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Abstract: The aim of the present study is to apply an embedded resistance wire technique for curing
of thermosetting resins as well as for the self-healing of thermoplastic polymers. The work consists
of two parts. In the first part, Kanthal resistance wires embedded in a resin plate acted as heating
elements when direct electrical current was flowing through them (Joule heating). During heating,
the temperature was continuously monitored using a thermal camera, and accurate temperature
times for fixed position diagrams as well as temperature positions for fixed time diagrams were
calculated. The effects of curing with this method were evaluated by studying the three-point
bending mechanical behavior of the cured resin, comparing it with the corresponding behavior
of the same resin when cured using a conventional oven curing method at the same temperature.
In the second part of the present work, the possibility of using the same technique for healing
existing notches and flaws in a PET thermoplastic is explored. We examined whether providing
energy through the resistance wires created the right amount of heat to heal the thermoplastic, or,
more specifically, whether it closed the notches and eliminated the abrasions that were artificially
created on the specimens. The technique using embedded resistance wires worked equally well,
with interesting and promising preliminary results regarding the curing of thermoset resins and the
healing of thermoplastics.

Keywords: epoxy resin curing; PET (polyethylene terephthalate); resistance heating; Joule heating;
polymer matrix composites (PMCs); self-healing; three-point bending; flexural modulus; flexural
strength; thermal imaging

1. Introduction

Epoxy resins are thermoset synthetic polymers. During curing, depending on their
formulation, epoxy resins react with a chemically active compound such as a catalyst or a
curing agent, leading to the formation of a crosslinked network [1]. Crosslinks introduce
constraints for molecular movements, thus changing an epoxy’s nature from that of a
viscous liquid into a tough and hard solid material with high strength, stiffness, and adhe-
sion [2]. Curing may be performed either at room temperature or at a higher temperature
by applying external heat or other external sources of energy such as ultraviolet or electron
beam radiation [3].

The most important advantages of epoxy resins are their very good chemical resistance,
easy processing, good adhesion, high mechanical strength, excellent viscosity, and low
shrinkage. Their basic properties can be modified according to the requirements of a
specific application (mixing with an additive of choice, use of modifiers, etc.), which results
in a variety of applications for them. The significant advantages of epoxy resins have
resulted in their rapid growth rate and widespread use. Thus, one of their most common
applications is their use as matrices for the manufacture of composite materials [4], while
another important application is their use as adhesives [5]. Polymeric matrix composite
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materials now dominate several sectors of human activity from structural applications to
bio-medical uses.

The most important factor for achieving the above characteristics of epoxy resins is the
curing process mentioned above, which, in turn, depends, amongst other properties, on the
type of hardener, the accelerator, the weight of the resin-to hardener-ratio, and the curing
temperature profile applied. In addition to these, cost is the driving force for selecting a
specific curing method [6].

There are several curing heating methods used to accelerate the epoxy curing process,
each one of them having its own advantages and disadvantages because they introduce
different polymerization reaction rates and different reaction paths, resulting in different
polymer network structures, while the final product, depending on the curing method used,
has different physical properties (such as density), mechanical properties (such as strength
and modulus), and thermal properties (such as the thermal expansion coefficient and
the glass transition temperature) compared to those of conventional thermally processed
samples [7–13]. For instance, the curing chambers used in conventional thermal processing
can increase the rate of curing for epoxy resins; however, they are expensive and they may
take up too much space in a factory while also requiring large amounts of manpower and
time [14].

UV curing applications, extensively used in the electronics, coatings, and automo-
tive industries, show advantages such as high reaction rates, good adhesion, curing at
ambient temperatures, and low energy consumption [15–18]. However, this method is
problematic because it doesn’t provide evenly distributed or controlled heat, leading to
overheating some sections of the epoxy and thus creating unwanted local flaws in the
polymeric products.

Another promising curing technique is resin transfer molding (RTM). Although RTM
is a quite tolerant process, high tooling costs and difficult tool-cleaning operations and
especially, extremely high non-recurring costs for part modifications are some of the
greatest disadvantages of this concept [19].

To summarize, there are many different options available for epoxy resin curing in-
cluding ovens as well as UV and/or electron beam radiation [20–23], RTM, and autoclaves.
The common characteristic of all of the curing methods mentioned above is heat, generated
during the exothermic polymerization reaction and/or applied by an external energy
source. Heat is of crucial importance because it affects the epoxy’s viscosity while, at
the same time, it accelerates the reaction times. In addition, the heat generated during
the exothermic polymerization reaction greatly depends on the epoxy layer’s thickness.
The thicker the epoxy layer, the more the heat retained by the epoxy and the faster the
polymerization reaction. On the contrary, the thinner the epoxy layer, the lesser the effects
of the generated heat and the slower the curing reaction. Thus, heat control during epoxy
polymerization is of cardinal importance [24].

During the polymerization process, depending on the specific curing procedure ap-
plied, there are continuous changes in the mechanical and physical properties of the epoxy
resin. More precisely, stiffness and strength, as well as the glass transition temperature,
all increase. The properties of uncured as well as of incompletely cured polymers change
continuously with time at a rate that depends on the actual storage conditions. A stable
situation can only be reached after the completion of the curing process [25].

Another important common characteristic of all of these curing methods is that heat is
supplied to the resin by means of an external energy source. In the present investigation, we
investigated the use of an internal energy source constituted of resistant wires embedded
into epoxy resins and compared it with epoxy resins cured using conventional, oven-heated
thermal processing. A similar technique has been applied by other researchers wherein
the curing of carbon fiber-reinforced polymer composite plates was achieved through the
direct application of an electric current flowing through the carbon fibers [26–29]. This
technique has been reported in the literature using different keywords and expression
forms, but it is most commonly called Joule heating [26,29,30], followed by resistance or
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resistive heating [28,31–33]. Expressions such as embedded heating [34] and self-resistance
electric (SRE) heating/curing [35] have also been used.

Furthermore, thermoplastics are polymers that become pliable or moldable above
a specific temperature and return to a solid state upon cooling. Most thermoplastics
have a high molecular weight. Polymer chains associate through intermolecular forces,
which permit thermoplastics to be remolded because intermolecular interactions increase
upon cooling and restore the bulk properties. In this way, thermoplastics differ from
thermosetting polymers, which form irreversible chemical bonds during the curing process.
Above its glass transition temperature Tg and below its melting point Tm, the physical
properties of a thermoplastic change drastically without an associated phase change. Within
this temperature range, most thermoplastics are rubbery due to alternating rigid crystalline
and elastic amorphous regions approximating random coils [36].

In recent years, beginning in the early 1990s, scientists and engineers began creat-
ing synthetic mimics of living biological systems, having taken their cues from nature.
Self- healing polymers emulate biological systems to varying extents, with some being
completely autonomic and some non-autonomic systems requiring external stimuli to
undergo a healing event [37]. Four fundamentally different categories of self-healing
techniques exist: (1) healing by crack-filling adhesion; (2) healing by diffusion; (3) healing
by bond reformation; and (4) strengthening of virgin properties in response to stress [38].
There are three different crack-filling healing mechanisms: (a) microencapsulated healing
agents [39,40]; (b) phase-separated healing agents [41–43]; (c) healing agents in hollow
fibers [44–46]; and (d) microvascular networks [47,48]. The healing conducted through
diffusion can be performed by (a) thermoset/thermoplastic blends [49,50]; (b) dangling
chain diffusion [51,52]; and (c) viscoelastic healing [53]. Healing through bond reformation
can be performed only in (a) thermally reversible materials; (b) UV-initiated materials;
(c) supramolecular assembly materials; and (d) materials with metal–ligand bonds [38].
Finally, regarding the mechanism of virgin property strengthening, we have to mention that
these polymers incorporate mechanophores (mechanochemically active units) along their
backbone that are designed to remain dormant when unperturbed but impart additional
polymerization and/or chemical crosslinking to localized portions of the bulk polymer
that are under stress [54].

The Joule effect can be used in self-healing materials as an internal or external source of
heating and possesses attractive characteristics for developing self-healing smart materials
because the electrical stimulus that acts as a trigger for self-healing effects is a simple,
efficient, and economical way to repair materials in service, thus avoiding material replace-
ment, maintenance, and early disposal [55]. The use of resistance wires embedded into
polymer structures represents a promising novel technology for both curing of thermoset
resins and in the case of thermoplastics, repairing microcracking and recovering the me-
chanical performance of the material, which otherwise would be difficult, hazardous, and
costly. The method can be applied in several different industrial areas such as in structural,
electronic, medical, and aerospace products.

The present work investigates an innovative type of polymerization for thermosets
as opposed to the traditional method in an oven. For this purpose, a number of wires
were embedded into a resin while direct current was provided to the system for different
time periods (12 to 24 h). A thermo-camera was used to monitor the heat transfer from
the wires to the resin while polymerization took place. Three-point bending experiments
were performed to determine flexural modulus and strength values for a variety of cured
specimens. The specimens we used incorporated either 1 wire or 2 wires along the length
of the specimens as well as 6 and 12 wires transverse to the specimens’ length.

In the case of thermoplastics, most approaches to self-healing materials require inputs
of external energy, healing agents, solvents, and/or plasticizers. In this investigation, the
self-healing mechanism used bond reformation of thermally reversible materials because
thermoplastics such as PET support that means of healing. In the present work, PET
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specimens with artificial damage were manufactured, and their ability to heal after internal
heat was applied was investigated.

2. Materials and Methods
2.1. Materials

In the current investigation, RenLam CY219 (bisphenol A), combined with a curing
agent, HY 5161 (diamine), at a ratio of 2:1 by weight, was utilized. The epoxy resin was
supplied by Huntsman Advanced Materials, Switzerland. Density of the cured polymer
was 1.1 g cm−3, and the curing time chosen was 24 h at either 50 ◦C or 70 ◦C. Viscosity of
the cured system was 1–1.2 Pas at 25 ◦C. The properties of the resin/hardener system as
given by the manufacturer, are given in Table 1.

Table 1. Properties of the resin/hardener system as given by the manufacturer.

Property RenLam CY219/HY 5161

Density (g cm−3) 1.1
Viscosity at 25 ◦C (Pas) 1–1.2
Pot life at 25 ◦C (min) 40
Water absorption (%) 1.16

Parts by weight 2:1
Appearance Yellowish

In the second part of this study, the thermoplastic used for the self-healing experiments
was amorphous PET (polyethylene terephthalate) sheets, 0.62 mm in thickness, supplied
by NGP PLASTIC, Korinthos, Greece.

Finally, as heating elements, resistance wires encoded as Kanthal®D were used.
Kanthal®D is the trademark for a family of ferritic iron–chromium (20.5–23.5%)–aluminum
(4.8%) alloys (FeCrAl alloys) that are used in a wide range of applications at temperatures
up to 1300 ◦C. The Kanthal wire’s diameter was 0.5 mm with an electrical resistivity of
1.35·10−6 Ωm.

2.2. Specimen Manufacturing

The molds used for the specimens’ manufacturing were composed of two glass plates
(125 × 105 mm) as well as four PMMA (polymethyl methacrylate) blocks (105 × 12 mm),
also known as plexiglass. To ensure equal spacing between wires, guiding bores were
opened on the PMMA blocks through which we ran the Kanthal wires. Epoxy plates were
manufactured and later cut into specimens of appropriate dimensions according to ASTM
D790-03. The dimensions of all finished specimens were 100 × 12.8 × 2.6 mm. Initially,
pure epoxy resin plates were manufactured and cured in a conventional way in an oven at
50 ◦C for 24 h to establish a reference point.

Apart from the conventional oven curing process, an innovative curing technique
was applied. Resistance Kanthal wires were introduced into the uncured epoxy resin, and
an electric current was flown through them. The electric current produced heat via the
Joule effect, and the heat was used to cure the epoxy resin (Figure 1). Two sets of plates
were manufactured. The first type of plates contained 6 Kanthal wires, and the second
type contained 12 Kanthal wires. In each case, the specimens were cured at two different
temperature levels, 50 ◦C and 70 ◦C, with a curing time of 24 h. This was achieved by
properly adjusting the voltage and measuring the temperature of the heating element
by means of both a thermocouple and a thermal camera. All tests were repeated; plates
containing either 6 or 12 Kanthal wires per plate were cured in an oven at a temperature of
50 ◦C in order to compare the proposed curing method with the traditional one.

In addition, plates containing 12 Kanthal wires cured at temperatures of 50 ◦C for 12 h
and 18 h via Joule heating were manufactured.
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Figure 1. Experimental setup for Joule heating curing procedure.

The fully cured epoxy resin plates were then cut into specimens. The plates were
cut parallel and perpendicular to the Kanthal wires, resulting in specimens with 1 and
2 wires embedded in the epoxy resin in the axial direction and 6 and 12 Kanthal wires in
the transverse direction, as shown in Figure 2.
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In the second part of this investigation, Kanthal wires (6 and 12 wires) were introduced
into thermoplastic matrices. The Kanthal wires were placed in the middle of six layers of
amorphous PET sheets, meaning that there were three layers on top of and three layers
below the Kanthal wires. Next, a constant pressure of 90 kN at 85 ◦C for 2 h was applied to
the sheets with the support of a thermo-press machine, which thermoformed the layers
into homogeneous plates. Following this procedure, plates were cut parallel to the wires to
dimensions of 100 × 12.8 × 2.2 mm with either one or two wires per specimen.

2.3. Quasi-Static Mechanical Tests

The manufactured thermoset specimens were subjected to a series of quasi-static three-
point bending tests (ASTM D790-03) using the universal mechanical testing machine Instron
4301 (High Wycombe, United Kingdom). All tests were performed at room temperature to
investigate the mechanical performance of the specimens. In all cases, a constant crosshead
speed of 1 mm/min was applied. All specimens had dimensions of 100 × 12.8 × 2.6 mm
and a span length of 63 mm. Six or more specimens per case (i.e., oven cured or DC-cured;
1, 2, 6, or 12 Kanthal wires) were tested to ensure the repeatability of results.

2.4. Thermal Imaging

Thermal images were captured during the Joule heating curing process using a thermal
camera type of the type Flir T355 (Wilsonville, OR, USA) to simultaneously describe the
temperature distribution variation with location and time.

2.5. Self-Healing Monitoring and Evaluation

The manufactured thermoplastic PET specimens were damaged, introducing an edge
notch and two abrasions to each specimen, as seen in Figure 3. The aim was to investigate
the self-healing capabilities of the manufactured specimens by applying a direct current
through the Kanthal wires, thus producing heat via the Joule effect. In other words, the
temperature was increased close to the PET glass transition temperature, Tg, (85 ◦C) and
afterward kept constant for time periods of 1, 2, 3, 4, and 5 days. Micrographs were obtained
during the heating procedure to observe the notches’ and abrasions’ width variation before
and after the direct electrical current application.
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3. Results and Discussion

In the present section, experimental findings regarding the flexural modulus and
strength of thermoset specimens manufactured following different curing procedures
will be presented. The results are presented in each case (modulus or strength) in charts
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according to the number of Kanthal heating elements incorporated into each specimen
(1, 2, 6, or 12) and according to the curing method utilized. Specimens cured by Joule
heating are the ones denoted with DC; the “Oven” specimens contained fibers but were
cured in an oven, and the “Pure 50 ◦C” were cured in an oven and contained no fibers.
Next, the temperature distribution during the resistance heating curing process obtained
via thermal imaging is also presented. Finally, the possibility of using the same technique
for the healing of existing notches and abrasions in a PET thermoplastic is explored.

3.1. Thermosets Flexural Modulus for 24-h Curing

In order to evaluate the effectiveness of the proposed curing method, the flexural
moduli of the manufactured specimens are presented in Figure 4 because the modulus
value can provide a reliable early indicator of an epoxy resin’s polymerization.
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Figure 4. Flexural modulus versus (a) curing method and (b) number of wires per specimen.

In Figure 4a, the flexural modulus versus the curing method for 1, 2, 6, and 12 Kanthal
wires per specimen is given. In all types of specimens, the flexural moduli did not deviate
substantially depending on the curing method; for both temperatures (50 ◦C and 70 ◦C)
and for both DC and oven-cured specimens, the flexural modulus remains almost constant,
averaging 2.55 GPa with a coefficient of variation on the order of 3.4%. A plot of the flexural
modulus versus the number of wires per specimen is also given in Figure 4b. In this figure,
it becomes even clearer that the flexural modulus almost did not deviate depending on
the number of wires per specimen. From Figure 4a, we can observe that the modulus
value of pure epoxy cured in an oven at 50 ◦C was equal to 2.36 GPa. If we compare this
value with the respective maximum modulus value observed in epoxy resin specimens
(2.65 GPa, 2 wires) with resistance wires embedded and cured in the same oven and at the
same temperature, a difference of +14% can be observed. This difference can be attributed
to the reinforcing effect of the wires and to the heat emitted back to the bulk resin by the
heated wires, as long as the specimens were cured in the oven.

3.2. Thermoset Flexural Strength for 24-h Curing

In this sub-section, the mean values of the flexural strength for all types of specimens
and curing procedures are presented in the bar diagrams shown in Figure 5a,b. In Figure 5a,
the flexural strength versus the curing method for 1, 2, 6, and 12 Kanthal wires per specimen
is given.
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Observing the variation of flexural strength with both the curing method and the
number of wires embedded, it is clear that all strength values measured were lower than
the respective strength value corresponding to pure resin cured in the oven at 50 ◦C. The
maximum deviation observed was approximately 20% and corresponded to the case of
6 wires embedded into the resin and cured at 50 ◦C. This behavior was expected because
when inserting wires into the epoxy resins, flaws were also introduced, especially in areas
of wire–resin contact, mainly due to the differences in thermal expansion coefficients
between the wire and the epoxy resin. The number and location of these flaws followed
a stochastic type of variation that depended on too many parameters including the wire
surface roughness, the heating rate, the number of wires and their location, etc., making
the flexural strength a non-reliable parameter for quality evaluation as compared to the
modulus [56].

3.3. Effects of Curing Time

In order to study the effects of curing time on the final flexural behavior of thermoset
specimens, the values of both the flexural modulus and the strength for specimens cured by
means of two embedded wires at 50 ◦C were compared with the respective values for pure
resin specimens cured at the same temperature in an oven. Results are shown in Figure 6.

As observed from Figure 6a, the flexural modulus was practically independent of
curing method and time. However, a deeper observation of the results reveals that the
specimens designated as DC-18 h showed a small increase in their moduli relative to the
pure resin–24 h specimens. This might lead to the conclusion that by using this technique,
we could save curing time with parallel cost savings. However, such a conclusion is quite
risky because our results are preliminary and more research is needed on the topic.

Next, on top of what was already presented and explained in the previous section
related to the flexural strength variation, in Figure 6b, it can be observed that there was
a decrease in flexural strength with decreases in curing time. The maximum decrease
observed was on the order of 20% and corresponded to specimens designated as DC-12 h.
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Figure 6. Flexural modulus (a) and strength (b) dependence on curing method and time.

3.4. Temperature Distribution via Thermal Imaging

In Figure 7, four thermal images taken from a plate by means of a thermo-camera
showing 2 resistant wires at 70 ◦C are shown. These images were taken at 0, 15, and 30 min
and 24 h time instants. In these successive images, the increase in temperature throughout
the plate as time passes is clearly visible. At this point, we have to mention that the number
of images taken was quite big, and only representative images are presented. By comparing
the four images, it can be seen that as time passed, the temperature of the plate increased,
reaching a maximum value at about 30 min, while it decreased at higher times. This can
be attributed to the observation that during the time period from 0 to 30 min, heat was
produced not only from the wires but also from the exothermic polymerization reaction.
Thus, at the time of 30 min, a small temperature over-shouting was observed (Figure 7c)
on the order of 80 ◦C. In addition, because the duration of this reaction was on the order
of 30 min, for times higher than 30 min, the reaction ceased and the temperature lowered,
trending initially toward that of the wires, which was 70 ◦C. Subsequently, the polymer
solidified, and due to its thermal insulation characteristics, the plate surface temperature
was further reduced to almost 60 ◦C (Figure 7d).

Next, based on the thermo-camera image temperature data, graphs of temperature vs.
time at different positions on the plate were plotted. In Figure 8, an X–Y system of axes is
shown. On these axes, characteristic points on the plate are presented. These points are
denoted as 1, 2, and 3 on the X-axis and 4, 5, 6, and 7 on the Y-axis and are used for the
determination of the temperature values using the thermal images as a function of time.

For each characteristic point on the plate surface, graphs of temperature versus time
for plates with 6 and 12 embedded wires at 50 ◦C and 70 ◦C, respectively, were plotted.
As the number of plots is quite big, here, the plots for only two characteristic points are
presented. More precisely, the temperature vs. time plots for points 1 and 4 are only shown
in Figure 9. These points were selected because point 1 was located at the center of the
plate, while point 4 was located at the edge. From these plots, we can observe that an initial,
almost linear, increase in temperature vs. time took place, reaching a maximum at about
30 min, and this was followed by subsequent small decreases in temperature, the values of
which were stabilized for times higher than 60 min. As explained above, the temperature
overshooting observed at about 30 min was due to the combined heating coming from both
the heated wires and the exothermic polymerization reaction which, for times higher than
30 min, ceased, so that the temperature was due to only the heat generated from the wires.
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Figure 9. Surface temperatures versus curing times for plates with 6 and 12 wires at constant curing temperatures of 50 ◦C
and 70 ◦C, as validated from the thermo-camera images at (a) point 1 and (b) point 4.

Next, in order to check the symmetry and homogeneity of the temperature distribution
on the plate surface, along the X and Y axes, characteristic points for different times and
curing temperatures (50 ◦C and 70 ◦C) were plotted and are presented in Figure 10. These
plots verify both the symmetry and homogeneity of the temperature distribution, and they
are in accordance with our previously presented observations and explanations. Moreover,
in all curves, a maximum temperature value is always observed at the center of the plate,
while at points close to the edges, the temperature is lower due to the fact that these points
were more exposed to the environment as compared with the central part of the plate.
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3.5. Self-Healing of PET

To study the healing effects of Joule thermal heating, edge notches and surface abra-
sions on PET specimens were initially inflicted with a razor blade. Next, heating of the
specimens was achieved through the resistance wires’ Joule heating effect. The width of
the edge notches was continuously monitored, and photos were taken at specified time
intervals. In Figures 11–13, representative photos of an edge notchs’ geometry are shown,
corresponding to the shape and dimensions of the notch on the PET specimen surface
before and after a heating treatment at 85 ◦C that was performed for a number of specimens
with one and two wires.
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In Figure 11, the size of the inflicted notch before and after the healing process is
shown. After 72 h of healing at a temperature of 85 ◦C, the notch shrank from 0.79 mm to
0.48 mm, a 0.31 mm reduction, which corresponded to 39.2% of the initial inflicted notch.
Thus, almost 40% healing of the notch was achieved after 72 h of heating.

However, healing of 66.3% can be seen when observing Figure 12. Figure 12 showcases
a double-wired specimen after 24 h healing at 85 ◦C, indicating that a double-wired
specimen, as compared to the single-wired one in Figure 11, can produce almost double
the healing in one-third of the time. This can be attributed to the excess thermal energy
provided to the specimen by the second wire and also to the wire’s closer distance to the
notch, as can be seen in Figure 3.

Finally, in Figure 13, the complete healing of the inflicted notch after 120 h of healing
at 85 ◦C for a single Kanthal-wired specimen is shown. In Table 2, the healing percentages
for different healing times for both single- and double-wired specimens are given.

Table 2. Healing percentages for single- and double-wired PET specimens.

Number of
Kanthal Wires

Healing Time
Thickness (mm) Healing

Percentage (%)Before Healing After Healing

1 Kanthal Wire

8 h 0.82 0.82 0%
24 h 0.8 0.77 3.8%
48 h 0.63 0.53 15.8%
72 h 0.79 0.48 39.2%

96 h 0.76 0.31 59.2%
120 h 0.82 0 100%

2 Kanthal Wires

24 h 0.92 0.31 66.3%
48 h 1.06 0 100%
72 h 0.71 0 100%
96 h 0.69 0 100%

120 h 1.03 0 100%

From the numerical results shown in Table 2, it is apparent that the double-wired
PET specimens healed much faster than the single-wired ones. These results are plotted
as healing percentage versus heating time at 85 ◦C in Figure 14. From these curves, it can
be seen that the initial rates of healing were 2.76 h−1 and 0.17 h−1 for the double- and
single-wired specimens, respectively. This difference corresponds to a 16.2 times faster
healing in the case of double-wired specimens as compared with single-wired specimens.
In addition, in the double-wired specimens, complete healing was achieved at 48 h, while
in the single-wired specimen, the respective time was 120 h (i.e., 2.5 times faster healing).

Finally, the healing of surface abrasions on the PET specimens is shown in the photos
presented in Figure 15. It is clear that after 72 h of heating with a single Kanthal wire at
85 ◦C, surface abrasions decreased in width and surface density, making the specimens’
surface smoother.
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Figure 15. Specimen 4 after 72 h of heating with 1 Kanthal wire at 85 °C; considerable healing of 
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4. Conclusions

In the present investigation, an embedded resistance wire technique was successfully
applied for both epoxy resin curing and PET edge notch and abrasion healing. The main
conclusions derived from the present study can be summarized as follows:

• At both temperatures (50 ◦C and 70 ◦C) and for both DC- and oven-cured epoxy
specimens, the flexural modulus remained almost constant, averaging 2.55 GPa with
a coefficient of variation on the order of 3.4%;
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• The strength values of epoxy resins cured with the embedded resistance wire technique
were lower than the respective strength values corresponding to the pure resin cured
in an oven at 50 ◦C with a maximum deviation on the order of 20% observed in the
case of 6 wires embedded into the resin and cured at 50 ◦C;

• Based on thermo-camera images taken on epoxy plates during curing, graphs of
temperature vs. time at different positions on the plate were plotted. From these
graphs, it was observed that after 30 min of curing, temperature overshooting due to
both the heat generated from the wire as well as the heat liberated from the exothermic
polymerization reaction was always observed, and this was followed by a progressive
temperature decrease and final stabilization;

• During curing, the maximum temperature value was always observed at the center of
the heated plate, while at points close to the edges, the temperature was always lower
due to the fact that these points were more exposed to the environment as compared
with the central part of the plate. All temperature–position diagrams along both the
X and the Y-axes are symmetrical, depicting almost homogeneous and symmetric
heating of the plates;

• In the case of damaged PET specimens, the initial rates of healing were 2.76 h−1 and
0.17 h−1 for the 2- and 1-wired specimens, respectively. This difference corresponds to
a 16.23 times faster healing in the case of the two-wired specimens as compared with
the one-wired specimen. In addition, in the two-wired specimens, due to both the
wires’ positions relative to the notch and the higher amount of heat developed by the
two wires, complete healing was achieved at 48 h, while in the one-wired specimen,
the respective time was 120 h (i.e., 2.5 times faster healing);

• Finally, by providing heat through the resistance wires embedded into the PET speci-
mens, artificial surface abrasions decreased in width and surface density, rendering
the specimens’ surfaces smoother.

As a general conclusion, we state that the proposed technique is promising for both
epoxy curing and damage healing of thermoplastics such as PET.
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