izations for the occurrence of events, detecting joint events, Class1,1, is more challenging as
it usually shows overlaps with Class0,1 and Class1,0. Another reason for the lower detection
is the lack of enough information on Class1,1, knowing that people would usually rather
have a small snack before and after exercise sessions over having a rescue carbohydrate
during physical activity. Furthermore, the AID systems used by subjects automatically
record only CGM and insulin infusion values, and meal and physical activity sessions need
to be manually entered to the device, which is, at times, an action that may be forgotten by
the subject. Meal consumption and physical activity are two prominent disturbances that
disrupt BGC regulation, but their opposite effect on BGC makes the prediction of Class1,1
less critical than each of meal intake or only physical activity classes.
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Table 6. The average performance indexes of LSTM, LSTM with 1D convolution layers, 2D Con-
vLSTM, and Bi-LSTM with 1D convolution layers RNN models for the event detection problem.
Standard deviations are given in parentheses and values with bold notation denote the highest
performance indexes.

Subject No./Model Total Accuracy (%) Weighted Recall (%) Weighted Precision
(%)

Weighted F1
Score (%)

92.03 (0.37) 92.03 (0.37) 94.59 (0.29) 93.06 (0.30)
94.61 (0.15) 94.61 (0.15) 97.67 (0.20) 96.06 (0.13)
89.89 (0.27) 89.89 (0.27) 94.36 (0.16) 91.73 (0.13)1


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 94.72 (0.31) 94.72 (0.31) 96.85 (0.34) 95.68 (0.29)
93.17 (0.21) 93.17 (0.21) 96.17 (0.09) 94.37 (0.10)
94.69 (0.33) 94.69 (0.33) 96.58 (0.20) 95.31 (0.16)
91.29 (0.38) 91.29 (0.38) 95.90 (0.20) 93.20 (0.17)2


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 93.56 (0.21) 93.56 (0.21) 96.99 (0.25) 95.17 (0.11)
89.93 (0.22) 89.93 (0.22) 93.98 (0.24) 91.38 (0.22)
88.98 (0.28) 88.98 (0.28) 93.53 (0.09) 90.61 (0.22)
88.40 (0.25) 88.40 (0.25) 93.13 (0.12) 90.21 (0.11)3


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 89.98 (0.17) 89.98 (0.17) 93.87 (0.05) 91.41 (0.10)
92.55 (0.27) 92.55 (0.27) 95.49 (0.09) 93.48 (0.17)
94.67 (0.31) 94.67 (0.31) 96.62 (0.17) 95.34 (0.22)
88.87 (0.33) 88.87 (0.33) 94.61 (0.16) 90.93 (0.16)4


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 94.49 (0.28) 94.49 (0.28) 96.47 (0.25) 95.13 (0.15)
94.41 (0.21) 94.41 (0.21) 96.46 (0.10) 95.18 (0.13)
91.65 (0.26) 91.65 (0.26) 96.16 (0.12) 93.38 (0.22)
89.81 (0.18) 89.81 (0.18) 95.62 (0.10) 92.02 (0.17)5


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 92.66 (0.21) 92.66 (0.21) 96.93 (0.28) 94.73 (0.20)
94.50 (0.27) 94.50 (0.27) 95.15 (0.22) 94.78 (0.15)
95.67 (0.26) 95.67 (0.26) 96.69 (0.09) 95.04 (0.14)
91.10 (0.25) 91.10 (0.25) 94.37 (0.10) 92.60 (0.16)6


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 95.86 (0.17) 95.86 (0.17) 96.72 (0.21) 96.26 (0.11)
91.81 (0.22) 91.81 (0.22) 95.43 (0.22) 93.31 (0.16)
89.85 (0.22) 89.85 (0.22) 94.19 (0.17) 91.68 (0.14)
87.47 (0.27) 87.47 (0.27) 99.83 (0.22) 93.15 (0.18)7


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 90.03 (0.24) 90.03 (0.24) 95.01 (0.16) 92.32 (0.17)
89.19 (0.22) 89.19 (0.22) 99.68(0.27) 94.13 (0.16)
90.99 (0.18) 90.99 (0.18) 97.68 (0.19) 94.11 (0.20)
83.92 (0.28) 83.92 (0.28) 94.60 (0.33) 88.73 (0.12)8


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 91.42 (0.30) 91.42 (0.30) 95.17 (0.37) 93.12 (0.12)
92.70 (0.18) 92.70 (0.18) 96.53 (0.28) 94.10 (0.12)
93.10 (0.32) 93.10 (0.32) 95.70 (0.31) 94.10 (0.30)
91.56 (0.34) 91.56 (0.34) 94.81 (0.30) 93.10 (0.31)9


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 93.33 (0.27) 93.33 (0.27) 97.24 (0.21) 95.21 (0.22)
89.30 (0.34) 89.30 (0.34) 95.57 (0.08) 91.73 (0.22)
91.89 (0.25) 91.89 (0.25) 96.14 (0.08) 93.65 (0.12)
85.87 (0.27) 85.87 (0.27) 95.69 (0.08) 89.73 (0.22)10


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 89.51 (0.25) 89.51 (0.25) 96.11 (0.03) 92.30 (0.17)
87.17 (0.44) 87.17 (0.44) 92.26 (0.12) 89.10 (0.23)
89.41 (0.35) 89.41 (0.35) 94.39 (0.06) 91.19 (0.23)
86.90 (0.29) 86.90 (0.29) 94.84 (0.21) 90.05 (0.25)11


LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 89.62 (0.15) 89.62 (0.15) 96.51 (0.13) 92.64 (0.14)

The confusion matrices of the classification results for one of the subjects (No. 2) are
summarized in Table 7. As can be observed from Figure 4 and Table 7, detecting Class0,1
(physical activity) is more challenging in comparison to the carbohydrate intake (Class1,0)
and Class0,0 (no meal or exercise). One reason for this difficulty is the lack of biosignal
information, such as 3D accelerometer, blood volume pulse, and heart rate data. Some
erroneous detections, such as confusing meals and exercise, are dangerous, since meals
necessitate an insulin bolus while exercise lowers BGC, and the elimination of insulin
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infusion and/or increase in target BGC are needed. RNNs with LSTM and 1D convolution
layers provide the best overall performance in minimizing such confusions: two meals
events are classified as exercise (0.003%) and eight exercise events are classified as meals
(0.125%).

Figure 4. One-step-backward predicted Meal and Exercise events for one randomly selected dataset
(Subject 2).Vertical green bars represent correctly predicted classes. Vertical red bars denote incorrectly
predicted classes, and their actual labels are shown by blue bars. Class Dictionary: Class0,0: “neither
Meal nor Exercise”, Class0,1: “only Exercise”, Class1,0: “only Meal”, Class1,1: “Meal and Exercise”.

Two limitations of the study are the quality and accuracy of data collected in free living
and the variables that are measured. As stated in the Introduction and Data Preprocessing
sections, the missing data in the time series of CGM readings is one limitation that we ad-
dressed by developing data preprocessing techniques. The second limitation is the number
of variables that are measured. In this data set, there are only CGM and insulin pump
data and the voluntary information provided by the patients about meal consumption
and exercising. This information is usually incomplete (sometimes people may forget
or have no time to enter this information). These events can be captured objectively by
other measurements from wearable devices. Such data were not available in this data set
and limited the accuracy of the results, especially when the meal and exercise occurred
concurrently.

The proportion of correctly detected exercise and meal events to all actual exercise and
meal events for all subjects reveals that a series of convolution–max-pooling layers could
elicit informative feature maps for classification efficiently. Although augmented features,
such as the first and second derivatives of CGM and PIC, enhance the prediction power
of the NN models, the secondary feature maps, extracted from all primary features, show
to be a better fit for this classification problem. In addition, repeated 1D kernel filters in
convolution layers better suit the time-series nature of the data, as opposed to extracting
feature maps by utilizing 2D convolution filters on the data.
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Table 7. Confusion matrices calculated from the predicted and actual classes of testing samples
collected from Subject 2.

Actual Actual

Class{0,0} Class{0,1} Class{1,0} Class{1,1} Class{0,0} Class{0,1} Class{1,0} Class{1,1}

Class{0,0} 11,154 12 46 2 Class{0,0} 11,297 14 8 1

Class{0,1} 310 598 2 0 Class{0,1} 274 596 2 2

Class{1,0} 263 21 593 1 Class{1,0} 311 8 655 1

Pr
ed

ic
te

d

Class{1,1} 217 5 27 6 Pr
ed

ic
te

d

Class{1,1} 62 18 3 5

(a) LSTM (b) LSTM (1D Convolution)

Actual Actual

Class{0,0} Class{0,1} Class{1,0} Class{1,1} Class{0,0} Class{0,1} Class{1,0} Class{1,1}

Class{0,0} 10,984 14 29 1 Class{0,0} 11,324 14 29 1

Class{0,1} 560 574 16 2 Class{0,1} 110 537 16 2

Class{1,0} 157 6 541 2 Class{1,0} 257 6 538 2

Pr
ed

ic
te

d

Class{1,1} 243 42 82 4 Pr
ed

ic
te

d
Class{1,1} 253 79 85 4

(c) 2D ConvLSTM (d) Bi-LSTM (1D Convolution)

7. Conclusions

This work focuses on developing RNN models for detection and classification tasks
using time series data containing missing and erroneous values. The first modeling issue
arose from the quality of the recorded data in free living. An outlier rejection algorithm
was developed based on multivariable statistical analysis and signal denoising by decom-
position of the Hankel matrix of CGM recordings. A multivariate approach based on PPCA
for CGM sample imputation was used to keep the harmony and relationship among the
variables. The second issue addressed is the detection of events that affect the behavior of
dynamic systems and the classification of these events. Four different RNN models were
developed to detect meal and exercise events in the daily lives of individuals with T1D.
The results indicate that models with 1D convolution layers can classify events better than
regular LSTM RNN and 2D ConvLSTM RNN models, with very low confusion between
the events that may cause dangerous situations by prompting erroneous interventions,
such as giving insulin boluses during exercise.
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