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Abstract: Seasonal climatic prediction studies are a matter of wide debate all over the world. Cuba,
a mainly agricultural nation, should greatly benefit from the knowledge, which is available months in
advance of the precipitation regime and allows for the proper management of water resources. In this
work, a series of six experiments were made with a mesoscale model WRF (Weather Research and
Forecasting Model) that produced a 15-month forecast for each month of cumulative precipitation
starting at two dates, and for three non-consecutive years with different meteorological character-
istics: one dry year (2004), one year that started dry and turned rainy (2005), and one year where
several tropical storms occurred (2008). ERA-Interim reanalysis data were used for the initial and
border conditions and experiments started 1 month before the beginning of the rainy and the dry
seasons, respectively. In a general sense, the experience of using WRF indicated that it was a valid
resource for seasonal forecast, since the results obtained were in the same range as those reported
by the literature for similar cases. Several limitations were revealed by the results: the forecasts
underestimated the monthly cumulative precipitation figures, tropical storms entering through the
borders sometimes followed courses different from the real courses inside the working domain,
storms that developed inside the domain were not reproduced by WRF, and differences in initial
conditions led to significantly different forecasts for the corresponding time steps (nonlinearity).
Changing the model parameterizations and initial conditions of the ensemble forecast experiments
was recommended.

Keywords: seasonal forecast; numerical weather modeling

1. Introduction

Meteorological forecasting is a matter of utmost importance for social development. In
recent decades, it is associated with the development in computer sciences and technologies,
the so-called numerical forecasts always yield more truthful simulations of the atmospheric
behavior, ranging from world to mesoscale area coverage, and from very short-term
forecasts of a few hours to projections of about one hundred years. Sub-seasonal and
seasonal forecasts are a matter of widespread discussion and research is in full development
given the great number of factors involved in the performance of forecasting models which
can generate uncertainties [1]. Seasonal forecasting lies beyond the deterministic time
lapse and can only be achieved through a probabilistic approach. The main meteorological
centers offering this kind of product do so based on ensembles of different sizes, where
its members use global models of low resolution that are run with different sets of initial
conditions [2]. In some cases, atmospheric models are coupled to oceanic models [3–5] and,
in other cases, observed or forecasted sea surface temperature anomalies are taken into
account [6–8], as they are the main forcing factors in this scale. Since the establishment
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of the predictability of “El Niño”, event [9,10] bases were settled for the development of
operational seasonal forecasts.

A mainly agricultural country such as Cuba should greatly benefit from the knowl-
edge which is available months in advance of the precipitation regime. However, the only
precedents of seasonal forecasts so far are found in the work of Cárdenas [11], who estab-
lished a system of monthly cumulative precipitation forecasts up to 6 months in advance,
based on multiple linear regression. In this forecasting system, the sea surface temperature
is included among the predictors as a teleconnection index and as an extreme temperature
and cumulative precipitation forecast service that is currently operational for the whole
country and three regions within it. This forecast operates 1 month in advance, based
on global models results offered by IRI (International Research Institute for Climate and
Society) and expert criteria (http://www.insmet.cu/asp/genesis.asp?TB0=PLANTILLAS&
TB1=PCLIMA&TB2=/clima/pronosticoclimatico.htm accessed on 14 October 2013). Some
effort has been made to carry sensibility studies with different parameterizations for vari-
ables such as precipitation, temperature and wind in the summer season using the RegCM
model for the Caribbean region [12].

If the information from the global supply of seasonal precipitation models for Cuba
is analyzed, the results are of scarce and litle detail; due to the narrow and elongated
shape of the island approximately only 11 grid points lie over the Cuban territory. In
these circumstances, regional models should supply the added value of an improved
representation of local and regional climatic processes [13]. The concept of downscaling
follows the basic principle that regional models should not alter climatic simulations at
scales that can be successfully represented at the resolutions of global models [14,15], while
smaller xcale features such as precipitation [16] and coastal winds [17] are found to typically
improve in the results of regional models. To determine how robust the added details are,
systematic experimentation is needed with different regional and global climate models [18],
which constitutes a further motivation for ensemble forecasting studies [19–21].

Therefore, the objective of this work is to make a preliminary assessment of the accu-
racy and cumulative precipitation behavior of WRF as a regional model for the seasonal
precipitation forecast in Cuba through experiments carried out over periods. This introduc-
tion briefly places the study in a broad context and defines the purpose of the work and
its significance.

2. Materials and Methods
2.1. Design of Experiments

The numerical model selected for the proposed experiments was the WRF (Weather
Research and Forecasting Model) Version 3.5.1 [22], a widely known open-source numerical
model. There is already a working experience in Cuba with this model in short and mid-
range forecasts.

Initial and border conditions were supplied by ERA-Interim reanalysis data (European
Center for Medium-Range Weather Forecasts Re-Analysis), with a time resolution of 6 h,
approximately 75 km horizontal grid size and 60 vertical levels. These data were obtained
from a ground–oceanic–atmospheric coupled model with 4d variational assimilation [23–25].
Elevation and land use data were assimilated from the U.S. Geological Survey (USGS)
with 30” and ~900 m resolution, which are available from the WRF website: http://
www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html (accessed on
23 September 2013). Figure 1 shows the simulation domain used in this study. It had a
spatial resolution of 25 km and covered a region with coordinates between 8◦03′ N and
34◦03′ N and between 62◦09′ W and 99◦34′ W. Figure 1 also shows the section of the domain
used for evaluation, which surrounds Cuba and the nearby sea areas. Table 1 shows the set
of main configuration options for WRF applied in the simulations.

http://www.insmet.cu/asp/genesis.asp?TB0=PLANTILLAS&TB1=PCLIMA&TB2=/clima/pronosticoclimatico.htm
http://www.insmet.cu/asp/genesis.asp?TB0=PLANTILLAS&TB1=PCLIMA&TB2=/clima/pronosticoclimatico.htm
http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
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Table 1. WRF runtime options applied in the experiments.

Parameters Option Comments/References

Experiments 6 In the table they are referred to as Exp. 1 to 6.

Start Dates

Exp. 1: 1/10/2003
Exp. 2: 1/04/2004
Exp. 3: 1/10/2004
Exp. 4: 1/04/2005
Exp. 5: 1/10/2007
Exp. 6: 1/04/2008

The periods studied were chosen taking into account the availability of
data, ensuring that different meteorological conditions would be met
(dry and rainy periods, presence of tropical storms and hurricanes, etc.).
Start dates and periods were chosen in a manner such that experiments
would overlap.

Simulation Times 15 months The first month was considered as the period of model self-tunning
(spin up).

Ocean–Atmosphere
Interaction sst_update = 1 Sea surface temperature was updated every 6 h. Data from Era-Interim.

Boundary Layer
Parameterization Mellor-Yamada-Janjic Janjic, (1994) [26]. This parameterization obtained satisfactory results in

convective forecasts [27]

Parameterization of
Cumuli Grell-Freitas Grell and Freitas, (2013) [28]. This scheme was chosen as it was used at

the Institute of Meteorology of Cuba with favorable results [29].

Microphysics
Parameterization Lin et al.

Lin et al. (1983) [30]. This was a parameterization of a relatively low
computational cost, which included ice and graupel formation processes
adequate for simulations with real data.

Short- and Long-Wave
Parameterization

Rapid Radiative Transfer
Model (RRTMG)

Iacono et al. (2008) [31]. These schemes represent the variability of the
clouds field, which was not attached to the domain resolution.
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2.2. Real Data and Evaluation Methodology

The TRMM (Tropical Rainfall Measuring Mission) database and values of the mean
cumulative monthly precipitation from the National Network of Stations of the Institute
of Meteorology of Cuba (RE-INSMET), as well as those from the National Institute of
Hydraulic Resources, were used to evaluate the accuracy of the precipitation forecasts
from WRF. These data corresponded to the area under study, as shown in Figure 1. The
evaluation using the TRMM data was made in two different ways: one method considered
all grid points within the area and the other considered only grid points that were inland.
For the stations networks, mean values for the whole territory were calculated, yielding
figures that were representative of the whole country. These were compared with the
mean monthly cumulative values for each network and with the mean monthly cumulative
values obtained from the inland TRMM grid points. In all cases the Pearson correlation
coefficient and the mean square error were used as comparison parameters.

3. Results and Discussion

The comparison between the mean cumulative values for all points of the evaluation
area and TRMM base values for the experiments, started on 1st October, is shown in
Figure 2. The greatest discrepancies lay in the period of 2004–2005, though forecasted
values underestimated those from TRMM in a general manner. In the period 2003–2004 the
correlation coefficient between the two curves was high (0.97) but the spatial distribution
given by the correlation between the grid points reached its maximum in the month of
February, with a modest value of 0.62; the worst performing months, September and
October, had negative correlations. The mean square error for all months was 52 mm. The
period of 2004–2005 showed a lower correlation between the two curves (0.80) and the
point-to-point correlation reached its maximum in March, measuring only 0.54. The worst
performance was in May and September, where negative correlations were observed. The
mean square error for all months was 87 mm. In this period, there were two months with
remarkable differences between forecasts and TRMM that, as discussed later, corresponded
to the presence of tropical storms that were generated within the model domain and were
not reproduced.

The period of 2007–2008 showed a correlation coefficient of 0.86 between the curves
and the maximum correlation point-to-point value was 0.54 in October. March and De-
cember had the worst correlations, both measuring 0.01. The average mean square error
was 73 mm.

In a general sense, the values obtained were in agreement with the parameters pub-
lished for global forecasts at the Lead Centre for the Long-Range Forecast Verification
System’s web page, http://www.bom.gov.au/cgi-bin/climate/wmo.cgi (accessed on
20 September 2013) for the main centers that published this kind of information. Ad-
ditionally, in experiments undertaken for the area of Cuba [32] using the model RegCm
4.3 [33], correlations between 0.1 and 0.6 were obtained between the forecasted values and
those from TRMM, while forecasts also underestimated the real values, mainly when the
Tiedtke cumulus parameterization [34] was used.

Differences in point-to-point correlations depended very much on the main or most fre-
quent weather system generating precipitation for the month under evaluation, so Septem-
ber 2004, with a correlation of −0.02 was signaled by the presence of Hurricane Ivan. The
forecast estimated the hurricane’s trajectory as crossing through the center of Cuba, when,
in reality, it maintained a westerly course toward the strait of Yucatan. This produced
forecasts of large cumulative totals in places where such values were absent, and vice versa,
thus yielding this poor correlation. In Figure 3, the spatial distribution of forecasted and
TRMM cumulative means inland are shown.

http://www.bom.gov.au/cgi-bin/climate/wmo.cgi
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for June 2004.

If comparisons are made for the inland points and ground networks, RE-INSMET and
RE-INRH are also taken into account. The results for every period under study can be seen
in Figure 5.

Figure 5 shows the closeness of values from both networks and, for the periods 2004–2005
and 2007–2008, with data from TRMM; for the period 2003–2004 these values are somewhat
different. In all cases forecasted values underestimate the real values with the highest
difference occurring in the rainy season of 2004–2005.

For the period 2003–2004, the coefficient of correlation between the forecast and TRMM
curves was high (0.90), though a little lower than when the whole grid was evaluated. The
spatial distribution given by the point-to-point correlation over the area evaluated reached
its maximum in June, at 0.69, while the worst performance corresponded to November
and September, where negative correlations were observed. The mean square error for all
months was 56 mm.
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Figure 5. Monthly cumulative precipitation means from points over land for model forecasts, TRMM
base, INSMET stations (RE-INSMET) and INRH stations (R-INRH), for experiments started on
1st October: (a) corresponds to period 2003–2004, (b) to 2004–2005 and (c) to 2007–2008.

The period 2004–2005 showed a correlation between curves of 0.87 and the point-to-
point correlation reached its maximum value of 0.65 in March. The worst months were
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January, November and December, all with negative correlations. The mean square error
for all months was 78 mm.

The period 2007–2008 showed a correlation between forecasts and a TRMM of 0.96,
much higher than the corresponding value for the whole area. The point-to-point correla-
tion reached its maximum value of 0.64 for May and its worst value of −0.05 in December.
The mean square error was also 78 mm.

If the month-to-month change was evaluated by assigning a plus sign when both the
forecasts and TRMM changed in the same direction, and a minus sign when they changed
in opposite directions, the results shown in Figure 6 were obtained. Figure 6 shows that the
worst performance occurs in the period 2007–2008, with changes for four months wrongly
forecasted. The month with the poorest results was September, which failed in 2004–2005
and 2007–2008. These periods were signed by the presence of tropical storms in the area.
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Figure 6. Evaluation of month-to-month change assuming a plus sign if both the model forecast and TRMM data change in
the same direction, and a minus sign if they change in opposite directions for the three periods studied.

If based on the cumulative data from stations, terciles are calculated for the precipita-
tion distribution using as a baseline the period from 1983–2012. The results from model
forecasts and station data can then be classified according to their belonging to the “lower”
(first) tercile, the “normal” (second) tercile, or the “higher” (third) tercile, and it is possible
to evaluate how they are related in this regard. To achieve a more general classification, the
percentage of occurrence of “true positives” is considered as the number of cases when
values from both series lie in the same tercile against the total of cases. Categories are
merged into two groups, “Normal–Low” (NL) for terciles 1 and 2 and “normal–high” (NH)
for terciles 2 and 3. Results are summarized in Table 2.

Table 2 shows that the period with the greatest accuracy was 2003–2004, which was
the driest, and when only inland points were evaluated, assertiveness was generally less
than when all points were considered. This might be related to the parameterizations
selected for convective development, a phenomenon that was more relevant inland due to
diurnal heating. It would be interesting to carry out sensibility tests with different cumulus
parameterizations, or even ensemble experiments to consider the group accuracy against
individual members. Even though as shown in Table 2, assertiveness percentages were
high, it must be taken into account that these forecasts were fed with reanalysis data, so
they could be considered as “perfect forecasts”.

Since experiments started on 1st April, results were similar to those started on 1st
October. The only period in which both experiments coincided is analyzed here; from May
to December for the years 2004, 2005 and 2008.
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Table 2. Percentages of occurrence of true positives for tercile categories “normal–low” (NL) and
“normal–high” (NH) for three pairs of series: model and TRMM values for the whole grid (T-F),
model and TRMM values for points inland (TL-FL), and model and station values inland (FL-S).

Season Category T-F TL-FL FL-S

2003–2004
NL 93 79 79

NH 100 79 71

2004–2005
NL 93 79 79

NH 79 86 86

2007–2008
NL 86 86 86

NH 86 71 79

Average NL 90.6 81.3 81.3

Average NH 88.3 78.6 78.6

Figure 7 shows the mean monthly cumulative values for the whole area evaluated,
as given by the model forecast and by the TRMM base. The analysis revealed very little
difference between forecasts started at different dates, the correlation coefficients between
them was 0.99 for all the years selected, and the maximum difference was 5 mm for the
year 2005. The largest point-to-point difference was recorded in September 2008.

Regarding the comparison with TRMM data, cumulative values were underestimated
by forecasts. The best correlation was reached in 2004 (0.97) and the worst was reached
in 2005 (0.6); June and October were the most discordant months. The reason for this
difference might be the presence of tropical organisms which, even though they did
not affect the country directly, had close trajectories. For instance, in June 2005, within
the model’s domain, Hurricane Arlene approached the Western region of Cuba, as did
Hurricane Wilma in October. These organisms, unlike hurricane Ivan, did not enter the
model domain through the borders but were generated by WRF as precipitation-producing
disturbances which didn’treach the intensity of the real events (Figures 8 and 9). Other
important phenomena originating within the domain area were not generated at all by the
model. This suggests that if the model domain was made smaller, more cyclones could
be detected as they were introduced through the borders; however, this would make the
borders too close to the area of interest, which could introduce spurious waves due to the
integration of equations within a very limited area.
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nonlinearity on long-term forecasts, since the main differences occurred toward the center 
of the domain, where there was a lesser influence of border conditions supplied by 
reanalysis. Should the model be run with data from a global model, differences could be 
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grid to achieve a better representation of tropical storms and hurricanes. Additionally,
in the month of June 2005, important cumulative values were demonstrated in TRMM
data over the central region of Cuba which could have been associated with the Tropical
Upper Tropospheric Troff (TUTT) or other waves present at the time. This was not properly
represented in the forecasts either.

If September 2008, which was the month with the greatest difference between mean
cumulative totals forecasted by both initializations analyzed, spatial distribution maps
appeared to be quite alike (Figure 10), except near the central region of Cuba, where the
experiment initialized on October 1st 2007 showed much lower values than those from the
1st April 2008 experiment. This could have been related to the effect of model nonlinearity
on long-term forecasts, since the main differences occurred toward the center of the domain,
where there was a lesser influence of border conditions supplied by reanalysis. Should
the model be run with data from a global model, differences could be relevant over the
whole domain, but mainly around the center which was the area of most interest, hence
the importance of ensembles to dampen these variations. A similar case was noticed in
May 2005 with the same effects.
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When the coincidence between values from forecasts initialized at different dates
was evaluated for inland points, its behavior was very similar to when all points were
considered. Correlations between both forecasts ranged between 0.96 and 0.99. The results
of the correlations with TRMM data were sometimes better and sometimes worse than
when all points were considered. The values were 0.87 for 2004, 0.62 for 2005, and 0.95
for 2008.

4. Conclusions and Recommendations

Dynamic downscaling based on the use of WRF was a valid resource to achieve
seasonal forecasts, since results obtained showed a similar behavior to those from global
models over large periods of time.

In all experiments conducted, the forecasts underestimated the real values of monthly
cumulative values.

Hurricanes and tropical storms were poorly reproduced, as their trajectories were
different from the real trajectories, both when perturbations were fed from reanalysis data
border conditions and when they were generated within the model’s domain.

The ability to forecast changes in the trend of monthly cumulative values had its worst
period in September specifically due to the presence of tropical storms in the study area.

The evaluation of the number of hits per tercile had its best performance over the
period 2003–2004, the driest of all the periods studied. Generally the percentage of as-
sertiveness by terciles was considered high, around 80%, though it must be taken into
account that forecasts were fed with reanalysis data, which made them “perfect forecasts”.

Differences in the initial conditions of the experiments carried out led to different
forecast solutions for equal positions in time, predicted for regions distant from the domain
borders as a result of the nonlinearity of the model.

Changing the model parameterizations and initial conditions of ensemble forecast
experiments is recommended in future studies.

Data Availability Statement: The WRF model and all associated geographic data are freely available
at the addresses cited above on Section 2.1. Initialization and boundary conditions for the WRF
runs are available from the ERA-Interim site https://confluence.ecmwf.int/display/CKB/How+
to+download+ERA-Interim+data+from+the+ECMWF+data+archive (accessed on 22 May 2021).
Precipitation data for the evaluation of the forecasts are available at the TRMM site https://gpm.
nasa.gov/data/directory (accessed on 22 May 2021). Local stations precipitation data can be accessed
through contact aith the authors.

Conflicts of Interest: The authors declare no conflict of interest.
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