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Abstract: We performed an in-depth investigation and analysis of the effect of temperature on the
Raman-active A-modes of bulk kesterite-type Cu2ZnSnS4 within the 300–460 K temperature range.
We acquired the individual contributions to each Raman mode, namely, the thermal expansion and
anharmonic interactions terms responsible for the Raman shift and broadening with temperature. Our
results indicate that the Raman shift with temperature is dominated by the thermal expansion term,
whereas the broadening is mainly governed by three-phonon damping processes in this material.
Considering relevant results from the literature, it appears that dimensionality is a key factor in
regulating the dominant phonon decay mechanism.
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1. Introduction

The quaternary semiconductor Cu2ZnSnS4 has received considerable attention in
recent years due to its potential use as a solar absorber [1,2]. The promising photovoltaic
properties of this material come from its almost optimal optical band gap (Eg~1.5 eV),
its high absorption coefficient in the visible range (~104 cm−1), and its earth-abundant,
low-cost, and nontoxic elemental constituents [2,3]. Moreover, the possibility for using
this environmentally friendly material in thermoelectric applications has also emerged
recently [4–6]. The current record for the thermoelectric figure of merit ZT = 1.6 has been
achieved for Na-doped Cu2ZnSnS4 single crystals at 800 K [4], a rather promising and com-
petitive value [7]. A critical component for determining the thermoelectric performance of
a semiconducting material such as Cu2ZnSnS4 is the inherent anharmonic phonon–phonon
interactions, which influence the lattice thermal conductivity. The latter is inversely pro-
portional to ZT, such that an enhancement of ZT can be realized via the reduction in the
lattice thermal conductivity contribution. Hence, the understanding of these anharmonic
processes may lead to the optimization of the respective thermoelectric efficiency.

In terms of structure, Cu2ZnSnS4 adopts ideally an ordered kesterite-type (KS) phase
in ambient conditions, with each metal cation adopting a specific (and unique) Wyckoff
position (Figure 1) [8,9]. This phase is composed of alternating Cu/Zn and Cu/Sn layers
stacked along the c-axis, with sulfur anions in between. Each of the metal cations is
tetrahedrally coordinated with respect to the S2− anions and is structurally derived from
the well-known sphalerite/zinc-blende archetypal phase [10].

We should point out here that the synthesis of Cu2ZnSnS4 samples suffers from sev-
eral issues such as cationic disorder, point defects, deviation from ideal stoichiometry,
and appearance of secondary phases. Actually, several recent studies have been devoted
to the identification and the classification of these intrinsic defects, as a means of find-
ing the optimal synthesis conditions [11–17]. It is generally observed that, for example,
the annealing temperature plays a major role in the stoichiometry of the final product.
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Moreover, inspection of the available literature reveals that the synthesis procedure is
better controlled for bulk KS samples compared to their thin-film counterparts, yielding
generally higher-quality (poly)crystalline products [13,14,18–20]. Nevertheless, we need to
mention that the most common type of intrinsic disorder in KS Cu2ZnSnS4 is the anti-site
cationic exchange of the Cu and Zn cations within the z = 1/4 and z = 3/4 cationic layers
(Figure 1), leading to the adoption of a disordered kesterite phase [21]. This particular type
of disorder is almost always evidenced in the KS structure, owing to the low activation
energy barrier [15,17,22]. For more details, the interested reader is referred to the cited
works. The aforementioned structural issues affect virtually every other property of the
material, including its vibrational response [13,23].

Regarding the latter, one of the most simple and straightforward ways to monitor
the anharmonic properties of a material is through separate high-temperature and high-
pressure Raman scattering studies [24,25]. Given that we previously conducted high-
pressure Raman investigations on a stoichiometric and ordered Cu2ZnSnS4 bulk sample
at ambient temperature [26,27], we decided to expand our Raman investigations on the
same sample with varying temperature at ambient pressure. This would allow us to
model the anharmonicity of the KS Cu2ZnSnS4 Raman-active modes in a reliable and
self-consistent manner [28,29] and acquire an in-depth understanding of the damping
processes dominating the Raman-active phonons.
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Figure 1. Unit cell of the ordered kesterite-type Cu2ZnSnS4 (KS, SG I4, Z = 2). The brown, green,
gray, and yellow spheres represent Cu+, Zn2+, Sn4+, and S2− ions, respectively. In this structural
arrangement, the atomic Wyckoff positions at ambient conditions are Cu(1)-2a (0, 0, 0), Cu(2)-2c (0,
0.5, 0.25), Zn-2d (0, 0.5, 0.75), Sn-2b (0, 0, 0.5), and S-8g (0.753, 0.7589, 0.8724) [30]. The Cu(1) cations
are lying at the same plane as the Sn4+ cations forming the z = 2/4 cationic layer, whereas Cu(2)
and Zn2+ make up the z = 1/4 and z = 3/4 cationic layers; the latter are more susceptible to cationic
disordering, resulting from the mutual anti-site exchange of the Cu(2) and Zn cations [13,31].

2. Materials and Methods

The investigated ordered Cu2ZnSnS4 sample was available in polycrystalline powder
form. Synthesis and characterization details can be found elsewhere [30,32,33].

The temperature-dependent Raman measurements at ambient pressure were con-
ducted using a Horiba Jobin Yvon LabRam HR800 VIS single-stage Raman spectrometer,
equipped with a 1800 L/mm diffraction grating and a Peltier-cooled charged-coupled
device (CCD). A blue diode-pumped solid-state laser (λ = 473 nm) served as the laser
excitation source. The laser beam was focused on the sample surface with a 20× objective
lens, with the incident laser power staying below ~1 mW in order to avoid any potential
sample damage [34]. The measured frequency range was 100–600 cm−1, and the collection
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time of each spectrum was set to three accumulations of 10 min each. The spectrometer
resolution with this configuration is estimated at 1 cm−1, considering the Rayleigh line.
Heating of the sample was achieved with a Linkam THMS600 stage, and the sample cham-
ber was purged continuously with argon gas. The thermocouple readout temperature was
corrected with an empirical formula, derived from the melting points of different salts and
the freezing point of water [35,36]. The Raman-relevant parameters were obtained from the
fitting of the Raman spectra with Lorentzian functions, accompanied by linear background
correction/subtraction.

3. Results
3.1. Temperature Dependence of the Raman-Active Modes in Cu2ZnSnS4

From group theory, a total sum of 15 Raman-active modes are predicted for the KS
phase [37].

Γ = 3A + 6B + 6E. (1)

We can readily observe that the KS Raman spectrum in ambient conditions is domi-
nated by two Raman features lying at ~288 cm−1 [A(1)] and ~338 cm−1 [A(2)] (Figure 2),
in agreement with results from the literature using blue laser light excitation [23,38]. Both
of these Raman modes correspond to A symmetry vibrations and involve sulfur motions
mainly along the tetragonal ab plane (288 cm−1) and along the c-axis (338 cm−1) [39].
Moreover, we detected an additional Raman mode close to 475 cm−1, attributed to a
Cu2S impurity phase according to previous investigations on the same sample [26,27].
For the sake of completeness, we mention in passing that Cu2S (chalcocite) undergoes a
temperature-induced structural transition from the ambient temperature monoclinic phase
to a high-temperature hexagonal modification close to ~370 K [40,41], most likely captured
in our Raman spectra from the substantial intensity enhancement of the Cu2S-related
Raman feature around that temperature (Figure 2a).

In Figure 2a, we plot the measured Raman spectra of the ordered Cu2ZnSnS4 modifica-
tion at various temperatures. It becomes immediately clear that the Raman spectra do not
show any substantial changes with varying temperature within the measured 300–460 K
temperature range. The only notable effect taking place is the frequency downshift for both
of the KS A modes with increasing temperature, as well as the increase in the respective
full width at half maximum (FWHM) (Figure 2b). Both of these effects are consistent with
the generic Raman-related behavior of solids upon heating [25].

Before proceeding any further, we should point out here that we restrict the analysis of
the current set of Raman experiments up to 460 K, as further temperature increase resulted
in the appearance of structural disorder and the subsequent altering of the KS Raman
spectra; such temperature-induced order-to-disorder transition, stemming from the mutual
anti-site Cu+ and Zn2+ cationic exchange within the respective crystal planes (Figure 1),
is well documented in the literature [30,42]. As we are primarily interested in acquiring
the KS anharmonic properties at this stage, for the sake of consistency, we confined our
analysis within the temperature stability field of the KS phase.

Coming now to the analysis of the obtained data, the isobaric Raman mode frequency
evolution of the Raman-active modes as a function of temperature can be expressed with
the following equation:

ωP
i (T) = ωP

i0 +

(
∂ωi

∂T

)
P

∆T, (2)

where ωP
i0

is the (extrapolated) mode frequency at zero temperature and ambient pressure,
∆T is the temperature difference, and (∂ωi/∂T)P is the first-order temperature coefficient.
Moreover, the isothermal mode Grüneisen parameters γP

i can also be calculated with the
following formula [25]:

γP
i = − 1

αVωP
i0

(
∂ωi
∂T

)
P

∆T, (3)
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where αV represents the volumetric thermal expansion coefficient. The latter value can be
calculated from the in situ structural data for the 300–460 K temperature range [42]. The
extracted results are tabulated in Table 1.
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Figure 2. (a) Selected Raman spectra of KS Cu2ZnSnS4 at various temperatures (λ = 473 nm, P = 1 bar). The spectra are
scaled with respect to the intense A(2)-band. The Raman mode at ca. 475 cm−1 corresponds to the Cu2S impurity phase.
(b) Plots of Raman mode frequency and (c) full width at half maximum (FWHM) against temperature for the two most
intense A modes of KS Cu2ZnSnS4. Solid lines passing through the measured data correspond to least-square fittings.

Table 1. Raman-related temperature coefficients for the Raman modes of KS Cu2ZnSnS4.

KS Mode ωP
i0 (cm−1) (∂ωi/∂T)P (cm−1/K) γP

i ΓP
i0 (cm−1) (∂Γi/∂T)P (cm−1/K)

A(1) 292.3(2) −0.0168(5) 1.93 0.3(4) −0.007(1)
A(2) 343.3(2) −0.0176(5) 1.72 0.6(2) −0.0044(6)

In a similar fashion, the width of the KS Raman modes against temperature can also
be fitted with a polynomial function (Figure 2c).

Γi(T) = ΓP
i0 +

(
∂Γi
∂T

)
P

∆T, (4)

where Γ
P

i0
is the (extrapolated) width at zero temperature and ambient pressure, ∆T is

the temperature difference, and (∂Γi/∂T)P is the first-order temperature coefficient. The
respective fitting parameters are also tabulated in Table 1.

3.2. Modeling Phonon Anharmonicity in Cu2ZnSnS4

The shift of a Raman-active mode with varying temperature is generally attributed to
thermal expansion (volumetric) and anharmonic effects, and it can be approximated by the
following equation [25,29]:

∆ω(T) = ωi(T)−ωP
i0 = ∆ωE(T) + ∆ωA(T). (5)
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The ∆ωE(T) term indicates the volumetric thermal expansion contribution (implicit
term), and the ∆ωA(T) term describes the anharmonic phonon–phonon interactions (explicit
term) to the mode-specific temperature dependence. The ∆ωE(T) part is given by the
following expression [24,29]:

∆ωE(T) = ωP
i0

[
exp
(
−n

∫ 460 K

300 K
γT

i αV
(
T′
)
dT′
)
− 1
]

, (6)

where n denotes the degeneracy of the respective Raman-active vibration (n = 1 for the A
mode symmetries examined here), and γT

i
is the respective isothermal mode Grüneisen

parameter (here taken from [27]). Assuming that γT
i

is temperature-independent, we
calculated the implicit part (CTE) of each KS Cu2ZnSnS4 A-mode’s frequency shift with
temperature (Figure 3).

On the other hand, the anharmonic/explicit ∆ωA(T) term can be expressed with the
following equation [29]:

∆ωA(T) = A
[

1 +
2

ex − 1

]
+ B

[
1 +

3
ey − 1

+
3

(ey − 1)2

]
, (7)

where x = h̄ωi0
P/2kBT, y = h̄ωi0

P/3kBT, h̄ is the reduced Planck’s constant, kB is Boltz-
mann’s constant, and A and B are anharmonic constants used as fitting parameters. The
A and B constants indicate the magnitude of the three-phonon (cubic) and four-phonon
(quartic) processes, respectively, i.e., the decay of one particular optical Γ phonon (here
the KS A-modes) into two (cubic) or three (quartic) phonons at different points of the KS
Brillouin zone, according to energy and momentum conservation rules [28]. The respective
calculated three-phonon (3-ph.) and four-phonon (4-ph.) contributions to the A mode
frequency shifts with temperature are also shown in Figure 3.
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Table 2. Fitting parameters derived from reproducing the Raman-active A-band frequency and width shift as a function of
temperature in KS Cu2ZnSnS4, according to Equations (5)–(9). Literature data are also listed for comparison. The acronyms
are explained as follows: CZSS, Cu2ZnSnS4; TF, thin film; CZSS-TF1 [43], thin film grown on fluorinated tin oxide coated
glass; CZSS-TF2 [44], thin film grown on soda lime glass; CZSSe-TFA [45], Cu2ZnSnSe4 thin film, Zn-rich and Sn-poor,
grown on Ta foil; CZSSe-TFB [45], Cu2ZnSnSe4 thin film, Zn-poor and Sn-rich, grown on Ta foil; CFSS [46], Cu2FeSnS4

(stannite structure); N/A, not available.

Compound Mode ωP
i0 (cm−1) γT

i
[27] A (cm−1) B (cm−1) ΓP

i0 (cm−1) C (cm−1) D (cm−1) T Range (K)

CZSS-bulk A(1) 292.3(2) 1.07 1.21 −0.006 0.3(2) 0.530 0.02 300–460
A(2) 343.3(2) 1.03 2.06 −0.07 0.6(2) 0.630 −0.02 300–460

CZSS-TF1 A(2) 340.8 1.01 −1 × 10−22 −9.1 × 10−20 10.7 2 × 10−10 1.09 × 10−20 98–378
CZSS-TF2 A(2) N/A N/A N/A N/A N/A N/A N/A 80–450

CZSSe-TFA A(1) 174.5 N/A 2.762 −3.947 7.5 0.653 −0.007 24–290
CZSSe-TFA A(2) 197.9 N/A 3.668 −4.936 3 0.068 −2.817 × 10−4 24–290
CZSSe-TFB A(1) 175.8 N/A 3.471 −4.414 6.4 0.276 −0.002 24–290
CZSSe-TFB A(2) 198.6 N/A 3.729 −4.274 2.3 −0.001 −2.727 × 10−4 24–290
CFSS-bulk A(2) 325.4 5.1 −0.89 −1.2 × 10−9 3.5 6.000 N/A 10–300

We turn now to the modeling of the width Γ of the Cu2ZnSnS4 A-bands as a function
of temperature. Generally, the behavior of Γ, which represents the lifetime of the respective
phonon, can be accounted for by two physical processes [24].

Γ(T) = Γ0 + ΓEPC(T) + Γan(T) , (8)

where the temperature-independent Γ0 term stands for the width contribution due to, e.g.,
the finite spectrometer resolution and/or other scattering mechanisms such as crystalline
defects and impurities present in real samples [47], and the ΓEPC and Γan factors denote
contributions from the electron–phonon coupling (decay of the phonon into a hole–electron
pair) and the anharmonic phonon–phonon scattering, respectively. The ΓEPC term is
relevant only in (semi)metallic systems [24,48] and can be neglected for the semiconducting
Cu2ZnSnS4. On the other hand, the anharmonic Γan part can be expressed as follows [24,29]:

Γan(T) = C
[

1 +
2

ex − 1

]
+ D

[
1 +

3
ey − 1

+
3

(ey − 1)2

]
, (9)

where x = h̄ωi0
P/2kBT, y = h̄ωi0

P/3kBT, and C and D are fitting parameters for the three-
and four-phonon decay processes. The respective fittings are shown in Figure 4, with the
calculated parameters listed in Table 2.
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4. Discussion

From the aforementioned rigorous analysis, it becomes clear that the frequency shift
for both A modes of Cu2ZnSnS4 as a function of temperature is dominated by the thermal
expansion term, whereas the four-phonon contribution is marginal within the investigated
temperature range (Figure 3). Interestingly, the three-phonon term shows a clear increase
with increasing temperature for both modes (positive A parameter in Table 2), a sign of
up-conversion decay channels for both of these vibrations [49]. Nevertheless, it can be
noted that the strength of the cubic and quartic phonon damping processes is significantly
larger for the A(2) mode compared to the A(1) vibration, indicating the wider availability
of decay channels for the former [37,50].

For the A-mode width temperature dependence, on the other hand, the three-phonon
mechanism is clearly the dominant factor in determining the phonon lifetimes for both
modes (Figure 4). Such a result is consistent with the general trend of semiconducting
materials [24,51].

Comparison with the available literature data reveals some interesting traits. Our
results are in stark contrast with a previous study on Cu2ZnSnS4 thin films, where the
dominant damping mechanism was found to be four-phonon processes [43,44]. Possible
reasons behind this discrepancy might be, e.g., differences in the studied temperature
range (Table 2), sample stoichiometry, presence and type of defects, the presence of intrinsic
and extrinsic strain, and dimensionality, as well as a possible influence of the underlying
substrate in the Raman measurements [52]. Interestingly, the four-phonon process was also
shown to be the major decay mechanism for the isostructural kesterite-type Cu2ZnSnSe4
thin films [45]. On the other hand, the thermal expansion term is the prevailing damping
factor for the Raman-active phonons of the closely related stannite-type Cu2FeSnS4 [46].
Since the latter sample was investigated in bulk form, as our Cu2ZnSnS4 sample here, it
appears that dimensionality strongly influences the exact phonon damping mechanism (at
least within kesterite-type materials). Actually, the reduction in dimensionality, i.e., passing
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from the respective bulk compounds to thin films and nanomaterials, seemingly enhances
the strength of both three- and four-phonon processes [48,53–55]. If that is indeed the case,
one could also manipulate and even control the dominant phonon scattering processes in
Cu2ZnSnS4 and, consequently, its thermoelectric performance by altering the material’s
dimensions (e.g., thickness and number of layers for thin films). Indeed, the enhancement
of a material’s thermoelectric performance via the reduction in lattice thermal conductivity,
stemming in turn from the reduction in its dimensions, has received significant attention
in recent years [56]. Follow-up experimental investigations are needed, however, in order
to verify this possibility in both the Cu2ZnSnS4 compound and in other technologically
important material families.

5. Conclusions

In summary, we investigated the effect of temperature on the Raman-active A-modes
of kesterite-type Cu2ZnSnS4. We were able to extract the individual contributions to each
Raman mode, i.e., the volumetric (thermal expansion) and anharmonic (phonon-phonon
interactions) terms responsible for the Raman shift and broadening with temperature.
Comparison with relevant systems indicates the significant role of dimensionality in
determining the dominant phonon damping factor, thus opening the way for tuning the
thermoelectric performance of this class of materials by appropriate growth conditions.
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