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Abstract: The current study aimed to implement and validate an automation system to detect carious
lesions from smartphone images using different one-stage deep learning techniques. 233 images
of carious lesions were captured using a smartphone camera system at 1432 × 1375 pixels, then
classified and screened according to a visual caries classification index. Following data augmentation,
the YOLO v5 model for object detection was used. After training the model with 1452 images at
640 × 588 pixel resolution, which included the ones that were created via image augmentation, a
discrimination experiment was performed. Diagnostic indicators such as true positive, true negative,
false positive, false negative, and mean average precision were used to analyze object detection
performance and segmentation of systems. YOLO v5X and YOLO v5M models achieved superior
performance over the other models on the same dataset. YOLO v5M’s mAP was 0.727, precision
was 0.731, and recall was 0.729, which was higher than other models of YOLO v5, which generated
64% accuracy, with YOLO v5M producing slightly inferior results. Overall mAPs of 0.70, precision
of 0.712, and recall of 0.708 were achieved. Object detection through the current YOLO models was
able to successfully extract and classify regions of carious lesions from smartphone photographs
of in vitro tooth specimens with reasonable accuracy. YOLO v5M was better fit to detect carious
microcavitations while YOLO v5X was able to detect carious changes without cavitation. No single
model was capable of adequately diagnosing all classifications of carious lesions.

Keywords: caries; smartphone; clinical photography; YOLO; object detection

1. Introduction

Dental caries is the bacterial demineralization and destruction of hard tooth tissue.
Although non-fatal, the disease is highly prevalent and often remain asymptomatic until sig-
nificant destruction occurs that leads to physical and financially debilitating consequences
for the patient. Therefore, early detection of dental caries as a management strategy is
emphasized to achieve the best outcomes in minimally invasive dentistry [1]. Automated
detection of such lesions with appropriate early intervention can reduce disease compli-
cations and burden costs. The International Caries Detection and Assessment System
(ICDAS) has been established as a globally reliable standard for diagnosing caries on an
epidemiological scale, with several visual classification systems created for deep learning
purposes in image-based cariology [2,3]. In the field of cariology, microphotography is a
popular tool to study carious remineralization and oral histopathology [4,5]. The images
obtained can also be repurposed for deep learning and computer vision applications.

Integration of deep learning with a computer-aided clinical decision support system
(CDSS) has also become very popular with generational leaps in computing power and
imaging technology [6]. CDSS systems are capable of analyzing image data to develop
prediction models to match relationships between input and output characteristics of
clinical photographs and radiomics [7,8].
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Applications for target detection have grown recently [9]. Researchers have proposed
various image processing techniques and machine learning algorithms for automated object
detection from color photographs and radiographic images. Techniques range from the
implementation of multiscale fusion deep neural networks for pavement cracks, similar to
dental micro-cavitation [10], automated unmanned aerial vehicle (UAV) sensing [11], the
application of deep learning to detect potholes on roads similar to visual caries diagnos-
tics [12], and the application of computer vision models such as YOLO in multilayer feature
cross-layer fusion networks [13]. However, the role of smartphone microphotography in
caries detection within the space of ‘computer assisted object detection’ or computer vision
is largely unexplored, with some investigations documenting the trial of closed-source
deep learning algorithms for patient-facing tele-dentistry applications [14]. The existing
methods of computer vision application from clinical photographs can be grouped into
either (a) conventional image processing that performs selective operations to extract im-
portant information from images through machine learning-based approaches or (b) staged
object detection. One-stage object detection methods have no ‘region proposal’ stage, while
two-stage deep learning object detection algorithms employ both ‘region proposal’ and
‘classification regression’ for the purpose of image classification.

One-stage methods are fast, end-to-end models that produce the final result directly
using intensive sampling [15]. One-stage methods use ‘sales and aspect ratios’ when
extracting features using a convolutional neural network (CNN) and are represented by
YOLO (You Only Look Once) and SSD (single shot detector). YOLOv1 is the pioneering
work of the one-stage method of target detection, which was first introduced in 2016 [16].
Two-stage methods first implement a selective search before applying a CNN to produce
several sparse candidate boxes, which are subsequently classified and regressed. Two-stage
methods are represented by a region-based convolutional neural network (R-CNN) and,
while very precise, are slower than one-stage methods that are preferred for real-time object
detection tasks such as those present in clinical diagnostics [17].

Researchers have proposed various image processing techniques and machine learn-
ing algorithms for the automated or semi-supervised detection of dental caries from colored
photographs and radiomic imaging. However, previous studies did not explore the possi-
bilities of smartphone microphotography in the deep learning of visual caries assessment. It
was also noted that most of the currently published research in cariology utilized standard
image processing and machine learning approaches with limited published evidence on
the application of one-stage and two-stage deep learning object detection algorithms.

The current study aimed to develop a caries detection system by validating a deep
CNN model using different YOLOv5 object detection algorithms to automate the detection
of dental caries from smartphone images. The goal of the experiment was to provide a
detailed analysis and comparison of the different models to support researchers and practi-
tioners in determining the best deep learning model for a given task of caries diagnostics.
Each model was repurposed to classify the visual extent of dental decay in a given image
and localize the findings with bounding boxes based on a customized visual analogue of
the ICDAS caries classification system. The following three classes were implemented:
“Visible change without cavitation”, “Visible change with microcavitation”, and “Visible
change with cavitation”. The different models of YOLOv5 were then evaluated using
diagnostic parameters such as sensitivity, specificity, accuracy, precision, recall, and mean
average precision (mAP).

2. Materials and Methods
2.1. Reporting Protocols

The study was developed by adhering to the standards for reporting of diagnostic
accuracy (STARD) 2015 [18] and minimum information for clinical artificial intelligence
modeling (MI-CLAIM) [19] guidelines.
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2.2. Ethics

The study was deemed ‘negligible risk’ according to the relevant ethics committees
and was therefore exempt from ethical review.

2.3. Data Acquisition and Annotation

Human anterior teeth with visible smooth surface caries were collected from a source
of deidentified specimens. Molars were excluded to reduce variations such as shadow
casts, altered translucency, occult pit and fissure lesions, and occlusal surface morphology
that might negatively affect the algorithm training process. A 60× standard peripheral,
detachable optical zoom lens with light-emitting diode (LED) self-illumination (No. 9595;
Yegren Optics Inc., Anyang, China) was attached to the primary camera (12 MP, f/1.8,
26 mm, 1/1.76′ ′, 1.8 µm, Dual Pixel Phase Detection Autofocus, optical image stabilization)
of a smartphone (S22 5G; Samsung Electronics, Seoul, Korea), and images of cariogenic
activity were captured. The images were imported into Adobe Photoshop 2019 as Joint
Photographic Experts Group (JPEG) files, and regions of interest (ROI) were focused and
cropped into an ellipsoid shape of 20 × 20 mm dimension. The ROI were loaded into the
open-source Python project “LabelImg.py” [20], and annotations were carried out by an
operator with three years of clinical experience. Labeling was performed according to the
global caries classification standard called the ICDAS index, where images were classified
into the following categories: “Visible change without cavitation”, “Visible change with
microcavitation” and “Visible change with cavitation”.

Initially, 20 randomly selected teeth were physically provided to three experts who
volunteered to label the teeth according to the classification index provided. Upon conduct-
ing an inter-class correlation, Chronbach’s analysis was set at α = 0.958, r = 0.89 ± 0.06. An
operator with at least 3 years of experience, who could produce r > 0.8 against the labels
performed by each individual expert within an inter-rater correlation matrix was recruited.
In addition, the operator had to demonstrate an intra-rater correlation of r > 0.90 on the
same dataset on two individual sessions spaced over one week. The operator recruited fol-
lowing the screening process demonstrated a correlation of 0.90, 0.90, and 0.91, respectively,
within the matrix. Intra-rater reliability demonstrated a correlation of r = 0.96 and α = 0.98.

2.4. Training Strategies and Augmentation

The dataset consisted of 233 images of smooth surface caries, where 68 images were
discarded for not falling into the classification categories. The dataset was divided into
training and validation subsets in the ratio 8:2, ensuring that all images existed in only
one of the two subsets. Image augmentation was then performed on the training dataset
and outlined in Table 1. Data augmentation refers to the creation of additional data points
from the existing dataset to artificially increase the amount of data available for training [21].
Following sequential augmentation (Figure 1) [22], 1452 images were generated for training.

Table 1. Image augmentation techniques used.

Augmentation Techniques Description

Flipped horizontally Reverses the order of the elements in each row

Flipped vertically Reverses the order of the elements in each column

Flipped both ways Reverses the order of the elements in both row and column

HSV Changes the color space from RGB to HSV

Average Blur Smoothens the image using an average filter.

Dropout Randomly sets input elements to zero with a given probability

HUE Raises the hue value

Rotated Rotated 90 degree clockwise

Invert Inverts all values in images, i.e., sets a pixel from value v to 255-v
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2.5. The Object Detection Model

The structure of YOLOv5 [16] is shown in Figure 2 which comprises of the Backbone,
Neck, and Head. The network architecture consisted mainly of three parts: (1) Backbone:
Cross Stage Partial (CSP) Darknet; (2) Neck: path aggregation network (PANet); and
(3) Head: YOLO Layer. The data input is first channeled to CSPDarknet to extract the
features and then fed to PANet for feature fusion. Finally, Yolo Layer outputs detection
results (class, score, location, and size).
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Justifications for the selection of the YOLOv5 architecture are as follows: First, YOLOv5
includes CSPNet [23] into Darknet, constructing CSPDarknet as its backbone. CSPNet
resolves the issues with recurring gradient information in large-scale backbones by in-
corporating the gradient changes into the feature map, thereby decreasing the FLOPS
(floating-point operations per second) and the number of parameters of the model, ensur-
ing the inference speed and accuracy while reducing the model size. Such an approach
can be considered valuable for caries detection where subsurface cavitation and pit and
fissure cavities possess varying hues for the same extent of lesion while reflecting light in
different ways.

In a task of caries detection, detection speed and accuracy are essential, and a compact
model size also determines its inference efficiency on edge devices. Edge devices carry out
processing, filtration, and storage of data passing between networks with limited resources.
To improve information flow, the YOLOv5 applied PANet [24] as its neck. With an improved
bottom-up path, PANet adopts a new feature pyramid network (FPN) structure, enhancing
low-level features’ propagation. The feature grid and all feature levels are connected by
adaptive feature pooling, which is also used to propagate important information from
each feature level to the next subnetwork. In lower layers, PANet improves the use of
accurate localization signals, which can increase the object’s location accuracy. In order
to achieve multi-scale [25] prediction, the head of Yolov5 generates feature maps in three
different sizes (18× 18, 36× 36, and 72× 72), allowing the model to handle small, medium,
and large objects. Multi-scale detection confirms that the model can track size changes
in tooth decay detection. In other words, the PANet in YOLOv5 was improved to learn
and distinguish from smaller features in the image, while the head structure of YOLOv5
allowed objects of different sizes to be tracked.

Figure 3 demonstrates the application of the YOLO system to smartphone images in
the current study design. The primary difference was the trade-off between the model’s
actual file size and inference time when processing commands.

2.6. Evaluation Metrics

The mean average precision (mAP) accuracy, sensitivity, specificity, precision, inter-
section over union (IoU) (Figure 4A), and recall were used to evaluate the performance of
the object detection model on carious lesions. (Figure 4B) The mean average precision or
mAP, is a comprehensive metric that accounts for the precision, and recall of the predicted
bounding boxes. It considers both the localization accuracy and overall performance of the
model in terms of detecting all objects in an image [26].

The MI-CLAIM model dictates that all definitions of the evaluation metrics be stated.
Precision refers to the proportion of accurately classified positive data (TP) in the deep
learning dataset to the total number of correctly classified data. Recall referred to correctness
in classifying all positive data.

True Positive (TP) referred to the model’s accuracy in predicting positive classes. True
Negative (TN) referred to the model’s accuracy in predicting negative classes. False Positive
(FP) was when the model incorrectly predicted a positive class. Finally, False Negative (FN)
was when the model incorrectly predicted negative class.

The mean average precision (mAP) function is commonly used to analyze object
detection performance of segmentation systems such as YOLOv5, Faster R-CNN, and
MobileNet SSD. The mAP generates a score by comparing the detected box to the ground-
truth bounding box. The higher the score, the greater the accuracy of the models. It is
calculated by finding the average precision (AP) for each class and then averaging over the
number of classes.

mAP =
1
N ∑N

i=1 APi (1)

The predictions were made by object detection systems using a bounding box and a
class label. For each bounding box, the overlap between the predicted bounding box and
the ground truth bounding box was calculated using IoU.
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The precision and recall were measured utilizing IoU values against a given threshold
value. For example, for an IoU threshold value of 0.5, an IoU reading of 0.7 was classified
as True Positive while a reading of 0.3 was classified as False Positive (FP).

2.7. Evaluation Settings

The learning rate was established at 0.01 to speed up model convergence when the
loss function produced by the model was lower, and stochastic gradient descent (SGD),
the optimizer that reduces the computational load, was chosen for hyperparameter opti-
mization. The learning rate momentum, responsible for creating a learning step size based
on the loss function, was set to ≈0.95 due to the small number of samples in the tooth
decay micrography data set. Due to the relatively smaller datasets (165 images primarily
after augmentation, after which 1452 images were ready for training), all major pre-trained
models of the YOLOv5 family were applied for training to determine which model resulted
in the best classification and localization. The hyper-parameter specifications were as
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follows: batch size = 10, image resolution = 640 × 588 pixels, 30 epochs, and learning
rate = 1 × 10−2. All codes were structured following the PEP-8 guidelines.
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3. Results

The current study validated the application of each member of the YOLO v5 family
in classifying caries from smartphone microphotography. Tables 2 and 3 display the final
model evaluation results. Although YOLOv5M and YOLOv5X achieved almost similar
results in terms of accuracy, YOLOv5X achieved a 3.07% higher mAP than YOLOv5M. The
other models did not perform well in terms of accuracy, recall, and mAP. Figure 5 shows
the precision-recall (PR) curve for each category at different thresholds. The variations in
performance of the models were attributed to the differences in filter counts and parameters.

The input images of carious lesions that were processed using YOLO v5X are shown
in Figure 6A and the prediction outputs are displayed in Figure 6B. The location of most
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carious tooth decay was seen to fit the original site of tooth decay in physical form and was
reflected upon by the quantitative diagnostic metrics that were subsequently evaluated
(Table 3).

Figure 7 demonstrates the changes in tooth decay detection performance metrics for
the five different network structures. (A), (B), and (C) represent recall, precision, and
mAP@0.5 (mean average precision at 0.5 intersection over union) curves, respectively,
trained up to 30 epochs. The usage of 30 epochs was justified after trial and error, as
the YOLO model’s performance metrics stopped improving substantially after 25 epochs.
YOLO v5M and v5X were the overall highest performers at the end of the training cycles.

Table 2. Performance evaluation of various yolo models during training-validation phase.

Model Classification TP TN FP FN SN SP AC T.AC

YOLO v5S

Visible change without cavitation 0.41 0.48 0.59 0.52 0.44 0.44 0.44

0.59Visible change
with microcavitation 0.69 0.28 0.31 0.72 0.48 0.47 0.48

Visible change with cavitation 0.75 1 0.25 0 1 0.80 0.87

YOLO v5M

Visible change without cavitation 0.55 0.38 0.45 0.62 0.47 0.45 0.46

0.65Visible change
with microcavitation 0.65 0.36 0.35 0.64 0.64 0.64 0.50

Visible change with cavitation 1 1 0 0 1 1 1

YOLO v5L

Visible change without cavitation 0.23 0.88 0.77 0.12 0.65 0.53 0.55

0.54Visible change
with microcavitation 0.69 0 0.31 1 0.40 0 0.34

Visible change with cavitation 0.50 1 0.50 0 1 0.66 0.75

YOLO v5X

Visible change without cavitation 0.41 0.81 0.59 0.19 0.68 0.57 0.61

0.64Visible change
with microcavitation 0.62 0 0.38 1 0.38 0 0.31

Visible change with cavitation 1 1 0 0 1 1 1

YOLO v5N

Visible change without cavitation 0.32 0.71 0.68 0.29 0.52 0.51 0.51

0.63Visible change
with microcavitation 0.75 0.24 0.25 0.76 0.49 0.48 0.49

Visible change with cavitation 1 0.78 0 0.22 0.81 0.78 0.89

Table 3. Performance evaluation of various yolo models during the testing phase.

Model Classification Precision Recall mAP@0.5

YOLO v5S

Visible change without cavitation 0.453 0.455 0.303

Visible change with microcavitation 0.606 0.688 0.75

Visible change with cavitation 0.797 0.984 0.895

Overall 0.619 0.709 0.649

YOLO v5M

Visible change without cavitation 0.687 0.5 0.531

Visible change with microcavitation 0.56 0.625 0.588

Visible change with cavitation 0.887 1 0.995

Overall 0.712 0.708 0.705
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Table 3. Cont.

Model Classification Precision Recall mAP@0.5

YOLO v5L

Visible change without cavitation 0.598 0.542 0.465

Visible change with microcavitation 0.667 0.75 0.712

Visible change with cavitation 0.663 0.75 0.87

Overall 0.643 0.681 0.682

YOLO v5X

Visible change without cavitation 0.611 0.5 0.528

Visible change with microcavitation 0.677 0.688 0.657

Visible change with cavitation 0.904 1 0.995

Overall 0.731 0.729 0.727

YOLOv5N

Visible change without cavitation 0.545 0.273 0.367

Visible change with microcavitation 0.698 0.723 0.716

Visible change with cavitation 0.659 1 0.845

Overall 0.634 0.665 0.643
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YOLOv5X and YOLOv5M achieved similar results for recall (0.708 for YOLOv5M
and 0.729 for YOLOv5X, respectively) and precision (0.712 for YOLOv5M and 0.731 for
YOLOv5X, respectively) across the tri-classification system. YOLOv5X generated an mAP
of 0.727, while YOLOv5M generated an mAP of 0.705.
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YOLO v5M and v5X were the overall highest performers at the end of the training cycles.  

Figure 6. (A) Input images of carious lesions. (B) Output performance for carious lesions.
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4. Discussion

One of the main focuses of the current study was to explore the feasibility of the CDSS
in carious lesion detection, where YOLOv5X and v5M were deemed the superior models
for the current dental dataset. Interestingly, no single model was seen to be capable of
diagnosing all three visual classifications of caries defects. While YOLO v5M excelled at
diagnosing microcavitations, YOLO v5X performed better at diagnosing the absence of
cavitations. Both diagnostic classifications are important in minimally invasive operative
procedures, where best practice advises against the preparation of intact crown surfaces
with carious progression. This is in favor of arresting caries with spontaneous remineraliza-
tion without compromising the integrity of the remaining tooth structure. Microcavitations
are minute details on the carious tooth surfaces that often require clinical magnification
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and instrument-driven chairside evaluations to detect and confirm. Each iteration or fam-
ily member of YOLO v5 has its own unique properties. YOLO v5S (S = Small) and v5M
(M = Medium) being more adept at diagnosing the intricate details of microcavitation as
opposed to YOLO v5L (L = Large) and v5X (extra-large) emphasizes that a model with a
larger bank of pre-trained architecture may not be necessary or efficient as Medium might
be more adequate at handling most case-specific tasks, similar to previous reports [27]. In
the instance of real-time caries detection, the implementation of a light-weight variant of
YOLO may translate to faster inference times with a subsequently reduced cost of appli-
cation when scaled across the entire patient pool in a clinic. Such a claim must however
be considered with the previously established knowledge that inter-device variations are
quite common in clinical practice [28].

When comparing multiple object detection algorithms within one environment, a cost
analysis of real-time implementation is warranted. A good number of in vitro simulations,
such as the one performed in the current study “Google Colaboratory”, are executed
over cloud computing, where inference times can vary heavily with network speeds and
bandwidth limitations. Based on the findings of the current report and outcomes from
previous investigations, a prediction can be made on how the YOLO v5 model on COCO
datasets may behave in a clinic with a local network [29]. From the findings, an execution
of YOLO v5S and v5M would require 14 to 41mb of storage at an inference time between
2.2 and 2.9 ms. The requirements increase exponentially when v5X at 168mb is required for
a task that reports an inference time of 6.0 ms [29]. In simplified terms, while these methods
can be implemented within a dental loupe with smart lenses, an optimized method of
switching across the models needs to be developed that can adapt to real-time changeovers
in dental diagnostic needs. Such an approach is necessary to prevent diagnostic latencies
that may exceed 50 ms, a range noticeable by the human eye-head coordination, when
switching to the model with greater accuracy for the specific lesion being analyzed in
real-time [30].

Prior to the development of deep learning models for object detection, algorithms
based on image processing were frequently used for image segmentation and detection.
Several research studies have been proposed to automatically detect tooth decay using con-
ventional image processing and machine learning techniques A study by Duong et al. [2]
used a two-step detection scheme using support vector machine (SVM) for dental caries
detection. The researchers of the study concluded that the proposed SVM system required
further improvement and verification as the data was only captured from the smartphone
images. Another study [31] showed that 20% of the ROI was mistakenly diagnosed as
dental caries using this technique, indicating that diagnosis via radiography alone with-
out an objective assessment is inaccurate. Furthermore, radiography in itself is not as
readily available in the form of smartphone micrography yet, with collimator-attachable
apparatuses strictly controlled for the radiation hazards they pose.

A previous investigation [32] used deep CNNs to detect caries lesions on near-infrared
light transillumination (NILT) images obtained from both in vitro and in vivo datasets to
assess the models’ generalizability. However, the authors concluded that using in vitro
setups to generate NILT imagery and subsequently training CNNs with the data resulted
in lower accuracy. Another study [33] used four deep learning models, consisting of faster
region-based convolutional neural networks (faster R-CNNs), YOLOv3, RetinaNet, and
a single-shot multi-box detector (SSD), to detect initial caries lesions and cavities. While
the study had three classes, only two classes were compared at a time in a binary format.
Similar to the current report, the authors used common parameters such as sensitivity,
specificity, accuracy, and precision to evaluate architectural deep learning performance
and achieved favorable outcomes in the “cavitated lesions” (C) vs. “non-cavity” (NC)
classification. However, their outcomes were substantially challenged by the “Visually
Non-Cavitated” (VNC) vs. No surface change” (NSC) classification.

Intersection-over-union (IoU) was a crucial parameter to select samples and models
in previous research [34] and also plays an important role as a metric in evaluating how
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accurately a model has applied its bounding boxes over a detected object [35]. Data
augmentation played a key role in upscaling the small sample size in the current study
to aid computational evaluation [36]. However, excessive augmentation may lead to data
bias that is undetectable using in vitro simulations but may render the trained models
ineffective when applied to real-life clinical scenarios [37]. To mitigate the problem, the
current study limited its data augmentation practices to a reasonably minimum amount
according to best practice outlines from current medical literature [38].

Aside from the limited size of the dataset, larger variations of carious lesions could
have been helpful. In the current study, caries classification was based on a visual es-
timation, with true depth not being established. A histological ground reference and
multi-center testing of trained algorithms was not performed similar to that in previous
reports and serve as limitations in the inception of the workflow [8]. The deidentifica-
tion process during data acquisition also meant that the age of the dentition could not
be identified, which could have benefited the generalizability of the study. Furthermore,
images of large pits and fissures were avoided, as were shadow casts, altered translucency,
occult lesions with subsequently mineralized pit and fissure lesions, and variations in oc-
clusal surface morphology, which were considered unhelpful in the algorithm comparison
process. The current study could be expanded in future research with multi-label classifi-
cations [39], cost-sensitive learning [40], and curriculum learning features. Future studies
would include a shift from the supervised learning provided to train the current model
and develop a system that can perform caries detection in unsupervised environments,
essentially predicting lesions from novel clinical photographs, possibly by separating the
networks utilized for image segmentation and object detection. The promise of implemen-
tation onto novel photographs can open frontiers in 3D object detection in other aspects of
restorative dentistry [41].

Oral health resources are unbalanced globally, with people from many regions having
limited access to dental professionals. Moreover, traditional clinical and radiographic
evaluations can add economic burdens for individuals of low income, which might also
prevent them from attending regular clinical visits [42]. Hence, there is an increased need
for intelligent systems that can aid in detecting underlying dental cavities at a low cost
among large populations and prioritize the queue of patients in subsidized or not-for-
profit practices. Such a system, when integrated in the form of a smartphone or camera
application, can benefit clinicians by quickly screening patients based on the existing state of
caries progression and streamlining remote consultations and referrals through automated
progress monitoring, with the outcomes of the current work able to strengthen the neural
backbone of existing smartphone-based tele-dentistry applications being researched [14].
Object detection methods such as the ones documented in the current literature can aid in
the effort to geographically standardize the quality of dental healthcare.

5. Conclusions

The current in vitro study demonstrated that one-stage method of object detection
was able to detect carious lesions from smartphone photography with varying outcomes in
classification accuracy. Of the models tested, the YOLO v5X performed better in diagnosing
carious lesions with microcavitation, while the YOLO v5M fared better in diagnosing
non-cavitated carious lesions. Within the limitations of the current concept, no single object
detection model was seen to be capable of detecting the progression of a carious lesion,
and a combined approach may be required to implement a real-time diagnostic model in
clinical practice.
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