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Abstract: The basic hydrolysis of Malachite Green (MG) in the presence of β-Cyclodextrin (β-CD) has
been studied using UV-Vis spectroscopic techniques and at 20 ◦C. β-CD was found to catalyze the
basic hydrolysis. Indeed, this basic hydrolysis is catalyzed by the interaction cyclodextrin hydroxyl
group, in its deprotonated form with the carbocation in the host-guest complex. The proposed model
has been successfully applied to a reaction catalyzed by CD. It considers two simultaneous pathways
in the aqueous medium involving free hydroxyl ions and the substrate-CD complex. The model
allows us to obtain the kinetic parameters including the bimolecular rate constant between MG and
HO− in bulk water (kw = 1.47 ± 0.01 mol−1s−1), the rate constant between MG and the deprotonated
hydroxyl group of β-CD inside the host-guest complex (kCD = 0.25 ± 0.03 s−1) and the binding
constant of MG inside the β-CD (KS = 2500 ± 50). This behavior is like the hydrolysis of Cristal Violet
(CV) in the same reaction media.
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1. Introduction

Cyclic oligosaccharides made up of several glucose units linked together by α-1,4
glycosidic bonds are known as cyclodextrins (CDs) [1–3]. Normally this family of com-
pounds is formed by structures of between six and eight glucopyranosides (α-Cd, β-CD,
γ-CD, and δ-CD respectively) [4]. Topologically, these compounds have a toroidal shape
whose openings are exposed to the primary and secondary hydroxyl groups of the glu-
copyranose [5]. Due to this peculiar structure, the interior cavity of the cone has a lower
hydrophilic character as compared to its exterior, which is hydrophilic in nature, with
which it is capable of harboring hydrophobic molecules inside, giving rise to inclusion
complexes (the host-guest system) through non-covalent interactions when the size, shape
and polarity of these molecules is adequate [5,6]. The stabilization of the guest molecule
is given by different factors being Van der Waals and hydrophobic forces or H-bonds,
among others [7]. In any case, the study of these inclusion complexes is a key part of what
is known as supramolecular chemistry [8,9]. Another interesting aspect of CDs is they
can modulate the reactivity related with their capacity to form guest host complexes with
small and medium sized molecules [10]. According to Iglesias and Fernández (1998) [10],
these changes in reactivity are the result of host-host interactions and vary significantly
depending on the nature of the reagents and the reaction. In this way we can observe both
increases and decreases in the reaction speed, with which in some cases CD have been used
as stabilizers and in others as potential phase transfer catalysts. In addition, in some cases
CDs can participate directly in the chemical reaction [10].

Malachite green (MG) is a triphenylmethane cationic dye which is used in the pigment
industry [11] to color silk, wool and leather [12]. This compound is also used as a therapeu-
tic agent for fish, since this compound present antifungal activity [13]. The common name
of this compound is associated with its intense green color [14], presenting a strong absorp-
tion band in the VIS region at λ = 621 nm, with an extinction coefficient of ε = 105 M−1cm−1

(log ε = 5.02) [15]. This band disappears during the hydrolysis process, changing from
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a colored compound to a colorless compound, which facilitates its spectrophotometric
monitoring and is the reason why it is a very popular reaction in chemical kinetics labs in
undergraduate studies, as occurs with his analogous compound Crystal violet (CV) [11].

In relation to the uses of MG in commercial aquaculture and ornamental aquariums,
a controversial application is its use as an antimicrobial agent for the treatment of the
oomycete fungi on fish and fish eggs because its adverse effects on human immune and
reproductive systems [16]. Different studies concluded the important fungal effect against
oomycete fungus such as Saprolegnia [17], Haliphthoros [18] or Aphanomcyces invades [19].
Due to its effects on health, numerous studies in the literature analyze the physical-chemical
properties of this compound [14,20–22].

According to Leis et al. (1993) the MG alkaline fading is a reaction with a long chemical
tradition [23]. It takes place through a nucleophilic attack of the OH− on the carbocation [24]
(Scheme 1). This hydrolysis, together with that of other analogs (such as crystal violet
–CV–) was used for the construction of the Ritchie N+ nucleophilicity scale [25].
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Scheme 1. Malachite Green basic hydrolysis reaction mechanism.

Our aim is to evaluate the effect exerted by the presence of β-Cyclodextrin on the basic
hydrolysis of malachite green.

2. Materials and Methods

β-CD was supplied by Sigma-Aldrich (Darmstadt, Germany) and produced by pro-
duced by Wacker Chemie (Burghausen, Germany) in the highest purity available (≥98%)
and it was used as received, keeping in mind that commercial β-CD has an H2O content
of 8 mol/mol (CAS no. 7585-39-9). It was all deprotonated under the alkaline conditions
used ([NaOH] > 0.1 M) (pKa CD = 12.2) [26]. Due to the deprotonation of β-CD, [OH−]
was obtained by subtracting the concentration of CD from that of NaOH. NaOH and MG
were supplied by Sigma-Aldrich (Darmstadt, Germany). NaOH solutions were titrated
with potassium hydrogen phthalate supplied by Sigma-Aldrich (Darmstadt, Germany).

The reaction was followed by UV-Vis spectroscopy, monitoring the disappearance of
the MG in the band of λ = 621 nm using a Variant Cari 60 spectrophotometer supplied by
Agilent (Santa Clara, CA, USA). All the experiments were carried out at 25.0 ± 0.1 ◦C using
a thermostat-cryostat supplied by Poly-Science (Niles, IL, USA). The kinetic experiments
were carried out under pseudo-first order conditions, keeping the concentration of MG
(approx. 10−5 M) always much lower than that of NaOH. The obtained absorbance/time
data were fitted by first order integrated equations, and the values of the pseudo first order
rate constants (ko) were reproducible to within 3%.

3. Results and Discussion

The rate constant of the basic hydrolysis of MG in water was determined to maintain
consistency with the results obtained throughout this work. The constant was determined
by varying the [NaOH] (0.01–0.15 M) keeping the [MG] constant (10−5 M). Figure 1 shows
the dependence of the observed rate constant of pseudo first order (ko) and [NaOH], from
which a value for the hydrolysis of bimolecular rate constant, kw = 1.46 ± 0.03 M−1s−1
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has been obtained (R2 = 0.9986). This value is compatible with previous one in the
literature [23,27].
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Figure 1. Influence of [NaOH] upon the pseudo fist order rate constant, ko, of alkaline fading of MG.
[MG] = 10−5 M, T = 25 ◦C.

Since the cyclodextrin cavity has a lower polarity than that of bulk water, the in-
fluence of the dielectric constant (ε) on the MG basic hydrolysis reaction has also been
analyzed using dioxane-water mixtures. For this, ε value was varied between 24.54 and
74.43, maintaining a constant MG and NaOH concentrations ([MG] = 1.46 × 10−5 M and
[NaOH] = 9.98 × 10−4 M). A significant decrease in the rate constant was observed as the
dielectric constant increased (Figure 2).
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Figure 2. Variation of the pseudo-first order rate constant, ko, with the dielectric constant (dioxane-
water mixtures) for the basic hydrolysis of MG. ([MG] = 1.46 × 10−5 M and [NaOH] = 9.98 × 10−4 M,
T = 25 ◦C).

An interesting piece of information would be the evaluation of the radius of the
activated complex for the reaction using the double sphere model [28]. From the fits of the
experimental data to Equation (1)—where zA and zB are the ions charge, e is the electron
charge, ε the dielectric constant, σ ̸= is the active complex radius and k0 is the rate constant
in a high dielectric constant medium (e = ∞) (Figure 3) we obtain a value for the radius of
the complex σ ̸= 5.1 Å (R2 = 0.9803).
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lnk = lnk0 − zAzBe2

εσ ̸=kBT
(1)
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Figure 3. Double sphere model applied to the influence of the dielectric constant on the pseudo-first
order rate constant, ko, for the basic hydrolysis of MG. ([MG] = 1.46 × 10−5 M and [NaOH] = 9.98 ×
10−4 M, T = 25 ◦C).

After determining the influence of the dielectric constant on the alkaline fading of
MG, a study of the ionic strength on the rate constant of the hydrolysis process has been
carried out. NaClO4 was used as electrolyte to set the ionic strength, which varied between
4.99 × 10−4 and 0.59 M. As would be expected, a decrease in the rate constant is observed
as the ionic strength of the medium increases (Figure 4).
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Figure 4. Influence of ionic strength (fixed with NaClO4
−) on the pseudo-first-order constant, ko, for

the basic hydrolysis of MG ([MG] = 7.33 × 10−6 M and [NaOH] = 4.99 × 10−3 M, T = 25 ◦C).

The values obtained fit the Brönsted-Bjerrum equation—Equation (2)—based on a
simple Debye model [29].

lnk = lnk0 + 1.02zAzB

√
I

1 +
√

I
(2)

where zA and zB are the ions charge, I is the ionic strength and k0 is the rate constant at
I = 0.
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Figure 5 shows the fit of experimental data to Equation (2) (R2 = 0.9203). Obviously,
the fulfillment of this equation is fortuitous, because the Debye model is only valid for very
low ionic strengths. However, it is relatively common that the data on the variation of the
reaction rate with the ionic strength between ionic species (in our case MG+ and HO−)
fit in a “formal” way to the Debye model, however, it is not It is possible to rigorously
identify the parameters in contracts with which the Debye model assigns. In any case,
the inhibition of the reaction by increasing the salinity of the medium is in accordance
with all the predictions from simple electrostatic theories [29]. It should be noted that
unlike happened with CV, no anomalous behavior is observed between the carbocation
and ClO4

−. This would indicate that in the case of MG, unlike what occurs with CV, ion
pairs are not formed between these two species [30].
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Figure 5. Influence of ionic strength on the pseudo-first-order constant, ko, for the basic hydrolysis
of MG ([MG] = 7.33 × 10−6 M and [NaOH] = 4.99 × 10−3 M, T = 25 ◦C) ionic strength fixed with
NaClO4

−.

Once the basic hydrolysis reaction of MG in an aqueous media has been characterized,
the alkaline hydrolysis of MG in the presence of β-CD has been analyzed. The hydrolysis
reaction is assessed by varying [CD] between 0 and 0.015 M. As can be seen in Figure 6,
a catalytic effect of β-CD is observed in this reaction. Indeed, the observed rate constant
increases as the concentration of CD present in the medium increases until reaching a
leveling off.

This observed catalysis is consistent with the possibility of a nucleophilic attack by
an ionized CD hydroxyl group on the MG+ associated with the CD [24]. This behavior is
like that reported in the literature (i.e., cleavage of aryl esters in the presence of CD [31,32]
or that observed for CV hydrolysis [33,34]. A direct attack of OH− on the MG that is
associated with the MG-CD complex should be ruled out, since given the important effect
of the dielectric constant on the reaction rate (vide supra), it would imply a greater catalytic
effect of the presence of cyclodextrins in the medium. Applying the model presented in
Scheme 2, assuming a substrate that undergoes an uncatalyzed reaction in each medium and
a catalyzed reaction through a 1:1 substrate/CD complex. In the scheme, kw corresponds
with the rate constant in the bulk water, kCD is the catalytic rate constant in the presence of
CD and Ks is the binding constant of MG to the CD cavity.



Compounds 2024, 4 356

Compounds 2024, 5, FOR PEER REVIEW 6 
 

 

corresponds with the rate constant in the bulk water, kCD is the catalytic rate constant in 
the presence of CD and Ks is the binding constant of MG to the CD cavity. 

 
Figure 6. Influence of β-CD concentration on the pseudo-first-order constant, ko, for the basic hy-
drolysis of MG. ([MG] = 1.46 × 10−5 M and [NaOH] = 0.1 M, T = 25 °C). 

 
Scheme 2. Mechanism of basic hydrolysis of MG in the presence of CD, where kw is the rate constant 
in water, kCD is the rate constant in CD and Ks is the binding constant of MG to the CD. 

From this mechanism using the rate equations and the formation equilibrium of the 
inclusion complex, Equation (3) can be easily obtained [34]. 𝑘௢ ൌ 𝑘௪ሾ𝐻𝑂ିሿ ൅ 𝑘஼஽𝐾௦ሾ𝐶𝐷ሿ1 ൅ 𝐾௦ሾ𝐶𝐷ሿ  (3)

The fit of Equation (2) to the experiment results yields a value of the pseudo-first 
orther rate kw = 1.47 ± 0.01 mol−1s−1, which is compatible with the value obtained in water 
kw = 1.46 ± 0.03 M−1s−1 (vide supra) [23]. The value of catalytic constant in the presence of 
CD was estimated as kCD = 0.25 ± 0.03 s−1. In this sense the ratio kCD/kw was 0.17, which is 
so close to the equivalent ratio for basic hydrolysis of CV (kCD/kw = 0.15) obtained in pre-
vious experiments [30]. The binding constant of MG to CD was evaluated in KS = 2500 ± 
50. Figure 7 shows the experimental results compared to those obtained from adjusting 
them to Equation (1). As can be, this was satisfactory. Indeed, the solid line represents the 
adjustment of ko and ko,t values to the slope 1 line, for which a value of R2 = 0.9989 has been 
obtained. This R2 value demonstrates the good fit of the theoretical model to the experi-
mental data. 

Figure 6. Influence of β-CD concentration on the pseudo-first-order constant, ko, for the basic
hydrolysis of MG. ([MG] = 1.46 × 10−5 M and [NaOH] = 0.1 M, T = 25 ◦C).

Compounds 2024, 5, FOR PEER REVIEW 6 
 

 

corresponds with the rate constant in the bulk water, kCD is the catalytic rate constant in 
the presence of CD and Ks is the binding constant of MG to the CD cavity. 

 
Figure 6. Influence of β-CD concentration on the pseudo-first-order constant, ko, for the basic hy-
drolysis of MG. ([MG] = 1.46 × 10−5 M and [NaOH] = 0.1 M, T = 25 °C). 

 
Scheme 2. Mechanism of basic hydrolysis of MG in the presence of CD, where kw is the rate constant 
in water, kCD is the rate constant in CD and Ks is the binding constant of MG to the CD. 

From this mechanism using the rate equations and the formation equilibrium of the 
inclusion complex, Equation (3) can be easily obtained [34]. 𝑘௢ ൌ 𝑘௪ሾ𝐻𝑂ିሿ ൅ 𝑘஼஽𝐾௦ሾ𝐶𝐷ሿ1 ൅ 𝐾௦ሾ𝐶𝐷ሿ  (3)

The fit of Equation (2) to the experiment results yields a value of the pseudo-first 
orther rate kw = 1.47 ± 0.01 mol−1s−1, which is compatible with the value obtained in water 
kw = 1.46 ± 0.03 M−1s−1 (vide supra) [23]. The value of catalytic constant in the presence of 
CD was estimated as kCD = 0.25 ± 0.03 s−1. In this sense the ratio kCD/kw was 0.17, which is 
so close to the equivalent ratio for basic hydrolysis of CV (kCD/kw = 0.15) obtained in pre-
vious experiments [30]. The binding constant of MG to CD was evaluated in KS = 2500 ± 
50. Figure 7 shows the experimental results compared to those obtained from adjusting 
them to Equation (1). As can be, this was satisfactory. Indeed, the solid line represents the 
adjustment of ko and ko,t values to the slope 1 line, for which a value of R2 = 0.9989 has been 
obtained. This R2 value demonstrates the good fit of the theoretical model to the experi-
mental data. 

Scheme 2. Mechanism of basic hydrolysis of MG in the presence of CD, where kw is the rate constant
in water, kCD is the rate constant in CD and Ks is the binding constant of MG to the CD.

From this mechanism using the rate equations and the formation equilibrium of the
inclusion complex, Equation (3) can be easily obtained [34].

ko =
kw

[
HO−]+ kCDKs[CD]

1 + Ks[CD]
(3)

The fit of Equation (2) to the experiment results yields a value of the pseudo-first or-
ther rate kw = 1.47 ± 0.01 mol−1s−1, which is compatible with the value obtained in water
kw = 1.46 ± 0.03 M−1s−1 (vide supra) [23]. The value of catalytic constant in the presence
of CD was estimated as kCD = 0.25 ± 0.03 s−1. In this sense the ratio kCD/kw was 0.17,
which is so close to the equivalent ratio for basic hydrolysis of CV (kCD/kw = 0.15) ob-
tained in previous experiments [30]. The binding constant of MG to CD was evaluated
in KS = 2500 ± 50. Figure 7 shows the experimental results compared to those obtained
from adjusting them to Equation (1). As can be, this was satisfactory. Indeed, the solid
line represents the adjustment of ko and ko,t values to the slope 1 line, for which a value of
R2 = 0.9989 has been obtained. This R2 value demonstrates the good fit of the theoretical
model to the experimental data.
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Figure 7. Experimental results (ko) vs. theoretical results (ko,t)precited by Equation (3) obtained from
Scheme 2 ([MG] = 1.46 × 10−5 M and [NaOH] = 0.1 M, T = 25 ◦C).

Another aspect to underline, which confirms the validity of the model, is the value
obtained for the MG binding constant to cyclodextrin cavity. As quote above, a value
of Ks = 2500 has been obtained, which is like the CV value obtained in the literature
(Ks = 2750) [24]. The ratio between MG and CV binding constant is 0.91 which is too close
to the log(P) ratio between MG and CV equal to 0.89, log(P)MG = 6.65 and log(P)CV = 7.48. In
fact, if we compare the values of the association constants of different substrates taken from
the literature, an acceptable correlation can be observed between the values of the formation
constants of the host-guest complexes and the log(P) values of the substrates [31,32,34]. This
linear relationship is shown in Figure 8 (R2 = 0.9514). The compounds included in this figure
were chosen due to the similarity of the procedure for obtaining the association constants.
In this way, the values of the MG and CV constants were obtained from kinetic data of the
basic hydrolysis processes of respective carbocations in the presence of CD. Regarding the
values of the association constants of N-methyl-N-nitroso-p-toluene sulfonamide (MNTS),
they were obtained by the same procedure from the kinetic data of the basic hydrolysis
of this compound in the presence of CDs. Regarding p-nitrophenyl acetate (pNPA), they
were obtained from kinetic data of the hydrolysis of this compound in the presence of
CDs and mixtures of CDs and micellar aggregates. Regarding acetonitrile, its association
constant was obtained using the hydrolysis process of MNTS in the presence of CDs as a
chemical probe. The pH conditions used in all cases were similar so all constants can be
compared. It is well known that the Log P value of a substance is a suitable way to quantify
its hydrolicity/hydrophobicity, this linear relationshipt between the formation constant of
the host-guest complex and the substrates would demonstrate that the main driving force
of the formation of said complexes is associated with their hydrophobicity [35].
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4. Conclusions

A kinetic model has been applied to the study of the basic hydrolysis of MG in the
presence of cyclodextrins. From the reaction mechanism, the kinetic constants of the
hydrolysis processes have been obtained (in water and through the formation of the MG-
CD host-gues complex) as well as the association constant of MG to CD. A comparison
of the rate constants observed in the presence and absence of CD reveals that a catalysis
of the hydrolysis process associated with the reaction between MG and deprotonated
cyclodextrin occurs. Likewise, from the experimental data, no kinetic evidence is observed
that an attack by HO− on the MG-CD occurs. In this way, a kinetic model has been
proposed that considers two simultaneous routes in the aqueous medium that involve free
hydroxyl ions and the hydroxyl belonging to the deprotonated CD, respectively. Likewise,
from the observed results it is suggested that the stoichiometry of the host-guest complex
between the CD and the MG is a 1:1 complex. The values obtained for both the kinetic
constants and the equilibrium constant are in line with values of similar substances in
the literature [24,34], which constitutes another proof of the validity of the proposed
kinetic model.
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