
����������
�������

Citation: Lo, K.; Oh, E.; Newell, D.;

Yong, C. A New Load-Transfer Factor

to the Slipping Analytical

Formulation in Axially Loaded Piles.

Geotechnics 2022, 2, 171–190. https://

doi.org/10.3390/geotechnics2010008

Academic Editors: Qi Wang,

Bei Jiang, Xuezhen Wu

and Hongke Gao

Received: 28 January 2022

Accepted: 12 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A New Load-Transfer Factor to the Slipping Analytical
Formulation in Axially Loaded Piles
Kelvin Lo *, Erwin Oh , Darren Newell and Choo Yong

School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia;
y.oh@griffith.edu.au (E.O.); darren.newell@griffithuni.edu.au (D.N.); choo.yong@griffith.edu.au (C.Y.)
* Correspondence: losze2012@gmail.com

Abstract: The load-transfer factor (ζ) in the concentric cylinder approach is often used in analytical
formulation in axially loaded piles. The factor is a constant value (in a given pile slenderness ratio
and soil condition) devised under the elastic and ‘pre-failure’ perfect pile–soil bonding conditions (a
non-slip analytical model). Given most numerical methods have already considered the pile–soil
slipping in the ‘pre-failure’ stage, the limitations of non-slip analytical models have recently been
discussed, and slipping analytical models have been recommended. Therefore, this research aims to
investigate the load-transfer factor in slipping analytical models. This paper reviews that the factor in
slipping analytical models is only constant in linear elastic and some Gibson soil conditions. Beyond
these conditions, the factor varies as the pile-head load increases in some cohesionless soils. Adopting
the existing constant factor in slipping analytical models will deviate the load–displacement results,
as supported by numerical results. Therefore, a new equation is proposed to the load-transfer factor,
and a new analytical method is proposed by varying the load-transfer factor during loading for
improvement. Results presented in this paper demonstrate improved load–displacement results.

Keywords: load-transfer factor; finite element; analytical method; axially loaded piles

1. Introduction

The concentric cylindrical approach was originally proposed by Randolph and Wroth [1]
and is often adopted by researchers (such as Kraft et al. [2], Alawneh [3], Pando et al. [4],
Wang et al. [5], Zhang et al. [6], Cheng et al. [7]) to determine the analytical load-response
behavior of axially loaded piles. The approach relies on a load-transfer factor (ζ), which is
a function of the pile radius (r0) and rm (Equation (1)). The rm. value is a radial distance
at which the shear stress becomes diminishingly small and negligible. In the past, the ζ
factor was devised under elastic mediums in non-slip analytical models, as described in
Lo et al. [8]. Recently, the limitations of non-slip analytical models have been discussed in
Wang et al. [5], Lo et al. [8], Sheil and McCabe [9], Boonyatee and Lai [10], and slipping ana-
lytical models were recommended. In this study, the ζ factor in slipping analytical models is
reviewed using finite element (FE) analyses of homogeneous and vertically inhomogeneous
(Gibson soil, linear increase in the soil shear modulus (G) with depth) soils under the linear
elastic and Mohr-Coulomb (MC, linear-elastic-perfectly-plastic) models. Results show that
constant values are valid in elastic soils and soils with a constant ratio of shear modulus to
the ultimate shear strength (τult) in the Gibson condition. However, in certain cohesionless
soils, ζ is found to vary as the pile-head load increases and a new equation for ζ is proposed
to account for this. Furthermore, a new analytical method is proposed to determine the
load–displacement curve. An automated procedure was employed by combining Python
codes and VBA (Visual Basic Application) macro to control the FE analysis (PLAXIS 2D) and
perform the analytical calculations.

ζ = ln
(

rm

ro

)
(1)
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2. Background
2.1. Load-Transfer Factor (ζ)

In the concentric cylindrical approach, the deformation of the soils surrounding the
pile shaft is idealized as shearing of concentric cylinders [1]. Pando et al. [4] commented
that the concentric cylinder approach provides a good approximation of the deformation
patterns obtained using more rigorous analyses such as finite element analysis. Randolph
and Wroth [1] demonstrated that an estimate of vertical displacement of soil at the pile shaft
(ws) is given by Equation (2), where τo is the shear stress at the pile shaft. Initially, Randolph
and Wroth [1] evaluated ζ by comparing the settlement profile of the surrounding soil
at the mid-depth level of the pile to that calculated from integral equation analysis, for a
pile slenderness ratio of L/ro = 40 (where L is the pile length). The ζ factor was further
extended by Randolph [11] to improve the accuracy of predicting the load-displacement
behavior of both short and long piles by comparing to Poulos and Davis [12] and Carter
and Kulhawy [13]. Guo [14] then used a more rigorous approach using the finite difference
software FLAC to evaluate ζ in an elastic medium. The approach involved iteratively
adjusting ζ until the pile-head stiffness matched both the analytical closed-form solution
and the finite different numerical results.

ws =
τoro

G
ζ (2)

The general form of ζ is provided in Equation (3), where υs is the soil’s Poisson ratio,
and ρ is equal to the ratio of the shear modulus at mid-depth of the pile to that at the base.
The constants, A and B used in Equation (3) have been determined by various researchers
and are summarized in Table 1.

ζ = ln
[

A ρ(1− υs)
L
r0

+ B
]

(3)

Table 1. Values for A and B (Equation (3)) under different literature.

Literature A B

(i) Randolph and Wroth [1] 2.5 0
(ii) Randolph [11] 2.5 5
(iii) Guo [14] A 2.1 1

A An approximated value for deep homogenous layers with some loss of accuracy.

2.2. Pile–Soil Interface

As discussed by De Gennaro et al. [15], when considering pile-soil interaction, failure
of the soil is characterized by the deformation of a thin soil lens (interface) orientated in
the direction of the contract surface. Many researchers [15–21] have shown that assum-
ing an interface along the pile shaft is essential in predicting pile behavior under loads.
Sheil and McCabe [9] commented that most numerical methods have already included
the pile–soil slipping behavior (pile–soil relative displacement) by introducing interface
elements along the pile shaft in the numerical models. Coutinho et al. [18] emphasized that
interface elements must allow for relative displacements between two bodies in contact
or separated by a thin material layer. However, existing simplified analytical methods
still assume ‘pre-failure’ conditions that imply perfect pile–soil bonding characteristics
(non-slip analytical models).

This study adopted the formulation of interface elements in PLAXIS 2D to simulate
the pile–soil interaction for use in the analytical method. Slipping is considered in terms
of relative pile-soil displacement at the interface along the pile shaft. A virtual thickness
is assigned to the interface, which is an imaginary dimension used in part to define its
material properties. The coordinates of each pair of nodes at the pile–soil interface are
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identical, which means that the interface has a zero thickness [22]. The pile–soil slipping
(∆w) is governed by

∆w = wp − ws =
τoti
Gi

(4)

where wp and ws are the vertical displacement of pile and soil nodes at the interface, Gi
is the shear modulus of the interface (calculated by an interface factor R2

i multiplying the
soil shear modulus G), and ti is the virtual thickness of the interface and calculated by a
virtual thickness factor (default value = 0.1) times the global element size calculated from
the model dimensions [22].

3. A Review of the Load-Transfer Factor by Finite Element Analysis
3.1. Model Verification

FE analyses using PLAXIS do not directly provide the ζ factor, however values for τo
and wp which are used in Equation (5) to evaluate ζ. Equation (5) is proposed in this study,
which is a combination of Equations (2) and (4). Verification of this proposed method for
evaluating ζ involved comparing values of ζ resulting from an FE model to those obtained
from previously published values.

ζ =

(
wpG
τo ro

− ti
R2ro

)
(5)

The first step in developing the FE model used in this study involved optimizing it
in terms of mesh size and the model boundaries. The effect of the mesh size and total
height (H) of the modeled soil on resulting values of ζ is shown in Figures 1 and 2. From
these figures, it can be seen that the effect is minimized when the re and H/L factors reach
0.35 and 6, respectively, for L/r0 = 40 and G = 1923 kPa. Similar results were obtained in
other combinations among L = 10 to 30 m, L/r0 = 20 to 60, H/L = 2 to 8, and G = 1.92 to
11.54 GPa. Therefore, values of re = 0.35 and H/L = 6 were adopted for the FE model
used in this study.
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 =⁡(
𝑤𝑝𝐺

𝜏𝑜⁡𝑟𝑜
⁡− ⁡

𝑡𝑖
𝑅2𝑟𝑜

) (5) 

Figure 1. Load transfer factor and pile head stiffness versus relative element size factor.
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Figure 2. Load transfer factor and pile head stiffness, versus H/L ratio.

After determining the optimum mesh and boundary geometries, the FE model used in
this study was verified by comparing the calculated ζ values using Equation (5) proposed in
this study at the mid-depth level of the pile embedded in elastic soils, with values provided
in Randolph [11]. Figure 3 demonstrates a high degree of correlation between ζ values
calculated using Equation (5) and corresponding values provided by Randolph [11] (within
approximately 2%).
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Figure 3. Load-transfer factors (ζ) from PLAXIS 2D versus equivalent ζ factors from Randolph [11],
for about 100 cases (L = 10–25 m, L/r0 = 20–90, υs = 0.2–0.3, G = 3.8–7.7 GPa).

The adopted FE model was further verified by comparing to the analytical closed-form
solution under the suggested ζ factor from Guo [14] for 24 cases (L = 10–30 m, L/r0 = 40–60;
υs = 0.2, G = 1.92–7.70 GPa). Again, a high degree of correlation was obtained in all
combinations. Figure 4 shows one of the typical results amongst the 24 cases analyzed. It
compares the load–displacement curves at the pile head between the analytical formulation
based on the load-transfer factor recommended from Guo [14] and the verified FE model in
elastic soil.
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Figure 4. Pile head load (P) versus pile head displacement (wp), comparison of the analytical closed-
form solution suggested from Guo [14] and the adopted FE model in elastic soil.

3.2. A Review of the Load-Transfer Factor

An axially loaded pile was analyzed under tension and compression loads, using
linear elastic (LE) and Mohr–Coulomb (MC) constitutive soil models in the FE model used
in this study. Values for parameters used for modeling the pile comprised a diameter of
1.2 m and length of 15 m, with an elastic modulus (Ep) and Poisson ratio (vp) of 30 GPa and
0.15 respectively. The ζ value at the mid-depth level of the pile was reviewed (similar to
Randolph and Wroth [1]) by substituting the shear stress and vertical displacement of the
FE results into Equation (5). The mid-depth level was chosen on the presumption that it is
least affected by boundary edge effects and discontinuities at the pile head and toe. Five
different FE models (Table 2) were analyzed in both axial tension and compression:

• Model 1: Homogeneous, LE constitutive soil model.
• Model 2: Gibson (inhomogeneous), LE constitutive soil model.
• Model 3: Gibson (inhomogeneous), elastoplastic MC constitutive soil model with a

constant G/τult ratio where the entire pile–soil interface becomes plastic (reaching the
ultimate shear strength, τult) along the total pile length simultaneously.

• Model 4: Homogenous (modulus only), MC constitutive soil model with a fixed
strength profile along the interface. The shear strength profile is an input parameter
converted from initial overburden stress based on Das [23] to simulate cohesionless
soil. It is a simplified version of Model 5.

• Model 5: Homogenous (modulus only), MC constitutive soil model with a variable
strength profile along the interface. Soil strength is a function of the friction angle
(input parameter) and the rotation of principal stresses (updated automatically as
pile-head load increases).

Table 2. Summary of soil and interface parameters in different FE models analyzed.

MODEL 1C/1T 2C/2T 3C/3T 4C/4T 5C/5T

Soil model LE LE MC MC MC
Ere f (kPa) 10,000 4000 4000 10,000 10,000

Einc (kPa/m) 0 400 400 0 0
cre f (kPa) - - 10 1 1

cinc (kPa/m) - - 1 5.2 -
φ (◦) - - - - 30

Note: ‘C’ and ‘T’ denote compression and tension loads; cre f and cinc are the shear strengths at the ground level
and incremental value with depth, respectively for both the soil and interface; Ere f and Einc are the stiffness at the
ground level and incremental value with depth, respectively for both the soil and interface; φ is the friction angle
of the soil.
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Figure 5 shows that the estimated ζ factor in FE Model 1 (3.85 compared to 3.89) and
Models 2 and 3 (3.51 compared to 3.57) closely align with values suggested by Randolph [11].
It can also be seen from Figure 5 that estimated ζ values are constant as the pile-head load
increases in the LE models (Models 1 and 2) and for a Gibson soil with a constant ratio of
G/τult (Model 3).
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= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (8) 

Figure 5. Load transfer factor versus stress ratio at mid-depth for Models 1 to 3.

The constant value of ζ estimated in Model 3 (Figure 5) is a result of the interface
behaving linearly-elastic as the pile load increases up until a certain load where it reaches a
plastic state along its entire length simultaneously. It can be explained by the analytical the-
ory supported by the FE results. Randolph and Wroth [1] commented that the distribution
of shear stress along the pile shaft is similar to τi(z) = ki(b + z) for soil shear modulus in
the form of G(z) = m(b + z) as shown in Figure 6, which can be expressed as

τi(z)
G(z)

=
ki(b + z)
m(b + z)

=
ki
m

(6)

The term ki in Equation (6) is a constant for load step i, where PLAXIS divides each
calculation phase into several calculation steps, and load is applied in small proportions
called load steps [22]. In Model 3, if m, b, and K are constants, the ratio of soil shear
modulus to strength is constant and is equal to

G(z)
τult(z)

=
m(b + z)
K(b + z)

=
m
K

(7)

The ratio of shear stress (τi(z)) to shear strength (τult(z)) along the shaft at load step i is
a constant, which is confirmed from the FE results presented in Figure 7 and is expressed as

τi(z)
τult(z)

≈ ki
K

= constant (8)
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For load steps with ki < K, the shear stress τi(z) at any pile depth is smaller than the
ultimate value τult(z) and the interface along the whole shaft remains in an elastic state.
When ki = K, τi(z) at any depth is equal to τult(z) and the pile interface simultaneously
reaches a plastic state along the entire pile length. Therefore, the estimated ζ factor is
mainly the same as the linear elastic model. The near constant value for ζ can further be
explained by the mathematical derivative of the shear strain (γ) with respect to z

γ ′ i(z) =
∂
[

τi(z)
G(z)

]
∂z

=
m(b + z) ∂(ki(b+z))

∂z

m2(b + z)2 −
ki(b + z) ∂(m(b+z))

∂z

m2(b + z)2 (9)

When Equation (9) is simplified, the first and second terms simplify to ki/m(b + z)
which results in γ ′(z) = 0. This results in the shear strain (γ i) in a load step i being nearly
constant along the pile shaft as shown in the FE results in Figure 8. The shear stress along
the pile shaft in a load step i is defined as

τi (z) = γ i(z) ∗ G (z) = γ i(z) ∗m(b + z) ≤ K(b + z) = τult(z) (10)

Theoretically, the term γ i(z) ∗m in the above equation continuously increases with
increasing pile head loads. Eventually, it reaches the ultimate value of K, and the whole
pile interface becomes plastic simultaneously.
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Figure 6. Shear stress and modulus profile along the pile shaft.
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Figure 7. Normalized depth versus shear stress at the pile shaft in a load step, from FE analysis.
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Figure 8. Normalized depth versus shear strain, from FE analysis.

Figure 9 demonstrates that the estimated value of ζ is no longer constant but changes
as the pile-head load increases in the MC constitutive models (Models 4 and 5). This can
be explained by rearranging Equation (2) (ws/τ0 = ζr0/G) in which the ratio of ws/τ0
is lesser than that in the elastic model (Model 1). It results from the reduction of soil
movement adjacent to the pile shaft and the increase in τ0. When τ0 reaches τult the
interface will exhibit plastic behavior. That is, it will continuously displace at the τult value
(Figure 10). The pile–soil plastic slip commences at the upper portion of the pile shaft
and progressively develops down the pile shaft in Models 4 and 5. This phenomenon is
explained in Lo et al. [8] and adopted by many researchers to simulate cohesionless soils.
Once the pile–soil plastic slip has occurred, the rate of vertical soil movement adjacent
to the pile shaft around the slip portion (upper portion) reduces. This effect releases the
downward ‘pushing’ effect from the upper portion onto the soil below (in compression
piles), and the upper portion restrains the vertical soil movement below (in tension piles).
Consequently, the vertical soil displacement (ws) below the slip portion is lesser in Models
4 and Model 5 compared to the elastic model (Model 1), as shown in Figure 11. However,
the pile keeps moving as the pile head load increases, which results in larger pile–soil
relative displacement (∆w = wp−ws) and therefore larger mobilized shear stress (τo) based
on Equation (4) (wp − ws = τ0ti/Gi).

Geotechnics 2022, 2, FOR PEER REVIEW  8 
 

 

 

Figure 8. Normalized depth versus shear strain, from FE analysis. 

Figure 9 demonstrates that the estimated value of   is no longer constant but 

changes as the pile-head load increases in the MC constitutive models (Models 4 and 5). 

This can be explained by rearranging Equation (2) (𝑤𝑠 𝜏0 =  𝑟0 𝐺⁄⁄ ) in which the ratio of 

𝑤𝑠 𝜏0⁄  is lesser than that in the elastic model (Model 1). It results from the reduction of soil 

movement adjacent to the pile shaft and the increase in 𝜏0. When 𝜏0 reaches 𝜏𝑢𝑙𝑡  the 

interface will exhibit plastic behavior. That is, it will continuously displace at the 𝜏𝑢𝑙𝑡 

value (Figure 10). The pile–soil plastic slip commences at the upper portion of the pile 

shaft and progressively develops down the pile shaft in Models 4 and 5. This phenomenon 

is explained in Lo et al. [8] and adopted by many researchers to simulate cohesionless 

soils. Once the pile–soil plastic slip has occurred, the rate of vertical soil movement 

adjacent to the pile shaft around the slip portion (upper portion) reduces. This effect 

releases the downward ‘pushing’ effect from the upper portion onto the soil below (in 

compression piles), and the upper portion restrains the vertical soil movement below (in 

tension piles). Consequently, the vertical soil displacement (𝑤𝑠) below the slip portion is 

lesser in Models 4 and Model 5 compared to the elastic model (Model 1), as shown in 

Figure 11. However, the pile keeps moving as the pile head load increases, which results 
in larger pile–soil relative displacement (𝑤 = 𝑤𝑝 −𝑤𝑠) and therefore larger mobilized 

shear stress (𝜏𝑜) based on Equation (4) (𝑤𝑝 − 𝑤𝑠 = 𝜏0𝑡𝑖 𝐺𝑖⁄ ). 

 

Figure 9. Load-transfer factor versus stress ratio at the mid-depth level of the pile as head load 

increases in Models 1, 4, 5. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.01 0.00 0.01 0.02 0.03 0.04

N
o

rm
al

is
ed

 D
ep

th
, 

z/
L

Shear Strain at load step i, i

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

4.3

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

L
o

ad
 T

ra
n

sf
er

 F
ac

to
r,

 

Stress ratio, 0 / ult of the interface at the mid-depth level of the pile

  1C) LE, constant 𝐺𝑠, compression Δ 1T) LE, constant 𝐺𝑠, tension

 4C) Linear 𝜏𝑢𝑙𝑡, constant 𝐺𝑠, compression              □ 4T) Linear 𝜏𝑢𝑙𝑡, constant 𝐺𝑠, tension

 5C) Constant 𝐺𝑠, 𝑐 = 1kPa,  = 30, compression  5T) Constant 𝐺𝑠, 𝑐= 1kPa, = 30, tension

Figure 9. Load-transfer factor versus stress ratio at the mid-depth level of the pile as head load
increases in Models 1, 4, 5.
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Figure 10. Shear stress versus pile–soil relative displacement.

Figure 9 demonstrates that during compression loading, the corresponding reduction
of the estimated ζ factor in Model 5C (c = 1 kPa and φ = 30◦) is lesser than the simplified
Model 4C (c = 1 + 5.2 z and φ = 0◦). In contrast, during tension loading, the reduction in
Model 5T (c = 1 kPa and φ = 30◦) is slightly higher than the simplified Model 4T (c = 1 + 5.2 z
and φ = 0◦), but very similar. The difference in ζ is due to the increase in mobilized shear
strength along the pile shaft in Model 5C under compression loads and decrease in Model
5T under tension loads, as observed in O’Neill [24] and De Nicola and Randolph [25]. It
results in the depth of pile–soil plastic slip (L− iL) being lesser in Model 5C and larger in
Model 5T compared to the simplified Model 4 (supported by the FE results in Figure 12). As
a result, the reduction of the ζ factor in Model 5C is lesser than Model 4C and the reduction
in Model 5T is larger than Model 4T.
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Figure 11. Soil displacement in the mid-depth level of the pile versus radial distance from pile center,
from FE analysis.
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Figure 12. Slip ratio (slip depth to pile length) versus stress ratio at the mid-depth level of the pile.

Figure 9 shows that the estimated value of ζ in Model 4T (simplified model under
tension loads) is very close to that in Model 5T. Therefore, Model 4T was adopted to
simulate piles under tension loads in some cohesionless soils in the next section.

4. New Analytical Method and Improvement in the Load–Displacement Curve

This section considers the change in ζ when determining the load–displacement curve
for some cohesionless soils. With the initial application of a tensile load to the pile, the
whole interface remains elastic. As the tensile load increases, the plastic slip (Figure 10)
of the soil–pile interface is first reached at the top of the pile. It progressively transcends
downward to the toe (Figure 13b), where the whole interface becomes plastic. Many
researchers (such as Misra et al. [26], Guo [14], and Meerdink et al. [27]) have adopted this
elastoplastic form to model cohesionless soils.
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4.1. Devising the Elastoplastic Analytical Solution
4.1.1. Elastic Component

The deformation of a pile under the pile elasticity theory and vertical force in equilib-
rium is shown in Equation (11). Where the l term in Equation (11) is the distance measured
from the pile toe for piles under tension load, which is different from the z term used in the
previous sections, which is distance from the pile head. The terms P(l), wp(l) and τ0(l) are
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the pile axial load, pile axial displacement, and vertical shear stress at the pile shaft at a
distance l from the pile toe, respectively. Finally, the λ term is equal to Ep/G.

∂2wp(l)
∂l2 =

1
πr2

oλG
∂P(l)

∂l
=

2
r0λG

τ0(l) (11)

If ws(l) is the vertical soil displacement at the pile shaft at a distance l from the pile
toe, the vertical soil displacement (ws) at the pile shaft can be combined with the concentric
cylindrical equation (Equation (2)) and Equation (11), which yields

∂2wp(l)
∂l2 =

2ws(l)
r2

oλζ
(12)

Combining the interface equation and concentric cylindrical equation, Equations (4)
and (2), respectively, results in

ws(l) = wp(l)
r0 ζ R2

r0 ζ R2 + ti
(13)

Combining Equations (12) and (13), yields the second-order differential equation

∂2wp(l)
∂l2 =

2 R2

r0λ(r0 ζ R2 + ti)
wp(l) (14)

By solving the second-order differential equation under the boundary conditions of
P(0) = 0 and wp(0) = wb at the pile toe (l = 0), the following equations for the axial
displacement wp(l), axial load P(l), and vertical shear stress at the pile shaft τ0(l) at a
distance l from the pile toe are obtained

wp(l) = wb cosh(µl) (15)

P(l) = wb µ π r2
o λ G sinh (µl) (16)

τ0(l) =
wbµ2roλ G

2
cosh (µl) (17)

P(l)
wp(l)

= µ π r2
o λ G tanh (µl) (18)

where µ =
√

2 R2

r0λ(r0ζR2+ti)
.

4.1.2. Plastic Component

It is assumed that the shear strength at the pile–shaft interface increases linearly with
depth, as shown in Equation (19) and Figure 13a. The vertical shear stress (τ0(l)) along the
shaft has already reached the strength value (τult(l)).

τult(l) = K(b + L− l) (19)

where K and b are constants, and L is the pile length as shown in Figure 13a.
Based on Equations (2), (13), (17)–(19), the axial displacement of the pile, wp(iL) and

corresponding load P(iL) at the transition point of iL (the point measured from the pile toe
at which the elastic and plastic portions separate; i is the elastoplastic ratio of the remaining
elastic portion which is equal to L1/L as shown in Figure 13b) can be expressed as

P(iL) = µ π r2
o λ G tanh (µiL) wp(iL) (20)

wp(iL) =
2

Gr0λµ2 K[b + L(1 i)] (21)
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Within the plastic portion, the pile axial load P(l) at a distance l from the pile toe is

P(l) = P(iL) +
∫ l

iL
2πr K(b + L− l)dl (22)

Within the plastic portion, the pile axial displacement wp(l) at a distance l from the
pile toe is

wp(l) = wp(iL) +
∫ l

iL

P(l)
πr2

oλG
dl (23)

Combining Equations (20) to (22) then (21) and (22) to (23), the pile axial load P(L)
and displacement wp(L) at the pile head are expressed as

P(L) =
2 π r0tanh(µiL)

µ
K[b + L(1 − i)] +

∫ L

iL
2πr K(b + L− l)dl (24)

wp(L) =
2

Gr0λµ2 K[b + L(1 − i)] +
2 tanh(µiL)

µ r0λG
K[b + L(1 − i)](L− iL) +

∫ L

iL

∫ l
iL 2πr K(b + L− l)dl

πr2
oλG

dl (25)

An iterative process was developed using Python code combined with a VBA macro
which is presented in Figure 14. This procedure evaluates the load P(L) and displacement
wp(L) at the pile head as head load increases.
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4.2. Improvement in the Load–Displacement Curve at the Pile Head by the New Analytical Method

A total of 44 cases (L = 10–30 m, L/r0 = 40–60, G = 3.8–7.7 MPa, υs = 0.3, υp = 0.15,
Ep = 30 GPa) were analyzed using the analytical method proposed in this paper. This
new analytical method considers the change of the load-transfer factor (ζchange) as the
pile-head load increases using an automated process; referred to here as the new ζchange
analytical method. For comparison, an analysis of the same cases was undertaken using
analytical methods that employ a traditional fixed load-transfer factor (ζ f ixed) (Section 2.1),
which is referred to hereon as the traditional ζ f ixed analytical method. The resulting load–
displacement curves at the pile head using the different analytical methods (the new ζchange
and traditional ζ f ixed analytical methods) were compared with FEM results. Figure 15
demonstrates that the new ζchange analytical method (Case 1) yielded results markedly
closer to those estimated using FEM than the traditional ζ f ixed analytical methods (Case 2).
The deviation of the analytical results relative to the FEM results are summarized in Table 3.

Table 3. Summary of percentage deviation from the FE results.

At Head Numerical Proposed (Case 1) Case 2—i Case 2—ii Case 2—iii

P(L) 8746 kN +0.5% −10.2 % −11.0% −8.3%
wp(L) 54.6 mm −0.8% +18.4% +20.0% +14.7%

Literature (i), (ii), and (iii) refer to Table 1.
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Figure 15. Pile head load versus pile head displacement, improvement of the load–displacement
curve (L = 30 m, L/r0 = 40 and G = 3846 kPa).

When applying a factor of safety of 1.5 to the ultimate capacity of the FE result
(allowable capacity = 8746 kN), the corresponding pile head displacement is approximately
54.6 mm. Using this displacement as a reference point, the deviation of the head load (P(L))
in the analytical solution comparing to the FE analysis estimates is less than +0.5% in Case
1 and a maximum of −11% in Case 2 (using Randolph [11]). To achieve the allowable
capacity of 8746 kN, the head displacement deviated −0.8 per cent from the FE analysis
result in Case 1, and a maximum of +20.0 per cent in Case 2 (using Randolph [11]). The
coefficient of determination (R2) for all 44 cases is summarized in Figure 16, which shows
the new ζchange analytical method has at least a 0.99 correlation with results using FE
analysis. In comparison, the traditional ζ f ixed analytical method provides a correlation of
between 0.91 and 0.95 (using Randolph [11]) with FE analysis results.
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Figure 16. Coefficient of determination (R2) of load–displacement curves versus pile length (analytical
against FE analysis results).

Figures 17–20 show the approximate change of the ζ factors as pile-head load increases
in the new ζchange analytical method. The ζ factors versus the pile length are plotted on
the right y−axis, with rm values also provided on the left y−axis for reference. The ζ
factors start from an initial maximum value at the purely elastic condition (ζelastic can be
calculated from the existing literature, Equation (3)). Plastic slip (Figure 10) occurs from the
top of the interface when the pile-head load increases and progressively develops down
the pile (Figure 13b). The ζ factors reduce and reach a minimum value at the fully plastic
condition (ζplastic). The ζ values at purely elastic and plastic conditions are the upper and
lower bounds, respectively. In this study, the maximum reduction in the ζ factors are
approximately 40% (80% in rm values), as pile-head load increases. Figures 17–20 show
fluctuations in the minimum values (ζplastic), which is due to a small deviation of the
calculated head load just before the fully plastic condition under the iteration procedure
(Case 1 against the FE analysis results in Figure 15). When the pile-head load in the
analytical solution is manually adjusted to match the same as the FE results by refining
values for ζ, the ζplastic values are then straight lines against the pile length (the horizontal
dotted lines in Figures 17–20). These lines show that ζplastic (the minimum load-transfer
factor at the fully plastic condition) is independent of pile length (the dotted lines are
horizontal) and independent of the soil shear modulus (the y intercepts of the dotted lines
are the same in different soil modulus, i.e., Figure 17 vs. Figure 19), but dependent on
the L/r0 ratio (the y intercepts are different in different L/r0 ratio, i.e., Figure 17 versus
Figure 18). Additionally, the ζplastic values increase with the L/r0 ratio, and this pattern
agrees with the ζelastic formula proposed under the literature in Equation (3).
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Figure 17. Change of the ζ and rm values as head load increases (slenderness ratio: L/r0 = 40 and
soil shear modulus: G = 3846 kPa).
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Figure 18. Change of the ζ and rm values as head load increases (slenderness ratio: L/r0 = 60 and
soil shear modulus: G = 3846 kPa).
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Figure 19. Change of the ζ and rm values as head load increases (slenderness ratio: L/r0 = 40 and
soil shear modulus: G = 7962 kPa).
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Figure 20. Change of the ζ and rm values as head load increases (slenderness ratio: L
r = 60 and soil

shear modulus: G = 7962 kPa).

The above scenarios show that load-transfer factor values change with pile head loads
(in turn of the elastoplastic ratio, i). Therefore, information on the change and lower bound
value (ζplastic) is necessary to construct the analytical solution. Equations (26) and (27)
were developed in a parametric study of over 300 combinations (summarized in Table 4)
to match the load–displacement curve between the analytical and FEM results. The same
automation using Python code and a VBA macro described above and in Figure 14 were
used to undertake the analyses.

Table 4. Combination of pile geometries and parameters.

L (m) L/r0 υs cinc (kPa/m) G (MPa)

10, 20, 30 20, 40, 60, 80 0.2, 0.3, 0.4 5, 10, 20 2, 6, 15

ζplastic = ln
[

0.368
(

L
r0

)
· (1− 0.890 υs) + 3.619

]
(26)

ζ = ln

0.368
(

L
ro

)
· (1− 0.890 υs) + 3.619

2.1 L
ro

(1− υs) + 1

 · (1− i) + ln
[

2.1
L
ro

(1− υs) + 1
]

(27)

4.3. Application to a Case Study

A case history is stimulated by adopting the new equations (Equations (24)–(27)) in
the new ζchange analytical method. A full-scale test (P1) was carried out by Sowa [28] on
a reinforced concrete pile (0.53 m in diameter and 12 m in length) embedded mainly in
fine sand with a unit weight of 18.4 kN/m3. Parameters suggested by Zhang et al. [29]
were adopted to facilitate later comparison. A soil shear modulus of 2 MPa (average SPT
N value of 11) and pile elastic modulus of 30 GPa were adopted, as reported by Zhang
et al. [29]. In our new ζchange analytical method, the shear strength profile of the interface
(solid line) shown in Figure 21 is adopted such that the ultimate pull-out capacity of 401 kN
is achieved. It is the same capacity obtained under Zhang et al. [29] who divides the pile
into 12 segments (each approximately 1 m height) with average strength in each segment
(dotted line).
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Figure 21. Adopted strength profile of the interface in the proposed analytical and FE models.

The results presented in Figure 22 show a high degree of correlation between the
new ζchange analytical method and numerical method (MC model in PLAXIS 2D) for load–
displacement estimates. The new ζchange analytical method that considers the change of the
load-transfer factor, better agrees with the FEM results compared to the results from the
traditional fixed factor (ζ f ixed). Furthermore, it shows an improvement from Zhang et al.
(2015) when their suggested parameters are adopted. However, the proposed analytical
method slightly underestimates the initial load–displacement curve and overestimates the
portion just before the interface becomes fully plastic (compared to the measured field data).
This is a disadvantage of the linear-elastic-perfectly-plastic behavior in the Mohr–Coulomb
(MC) model. To address this, a non-linear stress-dependent modulus was used in the
hyperbolic form of

G = G0

(
1− τ0

τult

)
(28)

where G0 is the initial shear modulus, G0 = G50/
(

1− R f /2
)

, R f is the ratio of the max-
imum allowable shear stress to the asymptotic value in the hyperbolic form, and G50 is
assumed the same as the soil shear modulus adopted in the MC model. Using this hyper-
bolic function improved these two portions of the load-displacement curve as shown in
Figure 23.
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Figure 22. Load–displacement curve at the pile head in the case study P1 of Sowa [28].
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Figure 23. Further improvement by using a nonlinear hyperbolic analytical model.

5. Conclusions

Many researchers have considered the pile–soil slipping theory in the analytical
method by introducing an interface in the analytical formulation that allows relative
displacement between the pile and soil surfaces. It is similar to many rigorous numerical
methods that adopt interface elements to simulate the pile–soil slipping behaviors to
achieve more accurate and realistic results. This study investigated the use of the existing
load-transfer factor (a constant value during pile loading and devised under the elastic
soils) in slipping analytical models and found deviation in the load–displacement results as
explained by mathematical theories and numerical results. It draws attention to the use of
the existing load-transfer factor in the slipping analytical theory. The study shows a constant
ζ factor is valid in elastic soils and soils with a constant ratio of shear modulus to strength in
the Gibson condition for axially loaded piles. Some cohesionless soils are characterized by
the pile–soil plastic slip commencing at the upper portion of the pile shaft and progressively
developing down the pile. It is found that the ζ factor changes as pile-head load increases in
these soils. To address this, a new equation for the load-transfer factor and a new analytical
method to develop the load–displacement curve are proposed to improve the slipping
analytical method in these soils. Using the new equation and analytical method, the
results demonstrate that the load–displacement curve is improved and correlates well with
corresponding Mohr–Coulomb models in the FEM. The study results suggested that the
change of the ζ factor is independent of soil modulus, and therefore, it is expected to apply
to nonlinear soils. Therefore, further research and verification based on this fundamental
study expanding to nonlinear models are recommended for continuous improvement.
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