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Abstract: Bismuth vanadate (BiVO4 or BVO) is one of the most studied photocatalysts for water
oxidation because of its excellent visible light absorption and appropriate band energy positions.
However, BVO presents a low charge mobility and a high electron–hole recombination rate. To
address these fundamental limitations, this study proposes the coating of previously synthesized
phase-pure monoclinic scheelite BVO with different amounts of naked cobalt (further oxidized to
cobalt hydroxide) nanoparticles (NPs) via a modified magnetron sputtering deposition. The resulting
BVO/Co photocatalysts were investigated for methylene blue (MB) photodegradation, photocatalytic
oxygen evolution, and photoelectrochemical (PEC) water oxidation. In the MB photodegradation
tests, the BVO/Co sample prepared with a deposition time of 5 min (BVO/Co(5 min)) presented
the highest photoactivity (k = 0.06 min−1) compared with the other sputtering investigated times
(k = 0.01–0.02 min−1), as well as the pristine BVO sample (k = 0.04 min−1). A similar trend was
evidenced for the PEC water oxidation, where a photocurrent density of 23 µA.cm−2 at 1.23 V (vs.
RHE) was observed for the BVO/Co(5 min) sample, a value 4.6 times higher compared with pristine
BVO. Finally, the BVO/Co(5 min) presented an O2 evolution more than two times higher than that of
the pristine BVO. The increased photocatalytic performance was ascribed to increased visible-light
absorption, lesser electron–hole recombination, and enhanced charge transfer at the liquid/solid
interface. The deposition of Co(OH)2 NPs via magnetron sputtering can be considered an effective
strategy to improve the photocatalytic performance of BVO for different target catalytic reactions,
including oxygen evolution, water oxidation, and pollutant photodegradation.

Keywords: oxygen evolution; photoelectrochemical water splitting; cocatalyst; cobalt hydroxide;
sputtering; photocatalysis

1. Introduction

The accelerated growth in the world’s population and the accompanying increase in
industrialization has not only stressed the global hydrocarbon-based energy reservoirs
but has also caused the serious problem of environmental pollution. From a sustainability
point of view, it is urgent to find effective strategies to address these global challenges,
for example, by searching for alternative energy sources and designing effective envi-
ronmental remediation processes [1,2]. Thus, a great deal of scientific interest has been
directed towards the exploitation of the abundant and never-exhausting solar light for
photo(electro)chemical processes aimed at generating/storing greener energy and/or com-
bating environmental pollution [3,4].

Heterogeneous photocatalysis, which employs semiconductor-based materials for sun-
light capture and the consequent formation of charge carriers (electrons and holes with a
high redox potential) is considered one of the most promising strategies to effectively utilize
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solar energy for different photo(electro)chemical applications [5–9]. For instance, photoelec-
trochemical (PEC) water splitting using semiconductor photoelectrodes can directly convert
solar energy into fuels in a green and sustainable way [10,11]. A suitable photocatalyst
for efficient solar-to-electrical/chemical energy conversion must exhibit a good absorption
of solar light, as well as efficient generation, transport, and utilization of photogenerate
charge carriers [1,10,12]. Unfortunately, no single photocatalytic material fulfills all of the
thermodynamic requirements and most of the relatively efficient photocatalysts (TiO2 and
ZnO) only operate under UV light, which only accounts for a limited region of the solar
spectrum [2,11]. Thus, many studies have focused on the use of mixed/composite materials
that combine the advantages of the individual components into one system, often in a syn-
ergic manner [13–19], and the development of efficient visible/near-infrared light absorber
material to improve the overall solar-to-electro(chemical) energy conversion [4,11,20,21].

Among the visible light photocatalysts, BiVO4 (BVO), an n-type semiconductor with a
band gap (~2.5 eV), high visible light absorption, and appropriate band structure/edge
position, has attracted special attention for CO2 reduction [2], water-splitting [11,14], and
the photo-oxidation of organic molecules [4,21,22]. Unfortunately, however, it suffers from
fast electron–hole recombination, poor electron mobility, and slow surface reaction kinetics
for oxygen evolution, factors that ultimately limit the solar-to-energy conversion efficiency
of BVO photoanodes/materials. To address these fundamental limitations of BVO and
enhance its photocatalytic activity, different strategies have been proposed, including the
formation of heterojunctions [4,23–25], metal-doping/decoration [22,26], and the deposition
of cocatalyst materials on its surface [13–15,27–29]. The loading of cobalt-based oxygen
evolution cocatalysts has proven to be a valuable method to enhance BVO oxidation ability
as it accelerates the charge carrier transfer at the BVO surface. It is known that different
structural forms of cobalt such as oxides, hydrated oxides, hydroxides, and oxyhydroxides
might evolve in oxidation reaction conditions, which makes this class of materials of special
interest as cocatalysts [30]. After the heterostructure formation of BVO with Co(OH)2
through a chemical impregnation method, the photocurrent density for water splitting
was significantly enhanced from 1.57 to 4.52 mA/cm2 at 1.23 V vs. RHE under 1-sun
illumination [31]. In parallel, a photocurrent density improvement for water oxidation
was also obtained after depositing a thin Co(OH)2 cocatalyst layer over BVO through
atomic layer deposition [30]. More than that, the authors showed that the Co2+ hydroxide
performed better as a cocatalyst for BVO than the Co2+ oxide. In another study, loading
of BVO with the Co(OH)2 cocatalyst lead to increased photoactivity for Rhodamine B
degradation [32]. Although the BiVO4/Co(OH)2 photocatalytic system has already been
reported, the enhancement in photoactivity is not well understood, as revealed by the
different and controversial mechanisms proposed in the literature [30–32].

In this scenario, the present study proposes, for the first time, a solution-free controlled
deposition method to coat pre-synthesized monoclinic scheelite BVO particles with dif-
ferent amounts of cobalt hydroxide nanoparticles (NPs) via magnetron sputtering using
different deposition times in a special vibrating apparatus. The novel idea of the use of
the vibrating apparatus ensures a homogenous coating of BVO particles with plentiful
active sites, and the deposition method does not require the use of toxic solvents. Moreover,
the amount/loading of NPs can be easily controlled by simply varying the deposition
time. This allowed for a systematic study of the loading/layer thickness of the deposited
NPs on the photoactivity of BVO/Co materials, as measured by methylene blue (MB)
photodegradation, photocatalytic oxygen evolution, and photoelectrochemical (PEC) water
oxidation. We thus provide important insights into the structure–property relationship
of the BVO/Co materials, demonstrating that the deposition of Co(OH)2 NPs increase
visible-light absorption, decrease charge transfer resistance at the liquid/solid interface,
and mitigate electron/hole recombination, boosting the photocatalytic performance of BVO
in the above-intoned applications. The developed magnetron sputtering-based strategy for
the deposition of Co-based NPs is general and substrate-independent and can be applied
to homogenously modify the surface of different photocatalytic materials with a variety of
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desired cocatalysts particles, facilitating preparation of photocatalyst/cocatalyst systems
with improved photocatalytic performances.

2. Materials and Methods
2.1. Chemicals

Bismuth(III) nitrate pentahydrate (Bi(NO3)3.5H2O, 98%), ferric nitrate nonahydrate
(Fe(NO3)3.9H2O, >98%), and ammonium metavanadate (NH4VO3, 99%) were purchased
from Sigma Aldrich Chemical Co., Brazil. Methylene blue (MB) was obtained from Vetec,
Campo Grande, Brazil. All of the solvents were of analytical grade and were used without
further purification.

2.2. Synthesis of BVO Nanoflakes

The synthesis of the BVO powders was conducted as previously reported by our
group, with no modifications [22,33]. Briefly, 8 mmol of Bi(NO3)3.5H2O and 8 mmol of
NH4VO3 were separately dissolved into 11 mL of nitric acid (2.0M, called SA) and 19.8 mL
of sodium hydroxide (2.0 M, called SB), respectively. These solutions were kept under
sonication for 30 min (UltraCleaner® 1400A 40 kHz) and, in the sequence, magnetically
stirred for another 30 min. After complete solubilization, SA was dropwise added into SB
under stirring and a yellow solution was obtained. The final solution was magnetically
stirred for 150 min and the pH was adjusted to 5.5 during the process. The reaction mixture
was transferred into a 110 mL Teflon-lined stainless-steel autoclave and carefully sealed.
The hydrothermal reaction was performed inside an oven at 140 ◦C for 6 h with a heating
rate of 5 ◦C min−1. After cooling, the final precipitate was centrifuged at 4500 rpm for
15 min, and washed four times with deionized water and once with ethyl alcohol. The
obtained powder was dried at 60 ◦C for 12 h in air and stored in an Eppendorf.

2.3. Cobalt Cocatalyst Deposition

Modified magnetron sputtering deposition was employed to deposit the CoNPs on
the surface of the BVO. Typically, 50 mg of the pristine BVO powder was placed in a
round-bottom glass capsule connected to a mechanical resonant agitator, as previously
reported [34,35]. This whole set was inserted in the sputtering chamber (5 cm from the
target), which was evacuated to a base pressure of 2.0 × 10−6 mbar. A working pressure
of 3.5 × 10−2 mbar was set up with the addition of ultra-pure argon (99.999%) into the
chamber. The powder was agitated inside the chamber with the aid of a sinusoidal wave
generation supply vibrating at a frequency of 90–100 Hz. A 100 W DC was applied at a
cobalt metallic target (99.95%) at different sputtering times (5, 15, and 30 min) to produce
samples with varying amounts of Co. The resulting samples were coded as BVO/Co(x min)
where x = 5, 15, and 30 min, representing the Co deposition time.

2.4. Photoelectrodes Preparation

Thin films were prepared by drop-casting 220 µL of a deionized water suspension
of the samples (5 mg.mL−1) onto a 1 × 1 cm selected area of a pre-cleaned glass sub-
strate coated with Sn-doped indium oxide (ITO). After naturally drying, the films were
annealed in Ar for 2 h at 300 ◦C at a rate of 5 ◦C.min−1. Before sample deposition, all
of the substrates were cleaned in an ultrasonic bath with deionized water and detergent,
followed by immersion in ethyl alcohol and acetone for 20 min each, and were then dried
at ambient temperature.

2.5. Characterizations

The pristine sample morphology and size were studied using a Sigma scanning
electron microscope (Zeiss, Oberkochen, Germany) equipped with a field emission gun
(FEG-SEM) and a high-resolution transmission electron microscope (JEOL-JEM 2100F),
equipped with a field emission gun and operated at 200 kV. X-ray powder diffraction
(XRD) patterns were recorded using a Bruker X-ray diffractometer with Cu Kα radiation,
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20 ≤ 2θ ≤ 80 range, angular step of 0.02◦, and a counting time of 5 s per step. The chemical
surface composition of the samples was studied by X-ray photoelectron spectroscopy (XPS)
using a conventional XPS spectrometer (ESCA+, Scientia Omicron, Uppsala, Sweden) with
a high-performance hemispheric analyzer (EAC2000) and monochromatic Al Kα radiation
(hν = 1486.6 eV) as the excitation source. The operating pressure in the ultra-high vacuum
chamber (UHV) during the analysis was 10−9 Pa. The XPS high-resolution spectra were
recorded at a constant passing energy of 20 eV with a 0.05 eV per step. The XPS spectra
were processed using the Casa XPS software (release 2.3.16, Casa Software Ltd., London,
UK). A Shirley background subtraction was applied and the peak positions of C1s carbon
adventitious were used for energy calibration at 284.8 eV. Valence band XPS data were
measured in a high-resolution mode and calibrated by linear extrapolation of the signal to
zero intensity. UV–VIS diffuse reflectance spectra of the powders were obtained using a
LAMBDA 650 UV–VIS spectrometer (PerkinElmer, Waltham, MA, USA) equipped with an
integrating sphere and were converted from reflection to absorption by the Kubelka–Munk
method. The Raman spectra were recorded by a Raman spectrometer (SCIAPS, Advantage
532, Woburn, MA, USA), using a 532-nm laser source for excitation. Photoluminescence (PL)
spectra were recorded using a Fluorolog-3.11 spectrofluorometer (Horiba Jobin Yvon, Paris,
France) equipped with a 450 W ozone-free Xenon lamp and a photomultiplier detector
sensitive in the range of 200–850 nm, under excitation at 375 nm.

2.6. PEC Water Oxidation Measurements

PEC measurements were recorded using a CorrTest® potentiostat (Wuhan, China),
with a standard three-electrode system. The as-prepared sample-based electrodes were
used as the working electrode, an Ag/AgCl (saturated KCl) as the reference electrode, and a
platinum rod as the counter electrode, all immersed in a 0.5 M Na2SO4 electrolyte saturated
with Ar for 15 min to remove the dissolved oxygen. Linear scan voltammetry (LSV) was
conducted in the dark and under irradiation from a solar simulator equipped with a 150 W
xenon lamp (Model 10500, Abet Tech, Milford, CT, USA) and an AM 1.5 G filter. This system
was calibrated with a reference solar cell (Model 15151, Abet Tech) to warrant a fixed light
intensity of 200 mW cm−2 in all of the experiments. Unless stated otherwise, the light
was irradiated through the BiVO4 semiconductor side (front-side). Photocurrents were
measured while sweeping the potential from −0.6 to 0.7 V vs. Ag/AgCl in the positive
direction with a scan rate of 10 mV s−1. Electrochemical impedance spectroscopy (EIS) and
Nyquist plot were performed using the same experimental setup as the PEC measurements,
the frequency used was 40 mHz–100 kHz in 10 mV potential under continuous light.

2.7. Evaluation of Photocatalytic Activity

The photocatalytic activity of the semiconductor photocatalysts was initially evaluated
for MB degradation. In each experiment, 25 mg of the photocatalyst was dispersed in
25 mL of aqueous methylene blue (10 mg.L−1). Before the irradiation, the solution was
magnetically stirred in dark for 30 min for MB adsorption on the surface of the photocatalyst.
Subsequently, the solution was irradiated using a solar simulator equipped with a 150 W
xenon lamp (Model 10500, Abet Tech) and an AM 1.5 G filter. This system was calibrated
with a reference solar cell (Model 15151, Abet Tech) to warrant that light intensity was fixed
at 300 mW cm−2 in all of the photodegradation experiments. All of the experiments were
conducted in triplicate, under continuous stirring, and aliquots of 300 µL were collected,
centrifuged, and analyzed using a UV–VIS spectrophotometer. The concentration of the
MB solution was monitored by the aliquot absorption at 664 nm.

Measurements of O2 production were performed under visible light irradiation using
50 mg of photocatalyst suspended in 50 mL of 0.02 M Fe(NO3)3.9H2O as an electron
scavenger. The air in the reactor vessel was evacuated to 60 Torr and purged with Argon
repeatedly until all of the oxygen was eliminated from the reactor volume, which was
confirmed by gas chromatography (SRI GC 8610C, SRI Instruments, Torrance, CA, USA).
Then, the reactor was continuously irradiated with a 300 W Xe lamp located 18 cm from the
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center of the reactor (light intensity of ~450 mW.cm−2). A chemical filter of 0.22 M NaNO2
was used to completely subtract the ultraviolet and some part of the infrared coming from
the lamp.

3. Results and Discussion

The as-synthesized BVO particles were analyzed by FEG-SEM to investigate their mor-
phological properties (Figure 1a). The images show irregular branched-shaped particles,
with an estimated average size of 204 ± 66 nm, in agreement with previous studies [22,33].
The crystalline features of the pristine BVO sample were investigated by XRD analysis,
as represented in Figure 1b. The X-ray diffraction data present narrow peaks that match
that of the monoclinic scheelite phase (ICSD file 01751866), indicating the formation of
well–crystalline monoclinic scheelite BVO, with a unit cell belonging to the spatial group
I112/b, refined cell parameters of a = 5.18 Å, b = 5.08 Å, c = 11.67 Å, α = β = 90◦, and
γ = 90.36◦, and a preferential orientation along with {040} facets, in accordance to the
literature [33,36]. As expected, the XRD peaks of the Co-deposited BVO samples were
identical to those of the pristine BVO due to the low Co content that is below the detection
limit of the equipment (results not shown).
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Figure 1. Characterization results of pristine BVO and BVO/Co powder samples: (a) FEG-SEM of
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samples; (d) Tauc plot for the indirect bandgap determination of pristine BVO and BVO/Co.

Raman spectroscopy is an efficient tool for probing the structure and bonding in
metal-oxide species through their vibrational characteristics. In the monoclinic phase of
BiVO4, the tetrahedral structure of VO4

3− is responsible for all BVO vibrational modes [37].
Figure 1c shows that the Raman spectra of the samples contain four main peaks, where
the most intense one at 827 cm−1 is attributed to the V–O symmetrical stretch mode.
The other three peaks are located at 708, 366, and 325 cm−1, and are attributed to the
asymmetric stretching mode, and symmetrical and asymmetrical angular deformation
mode, respectively, all of which are characteristics of the monoclinic phase as previously
reported in the literature [37–40]. Additionally, it is possible to observe a slight shift in
the main peak from 830 to 828 cm−1 with increasing the Co deposition time (Figure 1c).
However, according to the literature [22,40], we can estimate the V–O interatomic distance
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for BVO, and it remained around 1.69 Å for all samples, showing that this small shift does
not significantly impact the structural properties of the photocatalyst.

Optical properties were measured using UV–VIS diffuse reflectance spectroscopy
(DRS). Figure 1d shows the obtained Tauc plots considering an indirect band gap. The
estimated band gap for pristine BVO was 2.45 eV, which matched experimental values
previously reported in the literature for monoclinic scheelite BVO [41–44]. All of the sam-
ples presented similar band gap energies, corroborating the fact that Co deposition did not
change the structural properties of BVO, an outcome that shows the non-destructive charac-
ter of the employed cocatalyst deposition route. However, one can see that the absorption
of light increases in the visible range for higher Co sputtering times, as observed in the left
tail of the curves, thus improving the light-harvesting properties of the photocatalysts.

The photocatalytic performance of the samples was initially investigated for MB
degradation under visible light irradiation (Figure 2a). Before the photocatalytic reaction,
the sample suspension was stirred for 30 min in the dark to reach the adsorption–desorption
equilibrium of the MB. As can be seen, the efficiency of BVO/Co(5 min) photocatalyst
overperformed all of the other studied samples, resulting in 78% of MB photodegradation
after 60 min of simulated solar light irradiation, whereas using photocatalysts as pristine
BVO, BVO/Co(15 min), and BVO/Co(30 min), the MB degradation was 70, 58, and 57%,
respectively. For sputtering times higher than 5 min, the photocatalytic MB degradation
decreased compared to pristine BVO, which may be due to the effects coming from the
excess of Co, which can block light absorption through the main absorber material as well
as reduce the number of surface active sites of BVO. Additionally, the photogenerate charge
carriers in BVO might not be easily accessible for photocatalytic reactions in the presence
of a thicker layer of Co between the surface of BVO and the solid/solution interface (see
Table 1).
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MB solution; (b) pseudo-second-order kinetic plots of MB solution degradation, where (k) is the
pseudo-second-order kinetic constant and R is the correlation coefficient of the linear fit; (c) PEC
measurements using a 0.1 M of Na2SO4 electrolyte; (d) O2 production via water oxidation.
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Table 1. Values of Rct, Rs, and CPE obtained from the EIS spectra of BVO and BVO/Co(x min) samples.

SAMPLES BVO BVO/Co(5 min) BVO/Co(15 min) BVO/Co(30 min)

Rct (KΩ) 91.9 17.3 76.4 101.8
Rs (Ω) 22 22 22 22
CPE-P 0.90 0.85 0.91 0.92

CPE-T (µF) 25.3 32.7 17.2 14.1

Figure 2b shows the value of the pseudo-second-order kinetic constants (k) for MB
removal in the presence of BVO and different BVO/Co photocatalysts. The kinetic constant
of pristine BVO is 0.040 min−1 against 0.059 min−1 for BVO/Co(5 min), showing that the
deposited Co accelerated the MB removal by a factor of ~1.5 times. Figure 2c shows the
chopped LSV of the BVO/Co photoanodes under PEC water oxidation conditions. All
photoelectrodes were light sensitive, as expected, but only a small photocurrent response
was observed for the pristine BVO under light conditions, returning to near zero current in
the dark (Figure 2c). The BVO/Co(5 min) photoanode presented the highest photocurrent
response of 23 µA cm−2 at 1.23 V vs. RHE, compared with only 5 µA.cm−2 for pristine BVO.
Larger Co sputtering times resulted in lower photocurrents. Even though the photocurrent
is not competitive with the best results reported for BVO in the literature [45,46], this result
shows that an improvement of almost 4.6 times in the photocurrent can be obtained by
using naked Co-based NP cocatalyst deposition. This improvement is aligned with other
reports of BVO-based photoanodes, where modification of the surface with an oxygen
evolution cocatalyst (OER) is central for accelerating the water oxidation kinetics and
decreasing surface charge recombination [34]. This result indicates that the density of
photoholes transferred from the semiconductor to the liquid medium to promote water
oxidation is higher for the sample of BVO/Co(5 min), as the charge carrier recombination
at the semiconductor surface was probably reduced [35].

The water oxidation performance of the powder photocatalysts for oxygen evolution
was investigated using iron nitrate as the electron acceptors, Figure 2d. The results show
that the pristine BVO presented an O2 production of 112 µmols after 180 min of simulated
solar irradiation. The BVO/Co(5 min) photocatalyst, however, presented a much higher O2
evolution in the same period, reaching a more than two-fold increase in the total amount of
evolved O2. These results indicate that the deposition of the naked Co-based cocatalyst
onto the BVO surface is a promising strategy for enhancing the photocatalytic activity for
the photooxidation of water.

EIS measurements with and without light irradiation were performed on the photoelec-
trodes to investigate the charge transfer resistance from the photoanode to the electrolyte.
The EIS results are presented through the Nyquist plot in Figure 3a which presented single
semicircle characteristics and could be simulated using the equivalent Randles circuit
shown in the inset of Figure 3a, which includes a series solution resistance (Rs) from the
electrolyte, a resistance of charge transfer at the interface between the working electrode
and the electrolyte (Rct), and a constant phase element (CPE) [47–49]. The last is necessary
to describe the double layer capacitance distribution across the inhomogeneous electrode
surface. The final best-fitted results can be seen in Table 1. As a result, the deposition of
Co for 5 min significantly improved the charge transfer at the semiconductor/electrolyte
interface by reducing Rct by a factor of ~4.3 compared with the pristine BVO, increasing
the PEC water oxidation efficiency (Figure 2c).

Photoluminescence (PL) is a useful technique for studying electron–hole recombination
(e−–h+) in semiconductor materials, as the PL signal is the result of electron decay from an
excited state to some lower energy state or ground state [50]. The intensity of the PL light
emitted is directly related to the type/structure of the materials [51] and the recombination
rate of e−–h+, where a lower emitted PL light (at a fixed wavelength near the edge of the
absorption band) can be indicative of minor e−–h+ recombination [52,53]. Thus, when
looking at Figure 3b, the PL light emitted by BVO/Co(5 min) is smaller compared with the
pristine BVO sample, thus indicating lesser e−–h+ recombination.
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Figure 3. Electrochemical, photoluminescence, and valence band characterization; (a) Nyquist plot of
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XPS measurements were performed to investigate the surface chemical properties
of the BVO/Co catalysts, the valence band maximum energy (VB) with respect to the
Fermi level (EF), and to estimate the amount of Co deposited onto BVO. From the valence
band high-resolution spectra, the VB was determined by extrapolating the edge of the XPS
peak to its intersection with the background [54]. The VB of pure BVO was determined
at 1.19 eV below the EF (Figure 3c), which is in good agreement with the results from the
literature [55].

The Bi 4f and V 2p XPS spectra of the pristine BVO sample were previously reported
by our group and showed only lines for Bi3+ and V5+ oxidation states, as expected [22,33].
It is important to mention that for cobalt speciation and quantification, the measurements
were firstly performed in the BVO/Co(5 min) sample, but the low amount of cobalt resulted
in spectra of a poor quality, even for higher counting times. Therefore, we prepared a
BVO/Co(45 min) sample especially for conducting Co speciation through high-resolution
XPS measurement. Figure 4 shows the O 1s and Co 2p3/2 high-resolution XPS spectra for
the pristine BVO and BVO/Co(45 min).
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The pristine BVO showed two peaks in the O 1s region (Figure 4a), located at 529.6
(51.11%) and 532.2 eV (48.89%), attributed to the oxygen species of the BVO crystal lattice
and the presence of oxygen vacancies, adsorbed C-O-H species, or hydroxyl groups on
the surface, respectively [56–58]. Conversely, the BVO/Co presented three O 1s peaks
located at 529.6 (20.49%), 531.0 (24.80%), and 532.8 (54.71%) eV (Figure 4b). The first and
the last had identical attributions to those previously identified for pristine BVO and the
additional peak located at 531.01 eV, in turn, could be attributed to the O-Co bond [59,60]
and confirmed the presence of oxidized cobalt at the photocatalyst surface. However, it
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an area contribution near 1:1 for the peaks at 529.6 and 532.8 eV would be expected, as
obtained for pristine BVO. Therefore, some additional contribution is convoluted at the
532.8 eV peak after Co deposition. As the sputtering process is not expected to increase
the surface oxygen vacancies in BVO, we may assume that the contribution of adsorbed
hydroxyl groups (or C-O-H species) was higher in the BVO/Co photocatalyst surface.

Bazylewski et al. described that samples containing Co tend to oxidize when exposed
to moisture, especially for ultrasmall-sized particles, which can form CoO or Co(OH)2 [61].
To further validate our hypothesis, we analyzed the Co 2p3/2 high-resolution XPS spectrum
of BVO/Co (Figure 4c). It shows an intense peak (Peak 1) centered at 780.2 eV and three
additional satellite peaks (noted as 2, 3, and 4) located at higher binding energies. These
sets of peaks were attributed to Co2+ species. It is worth noting that Co2+/3+ (Co3O4) and
Co0 main peaks would be expected at 779 and 778 eV, respectively [60,62,63], but were
not identified. Therefore, combining the O 1s and Co 2p findings, we can infer that the
Co oxidized to Co(OH)2 [61,64] after the sputtering process and the unavoidable exposure
to ambient moisture. Table 2 shows a summary of all of the fitted peak positions and
their FWHM.

Table 2. The XPS peak position of the samples and % weight and atomic of Co onto BVO.

Samples
O 1s Co 2p3/2

Peak Binding Energy
(eV) FWHM (eV) Area (%) Peak Binding Energy

(eV) FWHM (eV)

BVO
O_Lattice 529.60 1.48 51.11 - - -

O_Ads/Vac 531.90 3.55 48.89 - - -

BVO/Co
(45 min)

O_Lattice 529.58 1.41 20.49 Peak 1 780.23 2.2
O-Co 531.02 2.44 24.80 Peak 2 782.10 2.6

O_Ads/Vac 532.78 3.31 54.71 Peak 3 785.89 5.0
- - - - Peak 4 790.57 4.0

Assuming that the sputtering deposition rate is constant over time, a linear behavior of
the amount of sputtered Co with the deposition time was expected, as previously observed
by quantitative analysis [35]. We then estimated the surface Co coverage on BVO by
analyzing the survey spectrum of the BVO/Co(45 min) sample, obtaining 2.98 wt.% of Co
at the surface, and by linear regression, where 0.33, 0.99, and 1.99 wt.% were projected for
the 5, 15, and 30 min samples. Although it is not the overall composition, photocatalysis
is a surface-related phenomenon and thus the most important topic of discussion is the
surface coverage of the photocatalyst.

To further rationalize our results, we built up the energy diagram of the BVO/Co
photocatalyst system. As the work function of the BVO was reported at about 5.6 eV [65]
and the XPS valence band spectrum revealed that the VB was located at 1.19 eV below EF,
the VB was located at 6.79 eV in the vacuum scale. This value was 2.35 V on the normal
hydrogen electrode (NHE) scale (ENHE = Eabs − 4.44, at 298 K). Therefore, the CB was then
located at −0.1 V vs. NHE as the obtained bandgap energy was 2.45 eV, and the energy
diagram and the possible charge transfer mechanisms for the BVO/Co(OH)2 system is
proposed in Figure 5. The CB and VB values of Co(OH)2 respectively assumed at −1.54
and 1.31 V, respectively, vs. NHE, based on reports from the literature [66,67].

In all of the cases, both semiconductor materials could be active under visible light
irradiation and electrons could be excited from their VB to their CB, leaving h+ in the VB.
Of course, the photoexcitation process was dominant for BVO particles as the best photo-
catalyst had only 0.33 wt.% of Co(OH)2 as the surface content. If a type-II heterojunction
was formed (Figure 5a), photogenerated h+ were transferred from the VB of the BVO to
the VB of Co(OH)2, where they may partially oxidize Co2+ to Co3+. Subsequently, Co3+

could oxidize water (or MB pollutant) and become reduced back to its former oxidation
state (Co2+), re-establishing the cycle so that it could be oxidized again by the next photo-
generated h+ [66,68,69]. The alternation between the Co2+ and Co3+ species would help
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in the charge separation process, improving the overall photoactivity. However, in such a
path, the electrons would accumulate at the BVO surface and recombine back with h+ at
the BVO VB, as observed for the pristine BVO, which should diminish the photoactivity
of the BVO/Co system and not the opposite. It is important to note that in the case of
photocatalytic oxygen evolution using iron nitrate as the electrons acceptors, the type-II
heterojunction, to some extent, explains the observed results, as the accumulated electrons
at BVO may be consumed to reduce Fe3+ to Fe2+, avoiding e−−h+ recombination at the
BVO photocatalyst. The same could be rationalized for PEC water oxidation, where elec-
trons from BVO were conducted to the FTO substrate and, in sequence, to the counter
electrode across the external circuit. For the MB photodegradation, however, the type-II
heterojunction mechanism failed. Particularly for this last photocatalysis, electrons trapped
at the BVO surface would not have enough driving force to generate O2

•– radicals (E0

(O2/O2
•–) = −0.33 V) [22], playing against increasing the photoactivity.

Photochem 2022, 2, FOR PEER REVIEW 10 
 

 

Co at the surface, and by linear regression, where 0.33, 0.99, and 1.99 wt.% were projected 
for the 5, 15, and 30 min samples. Although it is not the overall composition, photocatal-
ysis is a surface-related phenomenon and thus the most important topic of discussion is 
the surface coverage of the photocatalyst. 

Table 2. The XPS peak position of the samples and % weight and atomic of Co onto BVO. 

Samples 

O 1s Co 2p3/2 

Peak 
Binding  
Energy 

(eV) 

FWHM 
(eV) 

Area 
(%) 

Peak 
Binding  
Energy 

(eV) 

FWHM 
(eV) 

BVO 
O_Lattice 529.60 1.48 51.11 - - - 
O_Ads/Vac 531.90 3.55 48.89 - - - 

BVO/Co 
(45 min) 

O_Lattice 529.58 1.41 20.49 Peak 1 780.23 2.2 
O-Co 531.02 2.44 24.80 Peak 2 782.10 2.6 

O_Ads/Vac 532.78 3.31 54.71 Peak 3 785.89 5.0 
- - - - Peak 4 790.57 4.0 

To further rationalize our results, we built up the energy diagram of the BVO/Co 
photocatalyst system. As the work function of the BVO was reported at about 5.6 eV [65] 
and the XPS valence band spectrum revealed that the VB was located at 1.19 eV below EF, 
the VB was located at 6.79 eV in the vacuum scale. This value was 2.35 V on the normal 
hydrogen electrode (NHE) scale (ENHE = Eabs − 4.44, at 298 K). Therefore, the CB was then 
located at −0.1 V vs. NHE as the obtained bandgap energy was 2.45 eV, and the energy 
diagram and the possible charge transfer mechanisms for the BVO/Co(OH)2 system is pro-
posed in Figure 5. The CB and VB values of Co(OH)2 respectively assumed at −1.54 and 
1.31 V, respectively, vs. NHE, based on reports from the literature [66,67]. 

 
Figure 5. Proposed mechanisms of charge transfer at the BVO/Co(OH)2 photocatalysts: (a) type-II 
and (b) direct Z-scheme (S-scheme) heterojunction. 

In all of the cases, both semiconductor materials could be active under visible light 
irradiation and electrons could be excited from their VB to their CB, leaving h+ in the VB. 
Of course, the photoexcitation process was dominant for BVO particles as the best photo-
catalyst had only 0.33 wt.% of Co(OH)2 as the surface content. If a type-II heterojunction 
was formed (Figure 5a), photogenerated h+ were transferred from the VB of the BVO to 
the VB of Co(OH)2, where they may partially oxidize Co2+ to Co3+. Subsequently, Co3+ 
could oxidize water (or MB pollutant) and become reduced back to its former oxidation 
state (Co2+), re-establishing the cycle so that it could be oxidized again by the next photo-
generated h+ [66,68,69]. The alternation between the Co2+ and Co3+ species would help in 
the charge separation process, improving the overall photoactivity. However, in such a 

Figure 5. Proposed mechanisms of charge transfer at the BVO/Co(OH)2 photocatalysts: (a) type-II
and (b) direct Z-scheme (S-scheme) heterojunction.

Therefore, another probable mechanism of charge transfer is a direct Z-scheme (or
S-scheme), as depicted in Figure 5b, where electrons previously excited to the CB of BVO
directly recombine with holes at the VB of Co(OH)2, keeping holes and electrons physically
separated and at their highest redox potentials [2,70]. In such a way, photogenerated
holes at the BVO/liquid interface would conduct the oxidation reactions directly (water
and MB) or by hydroxyl radical formation (E0 (OH−/•OH) = +1.9 V vs. NHE) [22],
while electrons at the CB of Co(OH)2 would easily perform the reduction reactions (water,
O2/O2

•–, iron nitrate, and MB). Therefore, the S-scheme is the mechanism that better
explains all of the suspended powder photocatalytic processes described in this work, i.e.,
MB photodegradation and oxygen evolution using iron nitrate electron acceptors.

The presence of the Co-based cocatalysts, therefore, improves visible light absorption
by the dual absorption process and, at the same time, decreases the e−−h+ recombination
and improves the charge transfer at the semiconductor/electrolyte interface.

4. Conclusions

A special vibrating apparatus was successfully employed to sputter coat different
amounts (0.33–1.99 wt.%) of Co-based NPs cocatalysts on the surface of scheelite monoclinic
BVO powders using different deposition times (5–30 min). As observed, the sputtering
deposition did not significantly alter the BVO structure, and the XPS analysis indicated the
formation of Co(OH)2 on the surface of the BVO particles, showing that the as-deposited
metallic Co oxidized upon exposure to ambient air. Compared with pristine BVO, the
optimized BVO/Co(5 min) photocatalyst showed a (i) higher photoactivity in the photo-
catalytic degradation of MB; (ii) an almost 400% increase in photocurrent for PEC water
oxidation; and (iii) a more than two-time higher O2 evolution through water oxidation,
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all under simulated solar irradiation. The deposition of Co(OH)2 cocatalysts not only
increased visible absorption, but also reduced the electron–hole recombination, as well
as facilitated charge transfer at the solid/solution interface. The BVO/Co system thus
performed better than pristine BVO in terms of oxygen evolution, PEC water oxidation,
and pollutant photodegradation reactions. The magnetron sputtering-based deposition
strategy reported here is general and can be extended to other photocatalysts/cocatalyst
systems and guide the development of more efficient photocatalytic systems for diverse
photo(electro)chemical applications.
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