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Abstract: The ocular surface is a complex structure that includes cornea, conjunctiva, limbus, and
tear film, and is critical for maintaining visual function. When the ocular-surface integrity is altered
by a disease, conventional therapies usually rely on topical drops or tissue replacement with more
invasive procedures, such as corneal transplants. However, in the last years, regeneration therapies
have emerged as a promising approach to repair the damaged ocular surface by stimulating cell
proliferation and restoring the eye homeostasis and function. This article reviews the different
strategies employed in ocular-surface regeneration, including cell-based therapies, growth-factor-
based therapies, and tissue-engineering approaches. Dry eye and neurotrophic keratopathy diseases
can be treated with nerve-growth factors to stimulate the limbal stem-cell proliferation and the
corneal nerve regeneration, whereas conjunctival autograft or amniotic membrane are used in
subjects with corneal limbus dysfunction, such as limbal stem-cell deficiency or pterygium. Further,
new therapies are available for patients with corneal endothelium diseases to promote the expansion
and migration of cells without the need of corneal keratoplasty. Finally, gene therapy is a promising
new frontier of regeneration medicine that can modify the gene expression and, potentially, restore
the corneal transparency by reducing fibrosis and neovascularization, as well as by stimulating
stem-cell proliferation and tissue regeneration.

Keywords: ocular-surface disease; limbal stem cells; tissue regeneration; dry-eye disease; neurotrophic
keratopathy; autologous serum tear; amniotic membrane

Key Contribution: This article explores various methods, such as cell-based therapies, growth-factor-
based therapies, tissue-engineering, and gene therapy, to regenerate the damaged ocular surface.
These approaches aim to improve visual function offering alternatives to traditional treatments.

1. Introduction

The ocular surface is a complex structure that includes the cornea, the conjunctiva, the
main and accessory lacrimal glands, the meibomian glands, and the eyelashes. All these
components are strictly connected by the epithelia, the nerves, and the immune, vascular,
and endocrine systems [1]. The eye is constantly exposed to evaporative stresses, but the
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ocular-surface structures work together to maintain cornea integrity through homeostatic
mechanisms. When one of these mechanisms is altered, there is a loss of ocular-surface
homeostasis, and, subsequently, corneal damage (Figure 1) [2].
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Figure 1. (a) Dry-eye keratopathy in a patient with Sjögren’s syndrome; (b) advanced pterygium
encroaching on the visual axis; (c) neurotrophic corneal ulcer associated with diffuse corneal fluores-
cein staining; and (d) full corneal conjunctivalization in limbal stem-cell deficiency six months after a
chemical injury.

When the eye surface is altered by a disease, the damage to cornea structures without
self-renewal capacity, such as the limbus, the stroma, or the endothelium, can lead to
corneal opacification and visual acuity impairment. Although standard treatments, such as
corneal transplants, aim to restore the corneal transparency, the shortage in corneal donors,
the risk of rejection, and the limits of graft survival are critical problems that raise the need
for strategies to promote tissue regeneration.

Regenerative therapy offers a distinct advantage over traditional methods in treating
ocular-surface diseases. Rather than simply managing symptoms, regenerative therapy
focuses on restoring damaged ocular surfaces by promoting the regeneration of corneal
tissues and improving tear film stability, providing long-term relief, improving visual
outcomes, and significantly enhancing the quality of life for patients with ocular-surface
diseases. Additionally, this new approach may help in improving clinical outcomes, re-
ducing the need for corneal tissues, and allowing clinicians to treat a larger number of
patients. In the field of tissue engineering, biomaterials with controlled-release capabilities,
such as multilayered hydrogels and scaffolds, have advanced significantly [3]. Disease
understanding is pivotal for successful polymer-based biomaterials. However, selecting the
right polymer remains challenging, as interaction with host immune cells can impact out-
comes negatively. Researchers and physicians are dedicated to enhancing biomaterials to
ensure long-term tolerance and optimal medical performance. Complex implant materials
must adhere to strict quality standards to prioritize patient safety. Biomaterials necessitate
qualities such as strength, resistance, elasticity, hardness, density, and biocompatibility to
fulfill their intended purpose effectively [4]. In a recently published paper, Kumar et al.
reviewed up-to-date options for corneal stromal, limbal, and nerve regeneration with spe-
cial emphasis on stem-cell secretomes and exosomes [5]. In another comprehensive review,
Amador et al. discussed the gene-delivery system and editing technique, and epigenetic
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treatments [6]. Viral vectors, as well as nanoparticles and nanopolymers, are minimally
invasive approaches that are promising results in in vitro or animal models studies. Fur-
ther, El Zarif et al. reviewed the most recent therapies for corneal stromal regeneration for
advanced keratoconus with particular focus on autologous adipose-derived adult stem
cells (ADASCs), decellularized human corneal stroma, allogenic lenticule, and corneal
inlay [7].

Herein, we review the different strategies employed in ocular-surface regeneration
(Table 1), including cell-based therapies, growth factor-based therapies, and tissue-engineer-
ing approaches. Although many anterior segment diseases affect the cornea, in this paper
we included all the different components of the ocular surface, such as the corneal layers,
the limbus, the conjunctiva, and the lacrimal apparatus.

Table 1. Regenerative therapies overview for the corneal ocular-surface diseases.

Disease Therapies

Dry-eye disease Autologous serum tears
Insulin-like growth factor
Recombinant human nerve growth factor (rh-NGF)

Neurotrophic keratopathy Recombinant human nerve growth factor (rh-NGF)
Amniotic membrane
Conjunctival flap
Corneal neurotization

Neuropathic corneal pain Autologous serum tears
Contact lens amniotic membrane

Pterygium Conjunctival autologous graft
Amniotic membrane
Antimetabolites:

- mitomycin
- 5-fluorouracile
- anti-vascular endothelial-growth factor
- cyclosporine

Limbal stem-cell deficiency Autologous or allogenic limbal-cell transplant
Cultivated limbal epithelial transplantation (CLET)
Simple limbal epithelial transplantation (SLET)

Fuchs dystrophy Descemetorhexis without endothelial keratoplasty (DWEK)
RHO-kinase inhibitors (ROCK-I)

2. Corneal Ocular Surface
2.1. Dry-Eye Disease

Dry-eye disease (DED) is a multifactorial ocular condition characterized by instability
and loss of homeostasis of the tear film, ocular inflammation and damage, and neurosen-
sory abnormalities [8]. According to the Tear Film and Ocular Surface Society’s Dry Eye
Workshop II (TFOS DEWS II), it is usually classified as aqueous deficiency, in which there
is a dysfunction of the lacrimal glands—evaporative, in which the most common cause
is Meibomian gland dysfunction (MGD), and mixed forms. Although the availability of
various artificial tear substitutes to maintain the tear film integrity, many patients develop
severe ocular-surface damage [9,10]. Further, it is demonstrated that a persistent inflam-
mation can alter the corneal nerve function leading to a vicious cycle characterized by
altered tear production, neurosensory abnormalities, severe corneal damage, and impaired
corneal sensation (Figure 1a) [11]. In this scenario, the most recent treatments aim to
reestablish the ocular-surface integrity by restoring the corneal biological components such
as nerve-growth factors (NGF), epithelial-growth factors (EGF), nutrients, and vitamins [8].
Autologous serum tear (AST) is a blood derivate used topically for patients with severe
DED. Initially introduced in 1970 to treat subjects with severe ocular-surface damage caused
by Stevens–Johnson syndrome, chemical burns, or Sjögren syndrome, it has more recently
gained popularity for less severe conditions, such as DED. It contains EGF, NGF, insulin-like
growth factor (IGF-1), vitamins, and fibronectin in concentrations similar to those observed
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in the human tears, and in vitro and in vivo studies have demonstrated these components
can enhance the corneal epithelial healing process [12]. Although cell-culture studies reveal
an increased epithelial proliferation with 20% diluted concentrations of AST, epithelial
migration seems more efficient with higher concentrations ranging between 50% and
100% [13,14]. In a randomized controlled trial, Urzua et al. observed a 50% improvement
in OSDI score in patients with severe DED using 20% AST [15]. Further, other authors have
used higher AST concentrations of 60–80% and have shown an improvement in corneal
TBUT and fluorescein score in randomized trials [16–18]. An allogenic preparation of the
AST could represent a valid option in these subjects, however, there are some evidences
that an allogenic serum could stimulate an immune cross-reaction between the host recep-
tors and the donor antigens [9]. The umbilical-cord serum has a higher concentration of
EGF and NGF than AST, and it can be safely used in patients with systemic diseases [19].
Alio et al. conducted a prospective study in 18 subjects with severe DED and observed
an improvement in symptoms and corneal staining of 89% and 72%, respectively, after
one month of use of umbilical-cord serum [20]. Recombinant human nerve growth factor
(rh-NGF) has demonstrated its efficacy in regulating the growth, proliferation, and survival
of neurons. Although it is mostly used in patients with neurotrophic keratopathy (NK),
studies have shown that rh-NGF can restore the corneal sensation and tear production in
in vivo models of DED [21].

The preliminary results from a four-week phase III, multicenter, double-masked,
vehicle-controlled clinical trial suggest that the use of Ngf in individuals with Sjogren’s
syndrome is associated with a significant improvement in the Schirmer test after the
four-week treatment period [22].

In recent years, ocular-surface biomarkers have been studied for their potential role in
dry-eye disease pathogenesis and treatment [23]. Among the identified molecules, proin-
flammatory cytokines, such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α),
and interferon gamma (IFN-γ), have been studied for their implications in the release of
acute-phase proteins and metalloproteinases (MMP) [24–26]. In addition, MMP-9 molecules
have also been implicated in leucocytes migration and worsening of ocular-surface inflam-
mation [27,28]. These biomarkers are considered important for assessing patients with
DED and staging the severity of the inflammation, and future therapies could aim to target
these molecules to limit the inflammatory burden and, potentially, stimulate the corneal
repair processes.

2.2. Neurotrophic Keratopathy

Neurotrophic keratopathy (NK) is a severe corneal disease characterized by a loss in
corneal sensation and impaired corneal nerve function (Figure 1c) [29]. When the nerves are
damaged, the reduction in corneal sensation and trophic factors can lead to a breakdown of
the corneal epithelium, and, subsequently, of the ocular-surface integrity and function [30].
The NK management is complex and aims to maintain the epithelial integrity, reduce the
epithelium breakdown, and restore the ocular-surface integrity. Besides the classic therapies
to lubricate the cornea, new treatments have been recently introduced to restore the corneal
nerve function, the corneal sensation, and the lacrimal function. The recombinant human
nerve growth factor (rhNGF) is a molecule biochemically identical to the human growth
factor and has been approved in 2017 by the European Medical Agency for use in patients
with neurotrophic keratopathy. This treatment represents a promising new drug because
in vitro and in vivo studies have demonstrated its capability to restore the nerve integrity
and corneal sensation by binding the NGF receptors P75NTR and TrkA [31]. In a random-
ized, controlled, double-blinded trial, 156 patients with stage 2 NK were enrolled to receive
rhNGF or vehicle [32]. The subjects were treated for eight weeks, and the authors observed
a significant improvement or complete epithelial healing in the NGF group compared to
the vehicle group (74% vs. 43.1%, respectively). In a prospective, interventional study,
Mastropasqua et al. used in vivo confocal microscopy (IVCM) to assess the corneal nerve
density in patients with NK stages 2 and 3 [33]. Their results showed a significant improve-
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ment in corneal nerve density and corneal sensation after eight weeks of treatment with
rhNGF. The amniotic membrane is the inner, avascular layer of the fetal membrane, and it
is widely used in ophthalmology for its anti-inflammatory, regenerative, and anti-scarring
properties [34]. It is characterized by three layers: a monolayer epithelium, a thick basement
membrane similar to the human membrane, and an avascular stroma. It contains various
molecules that stimulate the healing of the epithelium, such as NGF, keratinocyte growth
factor, and hepatocyte growth factor, and the thick basement membrane serves as scaffold
for the limbal migration of epithelial cells on the corneal defect [34]. Although clinical trials
have not shown a clear beneficial effect, the use of amniotic membrane in patients with NK
can help in healing the epithelial defect. If the membrane is incorporated in the cornea and
the epithelium migrates over, the amnion is defined as a “graft” (Figure 2), whereas it is
called a “patch” if the epithelium moves under and the membrane falls off [29].
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Figure 2. (A) Corneal perforation in an advanced neurotrophic ulcer; (B) corneal debulking
during the early phases of surgical management: penetrating keratoplasty + open sky cataract
extraction + amniotic membrane transplant (Omnigen®); (C) dry amniotic membrane (Omnigen®)
apposition on the completed penetrating keratoplasty; and (D) amniotic membrane sutured on the
ocular surface as a graft using a 10/0 absorbable (Vicryl) continuous suture.

The basement membrane component of the amniotic membrane enhances support for
epithelial cells, limbal stem cells, and corneal transient amplifying cells, as it shares a similar
composition to the conjunctiva [35]. It also maintains clonogenicity, which encourages
the differentiation of both goblet and non-goblet cells while preventing the presence of
inflammatory cells and their protease activities [36]. Furthermore, the stromal side of the
amniotic membrane hinders the transformation of normal fibroblasts into myofibroblasts,
thereby reducing the formation of scars and blood vessels [36].

Further, in the case of stromal lysis or melting, the amnion can promote keratocytes
migration into the cornea, a process that can reduce tissue scarring. Today, new devices are
available that combine contact lenses with amniotic membranes, such as OmniLenz® and
ProkeraTM, and allow clinicians to apply the membrane without the need of sutures [34].
In selected cases, a conjunctival flap can be used to promote corneal healing and reduce the
risk of corneal perforation. The bulbar conjunctiva is transplanted on the cornea surface
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to replace the unhealthy stroma, provide basal tissue for the growing epithelium, blood
supply, and growth factors [29]. Corneal neurotization is a difficult surgical technique that
allows the restoration of the corneal sensation using branches of the trigeminal nerve of the
contralateral eye [37]. The procedure maintains the anatomical integrity of the eye, but it
needs to be used by expert surgeons.

2.3. Neuropathic Corneal Pain

Neuropathic corneal pain is defined as a pain caused by an alteration or dysfunction
of the nervous system [38]. Tissue damage and inflammatory processes can result in
increased responses from peripheral nociceptors with intensification of the pain signal.
This mechanism alters the physiological body response to pain and, over time, can result in
receptor sensitization, centralization of the pain, and, in severe cases, spontaneous pain
perception [39]. Neuropathic corneal pain (NCP) can be caused by peripheral nerve injuries
and systemic diseases, and the diagnosis and management of the disease require skilled
ophthalmologists with experience in the field. Since in many patients IVCM studies have
shown nerve alterations and the presence of microneuromas, treatments aim to promote
neuroregenerative processes to cure the underlying etiology that caused the abnormal pain
perception [39]. AST contains neurotrophic factors, IGF-1 and NGF, and various studies on
DED patients have shown improvement in ocular symptoms [40]. In NCP, Hamrah et al.
have demonstrated an improvement in photoallodynia and allodynia with 20% AST, and a
significant increase in corneal nerve density [18,39,41]. The amniotic membrane is used in
NCP patients because it can alleviate symptoms in the case of peripheral pain. However,
especially with Prokera® amniotic membrane, some subjects are not able to tolerate the
polycarbonate ring. In this case, it is possible to remove the ring and place the membrane
directly into a bandage contact lens [39].

3. Corneal Limbus
3.1. Pterygium

Pterygium is an abnormal subconjunctival fibrovascular growth that encroaches on
the cornea, causing clinically significant irregular astigmatism proportioned to the amount
of visual axis involved (Figure 1b) [42,43]. It is usually bilateral, affecting the nasal side of
the conjunctiva and cornea. Pathogenesis is still nowadays not fully discovered; however,
it has been hypothesized that a major role is due to sunlight exposure [42]. UV lights
may damage corneal limbus, with a localized deficit of limbal stem cell, and subsequent
activation of growth factors which results in angiogenesis and cell proliferation. A deficit
of limbal stem cell causes corneal conjunctivalization [42]. Pterygium can be primary, if
the patient has no history of previous surgical management, or recurrent, in the case of its
regrowth after previous surgery, due to reactivation of the inflammation process and is
highly associated with the pterygium surgical removal technique chosen [44]. Diagnosis is
primary clinical at slit lamp and the following aspects must be evaluated: size, location,
degree of vascularization, extent, and degree of corneal involvement. In pterygium, it is
possible to notice three different parts: a body (which is the core of pterygium, with wing
shape localized within the bulbar conjunctiva), a cap (leading edge of pterygium on the
cornea, avascular, and rich in fibroblast) and head (highly vascularized, localized behind
the cap, and firmly attached to the cornea) [43]. Differential diagnosis must be conducted
with ocular-surface squamous neoplasia and skin cancer [45]. Management of pterygium is
surgical, and a wide range of techniques have been described: bare sclera, conjunctival flap,
conjunctival autograft, limbal conjunctival autograft, and amniotic membrane. Adjuvant
therapies for pterygium management have also been used, such as mitomycin C, beta-
radiation, 5-fluorouracil (5-FU), topical use of bevacizumab, and interferons [46]. The goal
of surgery is to excise the pterygium, restore the cornea surface, and prevent the risk of
pterygium recurrence.

“Base sclera technique” is one of the simplest surgical techniques and involves re-
moving the pterygium and performing a tenonectomy to expose the underlying sclera.
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However, this approach is associated with a high recurrence rate, which can reach up
to 88% [47]. Additionally, leaving sclera unprotected increase the risk of scleral melting,
formation of pyogenic granuloma, and delayed reepithelization of the cornea [48].

The conjunctival autologous graft (CAG) consists in covering the bare sclera with
a free graft of autologous conjunctiva after the pterygium removal, and it is nowadays
the preferred approach given lower incidence of recurrence, usually between 3.3% and
16.7% in the case of primary pterygium [49], and around 33% in the case of treatment of
pterygium recurrence [50]. The free autograft can be fixated with sutures (commonly Vicryl
8/0), fibrin glue, or the patient’s autologous blood [46,51]. No significant differences in
pterygium recurrence among these three techniques are reported in the literature according
to meta-analysis, however, the conjunctival autograft with fibrin glue presents a lower
risk of graft displacement and conjunctival retraction, and also a shorter surgery time,
compared to the other two techniques [52,53]. An alternative to conjunctival autograft
is the use of an amniotic membrane (AM) graft, in which the bare sclera is covered by
a patch of amniotic membrane graft, which, similar to CAG, can be sutured or glued.
Compared to CAG, AM has a higher risk of pterygium recurrence (6.7–40.9%), but lower
compared to bare sclera [46,49,54]. Several adjuvant treatments have been evaluated in the
literature to reduce the risk of pterygium recurrence after surgical removal following all
the aforementioned techniques. These can include antimetabolites, such as mitomycin C
(MMC) and 5-fluorouracile (5-FU), anti-vascular endothelial growth factor (bevacizumab)
as cyclosporin, and the use of irradiation [55–57]. According to a meta-analysis by Zeng
et al., the use of MMC has the lowest risk of pterygium recurrence, in both bare sclera
and CAG techniques, followed by beta-radiotherapy and bevacizumab [56]. The use of
5-FU was not superior to a placebo. The use of cyclosporin A can reduce the risk of
recurrence only in the case of the bare sclera technique and not in the case of CAG [58].
Considering the ratio risks/benefits among all the adjuvant treatments, the best option
would be the use of 0.2 mg/mL of MMC applied for 3 min with conjunctival autograft. This
combination in a study by Frucht-Pery et al., granted 0% of pterygium recurrence, versus
6.6% of bare sclera + MMC, and 46.6% of CAG without MMC [59]. Looking ahead, the
focus in pterygium research is on identifying genetic and molecular factors that contribute
to the risk of recurrence, with the goal of developing medical therapies. Research has
found abnormal expression of platelet-derived growth factor receptor β (PDGFR-β) in the
stroma of pterygium, suggesting that its inhibitor, sunitinib, could, potentially, be used as a
treatment [60].

3.2. Limbal Stem-Cell Deficiency

Corneal limbus is an area of approximately 2 mm of diameter, with ring shape, placed
between the cornea and the bulbar conjunctiva and is the niche of limbal stem cells (LSCs),
which are adult stem cells that differentiate into corneal epithelial cells [61–63].

The integrity of limbus is essential for the physiological turnover of LSCs and, sub-
sequently, for corneal epithelial cells, and the related transparency of the cornea [61,62].
Additionally, LSCs act as a barrier to prevent the conjunctival epithelial cells from migrating
over the corneal surface, causing the conjunctivalization of the cornea (Figure 1d) [61,62].
Therefore, limbal stem-cells deficiency (LSCD) results in poor epithelization of the cornea,
inflammation, vascularization, and scarring (Figure 3) [64,65]. Causes of LSCD can be
congenital, traumatic, autoimmune, and idiopathic [65]. The diagnosis is primary clinical,
with loss of Vogt palisaded, progressive conjunctivalization, and superficial neovascular-
ization of the cornea, and instability of the corneal epithelium [64,65]. The management
of the disease is challenging and usually requires surgical treatments, especially when
there is an involvement of the visual axis [65]. Nowadays, there are multiple techniques
for limbal stem-cell transplantation (LSCT), which can be divided accordingly between
the anatomic graft transplanted and the donor (allogenic or autologous) [5,66–71]. In the
case of allogenic LSCT, the donor can be cadaveric or a living relative [66,72]. Based on the
type of anatomic graft, there are conjunctival limbal graft (autologous: CLAu; allogenic:
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CLAL), allogenic keratolimbal graft (KLAL), and limbal epithelial transplantation [72]. If
the LSCD affects only one eye, autologous transplants are recommended, whereas in the
case of bilateral involvement, allogenic LSCTs are needed [65]. The choice of which type
of LSCT to perform depends on the grade of involvement of the ocular adnexa and the
bilaterality of the disease [65]. In the case of LSCD due to cicatrizing ocular-surface disease
with symblepharon, conjunctival limbal graft (CLAu in case of monoliteral involvement,
or CLAL in case of bilateral involvement) should be preferred, whereas in the case of
no adnexa involvement, the other LSCT procedures are a viable option. KLAL involves
the transplantation from a cadaveric donor of two corneo–scleral rims to restore at 360◦

the host limbal tissue [73]. Cultivated limbal epithelial transplantation (CLET) requires a
small biopsy of 2 mm × 2 mm of limbus from which the epithelial limbal stem cells are
harvested and cultivated in vitro, obtaining a sheet of limbal epithelial stem cell, which is,
subsequently, transplanted onto the affected eye. Cultivation can be performed accordingly
in two methods: suspension or explant. The first requires that harvested cells are enzy-
matically treated and seeded on amniotic membrane, a fibrin carrier, or a plastic culture
dish covered by fibroblast [74,75]. In the second method, instead, the harvested cells are
scaffolded on de-epithelized amniotic membrane with subsequent stem cell expansion in
three weeks [76,77]. CLET technique requires the use of autologous or allogenic limbal
epithelial cells which are cultivated in vitro and then transplanted onto the cornea [72]. The
simple limbal epithelial transplantation (SLET) differs from CLET in the fact that the ep-
ithelial cells are directly transplanted onto the corneal surface of the host using an amniotic
membrane and fibrin glue or a dual layer of amniotic membrane harvested limbal stem cell
in between [78,79]. The expansion of epithelial limbal stem cells is, therefore, not obtained
in laboratory cultivation, but in vivo on the ocular surface of the affected eye. Cultivated
oral mucosa epithelium (COMET) requires an autologous biopsy of labial of buccal mucosa,
from which the epithelial cells are then cultivated, usually on the amniotic membrane and
transplanted onto the host cornea [80–82]. This technique has the advantage to not need
immunosuppression, however, its outcomes are less favorable than LSCT because of a
higher risk of persistent epithelial defects, cornea neovascularization, and rejection [65].
Keratoprosthesis is, typically, considered as a last resort in cases of bilateral total limbal
stem-cell deficiency (LSCD) with extensive ocular adnexal involvement, significant symble-
pharon, and previous failed limbal stem-cell transplantation (LSCT) [83]. Multiple types
of keratoprosthesis (KPro) are available and the choice can be reached according to the
presence or not of aqueous deficiency dry eye (ADDE): Boston KPro type 1 (Figure 4) or Au-
rolab KPro (auroKPro) in the case of absence ADDE, or Boston KPro type 2, LV Prasad KPro
(LVP KPro), or modified osteo-odontokeratoprosthesis (MOOKP) in the case of presence of
ADDE [65]. The KPro types have a complex follow-up management, steep learning curve,
and high risk of post-operative complications, such as endophthalmitis, retroprosthetic
membrane formation, glaucoma, and retinal detachment [84–86]. The lack of comparative
systematic review and meta-analysis prevent the proper addressing of the success rate
of one type of KPro over the other in the case of LSCD. Currently, future prospective
management of LSCD mainly focuses on the use of cell-based therapies [87,88]. These
include adipose tissue-derived mesenchymal stem cells, embryonic stem cells, and induced
pluripotent stem cells [83,88], which have corneal wound-healing, scarring-remodeling,
and angiogenesis properties [65].
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4. Corneal Endothelium
Fuchs Dystrophy

Fuchs endothelial corneal dystrophy (FECD) is the most common form of corneal
dystrophy, and is characterized by a reduction in human corneal endothelial cells (hCEC)
at a higher rate than normal. hCEC are stuck in the G1 phase of their vital cycle and are
unable to replicate, so their number decreases by a rate of approximately 0.6% per year [89].
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Over time, this condition can lead to endothelium decompensation, and, progressively,
to corneal oedema, scarring, and, eventually, blindness (Figure 5). FECD is usually treated
with endothelial keratoplasty, but its application is currently limited by an international
shortage of donor tissue, with only one donor available for every 70 patients requiring
transplantation [90]. In consideration of this shortage, many approaches are being tested
and used to overcome the problem and treat the condition; these methods mainly aim to re-
generate the endothelium without the need for any graft and can be divided into surgically
based approaches and cell-based approaches [91]. The ability of corneal endothelium to
heal after an iatrogenic trauma was first and accidentally noted many years ago by several
authors [92,93]; different cases have been reported of patients with an inadvertent removal
of DM during routinary cataract surgery, in which post-operative assessments highlighted
how the endothelial cells had migrated to cover the bare stromal surface. These reports
seemed to suggest that corneal endothelial cells can effectively compensate with rearrange-
ment and migration the loss of tissue surgically removed. Further evidence supporting this
hypothesis can be found in other studies in which patients undergoing posterior lamellar
keratoplasty for FECD, despite a detached graft, still reached a good clearing of the cornea
and a partial endothelization through migration of endothelial cells from the peripheral
cornea [94,95]. In consideration of these findings, some surgeons started performing a
surgical maneuver of descemetorhexis without any endothelial graft; the results were
variable, mainly depending on the descemetorhexis diameter and the integrity of the DM
after endothelium removal [95,96] with a high failure rate described for 8 mm stripping [97],
mixed outcome reported for cases treated with 6.0–6.5 mm Descemetorhexis [98,99], and
good results, finally, achieved with more limited stripping of 4 mm [100–102].
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These observations led many surgeons to start using the novel surgical approach of
Descemet stripping without endothelial grafting, alternatively termed “descemetorhexis
without endothelial keratoplasty” (DWEK) or “Descemet stripping only” (DSO), and a
recent meta-analysis confirmed that, despite the lack of comparative studies, this technique
seems to effectively improve visual acuity and pachymetry in early stages of FECD [103].
In the attempt to promote hCEC migration in patients affected by FECD and undergoing
DWEK/DSO, recently, RHO-kinase inhibitors (ROCK-I) have been used as an adjuvant to
endothelial surgery [104,105]. RHO-kinase enzymes are a group of proteins involved in
the modulation of structural change in the internal cell cytoskeleton, inhibition of smooth
muscle, vasodilation and cellular delamination, and migration [106]. For these reasons,
since their discovery, they have been subject to various research in ophthalmology as
therapeutic targets, especially for conditions with low endothelial cell counts. However,
although via kinase pathways proliferative effects may effectively be modulated, it is
unlikely that ROCK-I will ever safely induce mitotic activity of HCEC. Indeed, they have
instead been successfully used in the attempt to promote hCEC migration [107].
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The first double-armed prospective study of ROCK-I in DWEK/DSO surgery was
published a few years ago, proving that the use of ripasudil leads to a faster corneal recovery
and to a higher central endothelial cell count [108], and the results from another trial that
came out later highlighted similar outcomes [109]. Even if these results are encouraging,
further studies are still necessary to assess which patients are suitable for the treatment.

Currently, a Phase 1 double-masked, randomized clinical trial is assessing the safety
and efficacy of a specific treatment called human corneal endothelial cell therapy (HCEC-1)
in adult patients with corneal oedema due to endothelial dysfunction [110].

Recently, cell-based approaches have grown in popularity to overcome the worldwide
shortage of eye donors. These techniques mainly rely on the capacity of in vitro expansion
of isolated primary hCEC when given the appropriate stimuli [111]. These expanded
cells need then to be delivered onto the inner corneal surface, where they can effectively
act as intended and restore endothelial function. This delivery can be achieved through
endothelial cell sheet transplantation or through cell injection into the anterior chamber.
For the endothelial cell sheet transplantation, two main techniques have been proposed:
primary hCEC isolated from cadaver donor corneas or differentiated stem cells and cell
lines [112]. In the case of primary hCEC taken from human cadaveric donors, it has been
noted that many donor factors have a significant impact on the culture success rate, such
as cell density [113], cause of death, previous surgery in the eye, overall health, tissue
storage time [114,115], age (with a lower proliferation capacity seen in older donors) [116],
and the region of the cornea where hCEC belongs (with cells from the periphery having
a higher proliferative capacity) [115,116]. In the case of stem cells and hCEC-like cells
with stem-cell potential used for hCEC culture, they can be obtained from adipose tissue,
umbilical-cord blood, or bone marrow [117,118], while cell lines can be created by inducing
direct differentiation of embryonic stem cells [119], induced pluripotent stem-cells [120],
and hCEC precursors [121]. Subsequently, it is essential to perform proper isolation of
cells and cultivate them in a suitable culture medium supplemented with specific growth
factors. Moreover, preventing endothelial-to-mesenchymal transition of hCECs during
culture is crucial. Additionally, creating surfaces that mimic the native extracellular matrix
environment is imperative for promoting hCEC growth and proliferation. [91].

Theorized for the first time at the beginning of the century [122], direct injection
of hCEC into the anterior chamber entirely avoids the need for any carrier. The first
experimental models on rabbit corneas achieved good results, as long as the post-operative
prone position was maintained [123,124]. The first case of a human patient treated with
this technique was reported in 2017 [125], and showed clinical improvements with corneal
oedema resolution and BCVA going from 0.04 to 1.0 (decimal visual acuity). The results
from the first clinical trial in humans were published later, in 2018 [126]: 11 patients were
injected with a suspension of 106 cells into the anterior chamber and then placed in a prone
position for 3 h, to allow the sedimentation of the injected hCEC onto the posterior surface
of the cornea. Twenty-four weeks after injection, improvements in ECD, corneal thickness,
and BCVA were noted. Two years after injection, corneal thickness was less than 600 µm
in 10 out of the 11 eyes, while each of the 11 eyes retained corneal transparency and no
immune responses were observed.

5. Conjunctiva
Mucous Membrane Pemphigoid

Ocular mucus membrane pemphigoid (OcMMP) is a rare autoimmune cicatrizing in-
flammatory disease that affects the conjunctival mucosa, and it is characterized by scarring
of the ocular surface with significant visual impairment (Figure 6) [127]. Frequently, also
other mucosal tissues are involved, such as mouth, trachea, esophagus, larynx, and geni-
talia [128]. Regarding the epidemiology, OcMMP represents the first cause of cicatrizing
conjunctivitis in developed countries with an incidence of about 0.8 cases per 1,000,000 per
year [129]. No predisposing factors are recognized, apart from specific human leukocyte
antigen (HLA): HLA-DR2 and HLA-DQw7 [130]. The median age of presentation is 65 years
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old [131]. Regarding the pathogenesis, the mechanism has not been fully elucidated yet. It
is known that in OcMMP there is a type 2 autoimmune hypersensitivity reaction against
the basal membrane of the conjunctiva triggered by systemic circulating autoantibodies
which bind the antigens expressed by conjunctival epithelium basement membrane zone
(BMZ) [128,132]. Clinically, the presentation may vary from non-resolving chronic con-
junctivitis with symblepharon to acute conjunctivitis and limbal inflammation which may
rapidly cause symblepharon [132]. Various staging systems have been proposed, among
which the most used are those of Mondino and Brown [133] and Foster [127]. Mondino and
Brown suggested to grade the severity of OcMMP accordingly to the degree of shortening
of the inferior fornix: in Stage 1 there is a loss of depth of inferior fornix between 0 and 25%;
in Stage 2 between 25 and 50%; in Stage 3 between 50 and 75%; and in Stage 4 between
75 and 100% [133]. In contrast, Foster divided the OcMMP in four stages according to the
degree of scarring and fibrosis of the bulbar conjunctiva: Stage 1 if there is conjunctival
scarring and fibrosis; Stage 2, in which there is a shortening of the inferior fornix; Stage 3
if there is symblepharon; and Stage 4 if the patient develops ankyloblepharon [127]. The
diagnosis is achieved by a perilesional conjunctival biopsy with direct immunofluorescence
(DIF) to detect immunoglobulin (IgA, IgG, and/or IgM) and/or complement (C3) deposits
on the BMZ [134]. In the case of negative DIF at conjunctival biopsy, with high suspicion of
OcMMP, DIF of buccal biopsy has been reported as a valid alternative [135]. The aim of the
management is to slow the progression of the disease, which can lead at end stages to fully
keratinized cornea. A multi-step approach management is traditionally preferred, starting
with Dapsone or sulphapyridine/sulphasalazine in the case of glucose-6-phosphate dehy-
drogenase [136]. In moderate disease, the preferred treatment is mofetil mycophenolate
(MMF), 1 gr once or twice daily (azathioprine or methotrexate in case of intolerance to
MMF) [130,137]. In patients with severe OcMMP, a therapeutic option is oral or intravenous
cyclophosphamide [130,137]. Other possible therapies in severe cases are represented by
anti-tumor necrosis factor agents (anti-TNF) etanercept and infliximab, anti-CD-20 (ritux-
imab), or agonist of interleukin (IL)-2 daclizumab [130]. The use of systemic steroids is
useful in the short term to reach a fast control, whereas the use of long-term steroids at low
dose is not beneficial [130,131,137]. Topical steroids can be used in short term and are not a
substitute for systemic treatment [130].
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6. Gene Therapies

Gene therapy is an emerging field that aims to treat ocular-surface diseases by deliv-
ering genes directly to the ocular-surface cells. The goal is to address underlying genetic
defects and promote tissue regeneration. Due to its accessibility and immune privilege,
the ocular surface, and, in particular, the cornea, makes it a desirable target for gene ther-
apy [138–142]. Several methods of delivering genes, including viral and non-viral vectors,
CRISPR-Cas9 gene editing, antisense, and siRNA therapies for epigenetic regulation, have
been described in ocular-surface diseases. Although some human studies are currently
available, the majority of the published results came from in vitro or animal model studies.
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In this paragraph, the advancements and potential uses of gene therapy in ocular-surface
diseases are discussed. The process of corneal epithelial wound healing involves various
growth factors, cytokines, and cell-signaling events. Gene therapy has been used to deliver
target genes in diabetic corneas with slow epithelial wound healing [141,143]. Overex-
pression of c-Met, a gene involved in wound-healing-related processes, has been found
to normalize diabetic markers and stimulate wound healing [144]. Silencing proteinases
cathepsin F and MMP10 also improved diabetic epithelial wound healing [145]. Non-viral
approaches, such as nanobioconjugates, have shown promise in treating diabetic corneal
wound healing [146]. The anti-apoptotic gene bcl-xL has been identified as a possible target
for improving corneal epithelial wound healing [147]. MiRs can also be used for gene
silencing, but careful validation is necessary due to their effects on multiple targets [6,148].
Corneal injury can lead to the formation of scars and fibrosis due to the abnormal deposi-
tion of extracellular matrix proteins and the emergence of myofibroblasts [6]. TGF-β plays
a vital role in this process and is a primary target of gene therapy for the prevention and
treatment of fibrotic ocular-surface disease [149]. One promising approach is the use of
decorin, which can form a complex with TGF-β, leading to decreased bioavailability and
blocking the binding to receptors [150,151]. Studies have shown that the transfection of
the decorin gene can significantly decrease the transdifferentiation of corneal fibroblasts to
myofibroblasts, reducing fibrosis [152,153]. Non-viral gene therapy targeting downstream
targets of TGF-β, such as soluble TGF-β receptor 2, has also shown promise in reducing
myofibroblast transformation without significant cell death [154]. Wang et al. found that
overexpressing the Smad7 gene using lentivirus can reduce TGF-β signaling activation in
rat corneas by decreasing the phosphorylation of Smad2 and the expression of TGF-β2
after PRK surgery [155]. Additionally, in a rabbit model of corneal fibrosis induced by
PRK, AAV-5-mediated Smad7 gene therapy was safely effective in inhibiting corneal scar-
ring [156]. Gene-therapy approaches have been developed to target the angiogenic VEGF
pathway and other proangiogenic factors via gene silencing or transgenic expression of
antiangiogenic factors in the treatment of corneal neovascularization (CoNV) [157]. These
approaches have successfully inhibited CoNV in animal models, with some clinical suc-
cess achieved using antisense oligonucleotides (AON) eye drops [158]. Other promising
targets for gene therapy include miR-204, anti-angiogenic pigment epithelium-derived
factor, and inhibitors of proangiogenic MMP-9 and SDF-1 [159–162]. Overall, gene therapy
may lead to new approved drugs for treating pathological corneal neovascularization
in the future. Gene therapy has shown promising results in treating dry-eye disease in
animal models. The transfer of TNF-α inhibitor gene and IL-10 gene using Ad and AAV
vectors, respectively, restored tear production, reduced corneal defects, and suppressed
lacrimal gland immunopathology [163]. In addition, gene therapy using AAV vectors to
administer aquaporin-1 gene and MUC5AC gene has also shown improvements in dry-eye
symptoms in animal models [164,165]. These findings suggest that gene therapy may hold
potential for treating dry-eye disease in humans and further clinical trials are needed to
test its efficacy. In conclusion, gene therapy is a promising approach for the treatment
of ocular-surface diseases. Further research is needed to optimize gene-therapy vectors,
delivery methods, and safety profiles to ensure these treatments’ long-term efficacy and
safety. Nevertheless, the potential benefits of gene therapy in restoring visual function and
improving quality of life in patients with ocular-surface diseases are substantial.

7. Conclusions

Regenerative therapies for ocular-surface diseases represent a promising field of
research that may allow clinicians to restore the ocular-surface integrity without the need
for surgery. Further, the possibility to use injectable therapies, such as endothelial cells and
gene therapies, could reduce the use of corneal grafts that represent a current limit for the
treatment of patients with corneal diseases.
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