
Article

Towards Recognition of Scale Effects in a Solid Model of
Lattices with Tensegrity-Inspired Microstructure

Wojciech Gilewski * and Anna Al Sabouni-Zawadzka

����������
�������

Citation: Gilewski, W.;

Sabouni-Zawadzka, A.A. Towards

Recognition of Scale Effects in a Solid

Model of Lattices with

Tensegrity-Inspired Microstructure.

Solids 2021, 2, 50–59. https://doi.

org/10.3390/solids2010002

Received: 1 December 2020

Accepted: 8 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Civil Engineering, Warsaw University of Technology, Al. Armii Ludowej 16, 00-637 Warsaw, Poland;
a.sabouni@il.pw.edu.pl
* Correspondence: w.gilewski@il.pw.edu.pl; Tel.: +48-22-234-5753

Abstract: This paper is dedicated to the extended solid (continuum) model of tensegrity structures or
lattices. Tensegrity is defined as a pin-joined truss structure with an infinitesimal mechanism stabilized
by a set of self-equilibrated normal forces. The proposed model is inspired by the continuum model
that matches the first gradient theory of elasticity. The extension leads to the second- or higher-order
gradient formulation. General description is supplemented with examples in 2D and 3D spaces. A
detailed form of material coefficients related to the first and second deformation gradients is presented.
Substitute mechanical properties of the lattice are dependent on the cable-to-strut stiffness ratio and
self-stress. Scale effect as well as coupling of the first and second gradient terms are identified. The
extended solid model can be used for the evaluation of unusual mechanical properties of tensegrity
lattices.

Keywords: tensegrity; lattice; solid model; microstructure; scale effect

1. Introduction

Tensegrity structures or lattices [1–3], due to their special and unusual properties,
constitute an interesting concept, the use of which is promising on various scales of consider-
ations in aerospace, civil and mechanical engineering, etc. The main advantages of tensegrity
include: large stiffness-to-mass ratio, reliability, controllability, and programmable deploy-
ment. There are numerous definitions of tensegrity structures. For the purposes of this study,
we define tensegrity as a pin-joined truss structure, in which there is an infinitesimal mecha-
nism balanced by a self-equilibrated system of normal forces, usually called self-stress [4].
Description of various tensegrity structures can be found in the literature e.g., [1–3,5,6].
Tensegrity modules or lattices can be considered as smart structures [5]. Inherent properties
of tensegrity structures [7,8] are defined as: self-control, self-diagnosis, self-repair, and active
control. Tensegrity may have a modular structure, and then the properties of the entire
structure correspond to the characteristics of the module. The analysis of two-dimensional
modules, along with the precise definition of tensegrity and tensegrity-like structures, is
presented in [9]. A wide analysis of three-dimensional modules can be found e.g., in the
papers [1,2,10].

An interesting current trend concerns tensegrity-inspired metamaterials. The concept
of tensegrity metamaterials was introduced in [11] and developed in [12–14], where the
dynamics of a chain of tensegrity prisms was investigated. In [15] optimal problem for
a prototypical self-similar tensegrity column was studied. Morphological optimization
of tensegrity-based metamaterials was presented in the work [16]. Another paper [17]
focused on formulation of novel cells that could be applied in mechanical metamaterials.
Innovative metamaterials and lattices were discussed in [18] with the focus on the geo-
metrically nonlinear behavior of tensegrity prisms with extreme properties. Construction
of 3D tensegrity lattices using elementary cells based on the truncated octahedron was
discussed in [19] and expanded for phase transition in [20]. The authors in [21] proposed
automatically assembled lattices aimed at large-scale applications. Another interesting
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concept was presented in [22,23], where metal rubber was applied in the struts of a tenseg-
rity mechanical metamaterial. In [24], smart properties and negative Poisson’s ratio were
discussed using an example of an orthotropic metamaterial constructed from simplex units.
In conclusion, recent literature shows that tensegrity-based metamaterials and lattices have
a great potential, which is reflected in the dynamic development of these systems within
the last few years.

Among the tensegrity lattices, the systems that exhibit unusual or extreme mechanical
properties are looked for in [25–28]. The ability to control mechanical properties with the self-
stress makes the results for lattices with tensegrity-inspired microstructure very promising.

Tensegrity pin-joined truss lattices, planar and spatial, can be relatively easily described
by means of a discrete model, using the finite element method [29,30] or directly formulating
the task algebraically [31–33]. Both techniques are formally precise and make it possible to
include in the description the influence of self-equilibrated normal force systems (self-stress)
on the structural response. The finite element formalism (FE) is algorithmically easy and is
based on the standard FE steps from the separate element analysis, through globalization,
to consider boundary conditions. The algebraic direct formulation is mathematically ele-
gant, but requires the formulation of global matrices at the beginning of the process. The
equivalence of both techniques was demonstrated in [33].

The general characteristics of tensegrity modules and lattices, as well as the identification
of substitute mechanical properties can be performed using the continuum model [10,24,34–36].
The idea proposed for the first time in [34] is based on the comparison of the tensegrity strain
energy contained in a typical volume determined using a discrete formulation with the strain
energy of the solid model, which corresponds to the same volume within the linear theory
of elasticity [37]. The description uses the expansion of nodal displacements of the discrete
model into Taylor series, limiting further analysis to low-order terms, which in the case of
the first approximation leads to the linear theory of elasticity [37] in terms of the theory of
the first gradient of deformation. Such a model makes it possible to determine the equivalent
mechanical properties in the range of material symmetries acceptable in the linear theory of
elasticity [10,38].

The aim of this paper is to generalize the continuum first approximation model [34] to
models that take into account higher gradients of displacements. The theories of higher
gradients appeared in the literature in the mid-1960s [39,40]. A methodical description
of the theory against the background of other possible formulations is presented in [41].
Among numerous papers on the theory of higher gradients, the following papers are
worth mentioning: paper [42] in which gradient formulations in relation to simple lattice
models are discussed; paper [43] in which an overview of the formulation and length scale
identification procedures is given; and paper [44] in which the stress gradient continuum
theory is discussed. A solid model in the field of the theory of higher gradients makes
it possible to identify the effect of scale, to determine the applicability range of the first
approximation theory and to identify problems that should be taken into consideration
when dealing with tensegrity structures on a non-micro scale. The present paper describes
an extended continuum model and provides a detailed form of material coefficients related
to the first and second deformation gradients for selected tensegrity modules or lattices.
The lattices are to be consistent with the modules in terms of the infinitesimal mechanism.
The examples in 2D and 3D spaces are presented. In the opinion of the authors, the explicit
determination of the scale effect and the detailed form of the model coefficients (including
their dependence on geometry and self-stress) may constitute a promising contribution to
further research on unusual mechanical properties of tensegrity lattices.

The authors’ intention is to constitute an attempt towards recognition of scale effects
in a solid model of tensegrity-inspired lattices. The proposed technique allows for identifi-
cation of the strain energy members responsible for the higher gradient theories related to
the scale effect factors. Evident identification of scale effects requires validation through a
series of tensegrity-based benchmark problems carefully selected for the area of potential
applications, e.g., in aerospace engineering or civil/mechanical engineering. This task is
beyond the scope of this study.
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2. Lattices with Tensegrity-Inspired Microstructure

Structures with tensegrity features can be considered as metamaterials with a mi-
crostructure. Regular modular lattices are shown in Figure 1: in the 2D (Figure 1a) and
3D (Figure 1b) spaces. We assume that single unit cells are tensegrities according to the
definition presented above.

Figure 1. Modular lattices: (a) 2D, (b) 3D.

As shown in the papers [27,28], the arrangement of lattice modules in a way that
ensures the possibility of infinitesimal mechanisms, results in obtaining in the continuum
model elasticity matrices with the same material symmetry as can be defined in a single
module. This means that it is possible to estimate substitute material properties at the
module level. The incompatibility of the infinitesimal mechanisms of the modules in the
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lattice leads to different material characteristics than in a single module. Then, it is necessary
to identify the super-cells in the lattice [27]. In the following part of the paper, we will limit
our discussion to lattices with compatible infinitesimal mechanisms.

Figure 2a shows typical regular 2D, hexagonal and tetragonal modules, while Figure 2b
shows five typical 3D modules. Modules that do not exhibit self-stress stabilized infinitesimal
mechanisms (i.e., they are not tensegrities in the sense of this paper) are not considered, which
is quite often found in the available literature. The truth and myths about 2D tensegrity
modules are described in [9]. Struts are presented as thick yellow lines and cables are
presented as thin black lines.

Figure 2. Typical tensegrity modules: (a) 2D, (b) 3D.

The construction of modular lattices sometimes requires the use of additional cables.
Their influence on the material properties of the structure can be usually neglected, but for
precision in such cases a repetitive super-cell of the lattice should be specified.

The choice of tensegrity modules for lattices is not limited to that shown in Figures 1
and 2, but is formally unlimited depending on the imagination and needs of the designer.

3. Enhanced Solid Model—Size Effect

Let us consider a lattice tensegrity, with a modular structure compatible with the
infinitesimal mechanisms of the modules [27]. Geometry of the lattice is to be defined.
Truss theory matrices [29–33] can be obtained with the use of the finite element method [29,30]
or algebraically [31–33] without finite element approximation. Distribution of self-equilibrated
forces (self-stress) can be found for tensegrity geometry using the singular value decompo-
sition (SVD) of compatibility matrix [32,33]. In a discrete model (DM), the strain energy of a
tensegrity truss can be expressed as a quadratic form of nodal displacements q [29–32]:

EDM
s =

1
2

qTKq, (1)

where: K = KL + KG, KL—global linear stiffness matrix [31,32], KG—global geometric
stiffness matrix. Geometric stiffness matrix is related to the self-stress distribution [33].
Nodal displacements qi of the lattice can be expressed by mean values q and their deriva-
tives related to the geometric center of the cell of the lattice under consideration using the
Taylor series expansion
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qi = q + ∂q
∂x ∆x + ∂q

∂y ∆y + ∂q
∂z ∆z+

+ 1
2

∂2q
∂x2 (∆x)2 + 1

2
∂2q
∂y2 (∆y)2 + 1

2
∂2q
∂z2 (∆z)2 ∂2q

∂x∂y ∆x∆y + ∂2q
∂x∂z ∆x∆z + ∂2q

∂y∂z ∆y∆z + . . . ,
(2)

where ∆x, ∆y, ∆z are the distances of the node i from the geometric center of the cell
under consideration. In a discrete model, the parameters qi are linear displacements in the
directions of the axis of the coordinate system [31,32]. The coordinates of the nodes of the
tensegrity structure can be related to the dimensions of the cell (or the super-cell) a, b, c
by parameters αxi, αyi, αzi and written as follows: αxia, αyib, αzic. Then the parameters of
the node i can be described by mean values in the center of the volume with appropriate
increments: ∆x = αxia, ∆y = αyib, ∆z = αzic. A detailed description and examples of
modeling in this regard can be found in the papers [10,24,28,34].

The use of the Taylor series expansion for all nodal displacements of the structure
contained in the unit cell of the volume V, allows to express the strain energy density in
the form

ẼDM
s =

1
V
[Es11(∆u) + Es12(∆u, ∆∆u) + Es22(∆∆u) + . . .] (3)

The term “11” depends only on the first displacement gradient, the term “22” only
on the second displacement gradient, and the term “12” is a mixed term within the theory
of elasticity. Calculations can be performed using mathematical software (Mathematica,
Maple), which allows to group individual members of the expansion in any way.

The terms of the Equation (3) can be matrix represented as quadratic or bilinear forms

Es11(∆u) =
1
2
(∆u)TE11(∆u), (4)

Es12(∆u, ∆∆u) = (∆u)TE12(∆∆u), (5)

Es22(∆∆u) =
1
2
(∆∆u)TE22(∆∆u). (6)

The energy densities of the higher gradient theory can be determined by analogy.
The matrix E11 corresponds to the first approximation within the first gradient theory

and is insensitive to scale effects. It was used in the continuum model and successfully applied
to pre-evaluate the mechanical properties of tensegrity structures (see i.e., [24,27,28,34]), to
determine the dependence of the substitute Young’s moduli, Kirchhoff’s moduli, Poisson’s
ratios, and other technical parameters on the self-stress level and on the cable-to-strut ratio
for tensegrity modules and lattices [10,28]. The first approximation model is appropriate
when the unit cell is very small. The matrices E12, E22 correspond to the second gradient
theory and are sensitive to scale effects. They can be used to assess structures, in which the
unit cell is relatively large compared to the dimensions of the entire lattice. Matrices E12, E22
describe the influence of strain variability (understood as the first gradient of displacements)
within the cell on the mechanical properties of the lattice. Examples of matrices E11, E12, E22
determination for 2D and 3D tensegrity modules are presented below.

3.1. 2D Hexagonal Tensegrity Module

Let us consider a 2D lattice with a thickness of h (thickness of the 2D panel), built from
the modules shown in Figure 3, with compressive-tensile stiffness: (EA)cable, (EA)strut =
EA (E-Young’s modulus, A-cross section), and self-equilibrated system of normal forces
with the multiplier S—it is a value by which the prestressing forces in all elements are
multiplied, used as an indication of the self-stress level.
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Figure 3. 2D hexagonal tensegrity module.

In the 2D theory of elasticity, the vectors of the first and second displacement gradients
have the form

∆u =
[

∂u
∂x

∂v
∂y

∂u
∂y

∂v
∂x

]T
, (7)

∆∆u =
[

∂2u
∂x2

∂2u
∂x∂y

∂2u
∂y2

∂2v
∂x2

∂2v
∂x∂y

∂2v
∂y2

]T
(8)

Considering only the first gradient theory, the shear strain is usually defined, which is
the arithmetic mean of the third and fourth terms of the Equation (7). This leads to smaller
dimensions of the elasticity matrix E11, but does not qualitatively change the coefficients
of the obtained matrices. The identification of infinitesimal modes and distribution of
self-equilibrated normal forces under the considered tensegrity can be found using the
singular value decomposition (SVD) of compatibility matrix [31,32,45]. One infinitesimal
mode and one set of self-equilibrated normal forces are identified for the 2D module [9]. In
the considered example, the following matrices were obtained:

E11 = C1

√
3

8


8 + 9k 3k 0 0

3k 8 + 9k 0 0
0 0 3k 0
0 0 0 3k

+ C2
1
4


1 −1 0 0
−1 1 0 0
0 0 −1 0
0 0 0 −1

, (9)

E12 = 0, (10)

E22 = a2C1



1 0 −1 2 2 0
0 12 0 0 0 −2
−1 0 1 0 −2 0
2 0 0 3 0 −3
2 0 −2 0 4 0
0 −2 0 −3 0 3

+ a2C2



9 0 −9 0 −6 0
0 −4 0 −6 0 6
−9 0 9 0 6 0
0 −6 0 3 0 −3
−6 0 6 0 20 0
0 6 0 −3 0 3

, (11)

where: C1 = EA
ah , C2 = S

ah , k =
(EA)cable
(EA)strut

, (EA)strut = EA, S is the self-stress multiplier.
In the centro-symmetrical structure of the considered tensegrity the matrix E12 = 0,

which means that there is no coupling of the first and second displacement gradients in
the model. Note that the matrix coefficients depend on the unit cell geometry and the
self-stress level. The selection of both these parameters allows, using the matrix E11, to
determine possible extreme lattice properties in the form of soft or stiff modes [27,28].
The analysis of the matrix E22 coefficients makes it possible to determine the variability
(sensitivity) of individual lattice or unit cell deformation states and to control them to a
certain extent using geometric and self-stress parameters. They can be selected so that the
second gradient coefficient is as small as possible, or even zero. The scale effect can be
observed in the matrix E22 (Equation (11)).

3.2. 3D 4-Strut Simplex Tensegrity Module

Let us consider a 3D lattice built from the modules shown in Figure 4, with compressive-
tensile stiffness:(EA)cable, (EA)strut = EA (E-Young’s modulus, A-cross section), and self-
equilibrated system of normal forces with the multiplier S.
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Figure 4. 3D 4-strut Simplex tensegrity module.

In the 3D theory of elasticity, the vectors of the first and second displacement gradients
have the form:

∆u =
[

∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y

∂v
∂x

∂w
∂x

∂u
∂z

∂v
∂z

∂w
∂y

]T
, (12)

∆∆u =

 ∂2u
∂x2

∂2u
∂y2

∂2u
∂z2

∂2u
∂x∂y

∂2u
∂x∂z

∂2u
∂y∂z

∂2v
∂x2

∂2v
∂y2

∂2v
∂z2

∂2v
∂x∂y

∂2v
∂x∂z

∂2v
∂y∂z

∂2w
∂x2

∂2w
∂y2

∂2w
∂z2

∂2w
∂x∂y

∂2w
∂x∂z

∂2w
∂y∂z

T

. (13)

As in the example 2D, the identification of infinitesimal modes and distribution of self-
equilibrated normal forces in the tensegrity can be found using the SVD decomposition [45].
One infinitesimal mode and one set of self-equilibrated normal forces are identified for
the 2D module [10]. In the presented example, due to the large size, we will present
the matrices in the following form (with the use of the parameter σ responsible for the
self-stress):

E11 =
[
E11,ij

]
, i, j = 1, 2, . . . , 9, (14)

E11 =



E11,11 E11,12 E11,13 E11,14 E11,14 0 0 0 0
E11,11 E11,13 −E11,14 −E11,14 0 0 0 0

E11,33 0 0 0 0 0 0
E11,12 0 0 0 0 0

E11,12 0 0 0 0
E11,13 0 0 0

E11,13 0 0
E11,13 0

sym. E11,13


E11,11 = E11,22 = 2C0(0.314815 + 1.39827 · k− 0.0794978 · σ),
E11,12 = E11,44 = E11,55 = C0(0.296296 + 0.707107 · k− 0.0134742 · σ),
E11,13 = E11,23 = E11,66 = E11,77 = E11,88 = E11,99 = C0(0.740741 + 0.357771 · k + 0.17247 · σ),
E11,14 = −E11,24 = E11,15 = −E11,25 = C0(−0.2222222− 0.0808452 · σ),
E11,33 = 2C0(0.592593 + 1.43108 · k− 0.17247 · σ).

E12 = [E12,ik], i = 1, 2, . . . , 9, k = 1, 2, . . . , 18, (15)

E22 = [E22,kl ], i = 1, 2, . . . , 1, l = 1, 2, . . . , 18, (16)

where: C0 = EA
a2 , k =

(EA)cable
(EA)strut

,(EA)strut = EA, σ = S
EA .

Providing the formulas for all coefficients of matrices E12 and E22 exceeds the scope of
this study. However, we will give some examples of the coefficients to get an idea of their
form:

E12,71 = aC0(−0.037037 + 0.894429 · k + 0.0107794 · σ),
E12,56 = aC0(−0.148148 + 0.705105 · k− 0.175105 · σ),
E22,11 = a2C0(0.00231481 + 0.0497843 · k + 0.00690553 · σ),
E22,8−18 = a2C0(−0.00538968 + 0.0447214 · k− 0.185185 · σ).
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In the considered 3D tensegrity, due to the lack of center-symmetry of the modules,
there is a coupling of the first and second displacement gradients in the model. All three
matrices depend on the unit cell geometry and the level of self-stress. The selection of
both these parameters allows, using the matrix E11, to determine possible extreme lattice
properties in the form of soft or stiff modes [27,28]. The knowledge of the matrix E11
enables the estimation of the equivalent mechanical properties of the module/lattice [10].
Analysis of the matrices E11 and E22 coefficients may allow the assessment of the variability
of these properties in different directions of the structure. Scale effects can be observed in
the matrices E12 and E22.

4. Conclusions and Future Work

The paper proposes an extended solid model of tensegrity modular lattices (materials
or structures with tensegrity-like modular microstructure). The model is based on the
discrete model of the structure and expression of nodal displacements by the averaged
displacements and their derivatives. Final strain energy depends on the first-, second- and
higher-order gradients of displacements.

The main conclusions of the paper can be expressed as:

• Substitute elasticity matrices coefficients depend on the cable to strut stiffness ratio as
well as on the self-stress level.

• Coupling of the first and second gradient terms is identified.
• The scale effect can be observed.
• It is possible to determine the variability (sensitivity) of individual lattice or unit

cell first gradient deformation states and to control them to a certain extent using
geometric and self-stress parameters. They can be selected so that the second gradient
coefficient is as small as possible, or even zero.

• The extended solid model can be used for evaluation of unusual mechanical properties
of tensegrity lattices.

The proposed technique allows for the identification of the strain energy members
responsible for the higher gradient theories related to the scale effect factors. The model is
validated for the first-gradient theory in [28]. Evident identification of scale effects requires
validation through a series of tensegrity-based benchmark problems carefully selected for
the area of potential applications. This is a subject of future work.

Author Contributions: Conceptualization, W.G. and A.A.S.-Z.; methodology, W.G.; software, A.A.S.-
Z.; validation, W.G. and A.A.S.-Z.; formal analysis, W.G.; investigation, W.G.; resources, W.G. and
A.A.S.-Z.; data curation, W.G. and A.A.S.-Z.; writing—original draft preparation, W.G. and A.A.S.-Z.;
writing—review and editing, W.G. and A.A.S.-Z.; visualization, A.A.S.-Z.; supervision, W.G.; project
administration, W.G. Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Skelton, R.E.; de Oliveira, M.C. Tensegrity Systems; Springer: New York, NY, USA, 2009.
2. Motro, R. Tensegrity: Structural Systems for the Future; Kogan Page Science: London, UK, 2003.
3. Wroldsen, A.S. Modelling and Control of Tensegrity Structures. Ph.D. Thesis, Department of Marine Technology, Norwegian

University of Science and Technology, Trondheim, Norway, 2007; 208p.
4. Calladine, C.R.; Pellegrino, S. First-order infinitesimal mechanisms. Int. J. Solids Struct. 1991, 27, 505–515. [CrossRef]
5. Gilewski, W.; Al Sabouni-Zawadzka, A. On possible applications of smart structures controlled by self-stress. Arch. Civ. Mech.

Eng. 2015, 15, 469–478. [CrossRef]
6. Adam, B.; Smith, I.F.C. Self-diagnosis and self-repair of an active tensegrity structure. J. Struct. Eng. 2007, 133, 1752–1761. [CrossRef]

http://doi.org/10.1016/0020-7683(91)90137-5
http://doi.org/10.1016/j.acme.2014.08.006
http://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1752)


Solids 2021, 2 58

7. Al Sabouni-Zawadzka, A.; Gilewski, W. Inherent smartness of tensegrity structures—Structural elements applications. In Proceedings
of the International Association for Shell and Spatial Structures (IASS), Amsterdam, The Netherlands, 17–20 August 2015.

8. Al Sabouni-Zawadzka, A.; Gilewski, W. Inherent smartness of tensegrity structures. Appl. Sci. 2018, 8, 787. [CrossRef]
9. Obara, P.; Kłosowska, J.; Gilewski, W. Truth and myths about 2D tensegrity trusses. Appl. Sci. 2019, 9, 179. [CrossRef]
10. Gilewski, W.; Al Sabouni-Zawadzka, A. Equivalent mechanical properties of tensegrity truss structures with self-stress included.

Eur. J. Mech. Solids 2020, 83, 103998. [CrossRef]
11. Fraternali, F.; Carpentieri, G.; Amendola, A.; Skelton, R.E.; Nesterenko, V.F. Multiscale tenability of solitary wave dynamics in

tensegrity metamaterials. Appl. Phys. Lett. 2014, 105, 201903. [CrossRef]
12. Fabbrocino, F.; Carpentieri, G.; Amendola, A.; Penna, R.; Fraternali, F. Accurate numerical methods for studying the nonlinear

wave-dynamics of tensegrity metamaterials. Eccomas Procedia Compdyn 2017, 3911–3922. [CrossRef]
13. Amendola, A.; Krushynska, A.; Daraio, C.; Pugno, N.M.; Fraternali, F. Tuning frequency band gaps of tensegrity mass-spring

chains with local and global prestress. Int. J. Solids Struct 2018, in press. [CrossRef]
14. Wang, Y.T.; Liu, X.N.; Zhu, R.; Hu, G.K. Wave propagation in tunable lightweight tensegrity metastructure. Sci. Rep. 2018, 8,

11482. [CrossRef]
15. De Tommasi, D.; Marano, G.C.; Puglisi, G.; Trentadue, F. Optimal complexity and fractal limits of self-similar tensegrities. Proc. R.

Soc. A 2016, 471, 20150250. [CrossRef]
16. De Tommasi, D.; Marano, G.C.; Puglisi, G.; Trentadue, F. Morphological optimization of tensegrity-type metamaterials. Compos.

Part B 2017, 115, 182–187. [CrossRef]
17. Modano, M.; Mascolo, I.; Fraternali, F.; Bieniek, Z. Numerical and analytical approaches to the self-equilibrium problem of class

teta = 1 tensegrity metamaterials. Front. Mech. 2018, 5, 5.
18. Fraternali, F.; Carpentieri, G.; Amendola, A. On the mechanical modeling of the extreme softening/stiffening response of axially

loaded tensegrity prisms. J. Mech. Phys. Solids 2015, 74, 136–157. [CrossRef]
19. Rimoli, J.J.; Pal, R.K. Mechanical response of 3-dimensional tensegrity lattices. Compos. Part B 2017, 115, 30–42. [CrossRef]
20. Salahsoor, H.; Pal, R.K.; Rimoli, J.J. Material symmetry phase transitions in the three-dimensional tensegrity metamaterial. J.

Mech. Phys. Solids 2018, 119, 382–399. [CrossRef]
21. Zhang, L.Y.; Li, S.X.; Zhu, S.X.; Zhang, B.Y.; Xu, G.K. Automatically assembled large-scale tensegrities by truncated regular

polyhedral and prismatic elementary cells. Compos. Struct. 2018, 184, 30–40. [CrossRef]
22. Zhang, Q.; Zhang, D.; Dobah, Y.; Scarpa, F.; Fraternali, F.; Skelton, R.E. Tensegrity cell mechanical metamaterial with metal rubber.

Appl. Phys. Lett. 2018, 113, 031906. [CrossRef]
23. Ma, Y.; Zhang, Q.; Dobah, J.; Scarpa, F.; Fraternali, F.; Skelton, R.E.; Zhang, D.; Hong, J. Meta-tensegrity: Design of a tensegrity

prism with metal rubber. Compos. Struct. 2018, 206, 644–657. [CrossRef]
24. Al Sabouni-Zawadzka, A.; Gilewski, W. Smart metamaterial based on the simplex tensegrity pattern. Materials 2018, 11, 673.

[CrossRef]
25. Milton, G.; Cherkaev, A.V. Which elasticity tensors are realizable? J. Eng. Mater. Technol. 1995, 117, 483–493. [CrossRef]
26. Kadic, M.; Buckmann, T.; Stenger, N.; Thiel, M. On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett.

2012, 100, 191901. [CrossRef]
27. Al Sabouni-Zawadzka, A. Extreme mechanical properties of regular tensegrity unit cells in 3D lattice metamaterials. Materials

2020, 13, 4845. [CrossRef] [PubMed]
28. Al Sabouni-Zawadzka, A.; Gilewski, W. Soft and stiff simplex tensegrity lattices as extreme smart metamaterials. Materials 2019,

12, 187. [CrossRef] [PubMed]
29. Bathe, K.J. Finite Element Procedures in Engineering Analysis; Prentice Hall: New York, NY, USA, 1996.
30. Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method. Vol. 1. The Basis; Elsevier Butterworth-Heinemann: London, UK, 2000.
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