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Abstract: Using a feed-forward neural network, an inverse algorithm was developed to profile the
vertical structure of temperature and specific humidity. The inverse algorithm (inverse model) was
used to calculate temperature and humidity profiles, which were then compared with other existing
methods. The inverse model is found efficient in profiling the vertical structure of temperature and
humidity as compared to other existing methods. For example, the statistical methods notorious
for their high computational cost, altitude-dependent error, and inability to accurately retrieve the
vertical temperature and humidity profiles, are enhanced with an inverse model. The inverse model’s
diurnal and seasonal cycle profiles are also found superior to those of other existing methods, which
could be useful for assimilation in numerical weather forecast models. We suggest that incorporating
such an inverse model into the ground-based microwave radiometer (GMWR) will enhance the
accuracy of the vertical structure of temperature and humidity profiles, and so the improvement in
weather forecasting. The developed inverse model has a resolution of 50 m between the surface to
500 m and 100 m between 500–2000 m, and 500 m beyond 2000 m.

Keywords: neural network; inverse model; seasonal and diurnal cycle; radiometer

1. Introduction

The three-dimensional structure of the atmosphere has been widely studied using
numerical weather prediction (NWP) models, networks of in situ radiosonde (RS), and
satellite remote sensing [1–4]. Although, RS measurements are prohibitively expensive
and biased due to horizontal drifts in the balloon path during high wind conditions [5].
Satellite measurements were found to overcome these limitations to some extent, but
their horizontal and temporal resolution is coarse near to the earth’s surface, and so the
measured data are not helpful for present-day high-resolution NWP models. Additionally,
laser radars and Fourier-transform infrared spectrometers can profile the atmospheric
states, but they do not work in the presence of clouds [6].

In the late twentieth century, researchers reported that a ground-based microwave
radiometer (GMWR) can profile the atmospheric temperature, humidity, and cloud liquid
water content with high accuracy and perform continuous measurements at an approximate
interval of 2-min in all weather conditions [7–9]. GMWR measurements were beneficial in
studying several atmospheric processes and improving the predictability of NWP models.
For example, over the last two decades, this was used in severe weather prediction and
deriving the diurnal variability of atmospheric stability indices [10], boundary layer stud-
ies [11–13], understanding cloud properties [14], and lightening studies [7,8]. In addition,
Kadygrov et al. (2013) reported that GMMR is preferable over the other existing methods
for studying complex processes such as turbulence fluctuation and changes in heat transfer
rate in the atmospheric boundary layer during a solar eclipse [15].

GMWR uses two built-in functions to profile the vertical structure of atmospheric states.
For instance, function-1 calculates the brightness temperature (radiance) in 20–75 GHz band-
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width using atmospheric water vapor resonance at 22.235 GHz and oxygen resonance at
60 GHz. Function-2 transforms these radiances into atmospheric states. The brightness
temperature calculated surrounding the atmospheric water-vapor resonance is preferred
for humidity profiling, and the brightness temperature calculated surrounding oxygen
resonance is preferred for temperature profiling [16]. The brightness temperature obtained
from function-1 is converted to atmospheric states using an inverse algorithm in function-
2 (also called as inverse modeling). Such inverse transformation is needed due to the
presence of nonlinearity and non-Gaussian caused by the temperature dependence of
atmospheric transmission, the Plank function’s wave number dependence, clouds, and
nonlinear constraints. Inverse techniques used in function-2 in GMWR to convert the mea-
sured brightness temperature from function-1 to atmospheric states include the Newtonian
iteration method (NEM), regression retrieval method (RRM), and neural network method
(NNM). NEM performs the mapping of n-dimensional atmospheric state vectors (e.g., tem-
perature, humidity, cloud liquid content, etc.) to the m-dimensional measurement vectors
(i.e., brightness temperature; [17]). However, the primary drawback of NEM is the large
number of iterations required for an optimal solution and the large error in atmospheric
state vectors at higher altitudes. RRM is considered a well-established traditional method
in earth and atmospheric science, where atmospheric state vectors are calculated linearly
from measurement vectors (i.e., brightness temperature at different frequencies [18,19]), but
it produces slightly worst results than NEM due to a linear relationship between dependent
and independent vectors. Further, NNM has received global attention by the scientific
community to solve the nonlinear problems in atmospheric sciences in the last two decades.
For example, Acciani et al. (2003) reported that neural network outperforms other retrieval
techniques. Vivekanandan et al. (1997) showed that neural network-based algorithms
could incorporate multiple measurements into the retrieval algorithm; however, their
application to GMWR (in function-2) has received lesser attention than other traditional
methods [20].

In this work, we develop an inverse algorithm (inverse model) using a feed-forward
neural network framework to derive the atmospheric temperature and humidity profiles
from calculated (and/or radiometric measured) brightness temperatures at the different
frequencies (see Table 1). The paper is structured as follows: Section 1 provides an intro-
duction, and Section 2 describes the data and Inverse model framework. In Section 2 of the
inverse model framework, the description of a feed-forward neural network, the structure
of the inverse model, and the sensitivity to learning rate are provided. Section 3 presents
the results of this work, and Section 4 summarizes the conclusions of this work.

2. Data and Inverse Model Framework
2.1. Data

The daily radiosonde datasets over Mumbai (17.49◦ E; 18.57◦ N) for 11 years (2006–2016)
are used, which are downloaded free from the Upper-Air-Sounding Division of the Uni-
versity of Wyoming (http://weather.uwyo.edu/upperair/sounding.html, accessed on
14 August 2019). The daily radiosonde datasets and existing GMWR brightness tempera-
ture over Mahbubnagar, India (78.11◦ N; 16.38◦ E), during the Cloud-Aerosol Interaction
and Precipitation Enhancement (CAIPEX) Integrated Ground Observation Campaign
(IGOC) in 2011 is used, which was obtained on request by the Indian Institute of Trop-
ical Meteorology Pune (see https://www.tropmet.res.in/~caipeex/ for more details on
CAIPEX data, accessed on 23 November 2019).

We used a total of 825 radiosonde profiles for temperature and 750 radiosonde profiles
for humidity over 11 years during January to March, as the remaining profiles were found
to have some drastic deformation at higher levels and were, therefore, excluded from
this analysis. The missing data in vertical levels were interpolated using a cubic-spline
interpolation method (as the information of all possible heights was not available). Further,
to generate the brightness temperatures at the different frequencies (see Table 1) for 11-year
radiosonde observation, a forward model (see Figure 1 and Rambabu et al. 2013 for more
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details) was used. Seventy percent of the total number of temperature and humidity
profiles was used to train the algorithm. Meanwhile, the remaining 30% of profiles were
used to validate and test the algorithm, each by 15%. In addition, to validate the derived
temperature and humidity profile from the developed inverse model, the existing GMMR
data over the Mahbubnagar during the CAIPEX IGOC campaign 2011 was used.

Table 1. List of the water vapor and temperature frequency channels used in the ground-based
microwave radiometer and in the forward model to estimate the brightness temperature.

Sr. No. Water Vapor Channel (GHz) Temperature Channel (GHz)

1 22.234 51.248
2 22.500 51.760
3 23.034 52.280
4 23.834 52.804
5 25.000 53.336
6 26.234 53.848
7 28.000 54.400
8 30.000 54.940
9 - 55.500
10 - 56.020
11 - 56.660
12 - 57.288
13 - 57.964
14 - 58.800
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Figure 1. Schematic representation of a forward model (top panel) used to calculate the brightness
temperatures at the different frequencies from the atmospheric variables measured by the radiosonde,
where the GMWR measured brightness temperature are not available, and the inverse model (bottom
panel) used to calculate the atmospheric variables from the estimated brightness temperature. See
Rambabu et al. (2013) for more details on a forward model [21].

2.2. Inverse Model Framework
2.2.1. Feed-Forward Neural Network

A standard feed-forward neural network (FNN) was used for constructing an inverse
model that transforms the forward model calculated (and/or GMWR radiometric) bright-
ness temperatures at the different frequencies (see Table 1 for the list of frequencies) to
the atmospheric temperature and humidity profiles. The FNN structure used in this case
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is composed of three distinct layers: input, hidden, and output (Figure 2). Additionally,
each layer comprises several compute nodes arranged parallelly. All compute nodes in
the output layer use a linear function, while all compute nodes in the hidden layer use a
nonlinear function (also called an activation function). The activation function specifies a
range for the output calculated at hidden nodes, which can be used as an input to other
hidden layers arranged parallelly or as an input to the output layer (see Figure 2 for more
details on FNN structure). The output at a particular hidden node (y), was obtained by the
weighted sum of all inputs of the brightness temperature at the different frequencies (see
Equation (1)), while the output at a particular node in the output layer (z), is obtained by
the weighted sum of all the hidden node’s output (see Equation (2)).

yj = f

(
n

∑
i=1

wi,jxi + bj

)
, (1)

xk = g

(
m

∑
j=1

wj,kf

(
n

∑
i=1

wi,jxi + bj

)
+ ck

)
, (2)

where xi is the ith input, wi,j is the associated weight between the ith input node and jth
hidden node, wj,k is the associated weight between the jth hidden node and kth output
node of the output layer, b and c are the correction factors for hidden and output layers; i, j,
and k indices refer to nodes of inputs, hidden, and output layers, respectively. Function
f(•) is a nonlinear function (see Equation (3)) and the first derivative of Equation (3) (i.e.,
f′(x) = f(x) − f2(x)) is used as a sigmoidal activation function in hidden nodes, and
function g(•) is an identity function used in output nodes (see Figure 2).

f(x) =
1

1 + e−x , (3)
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Figure 2. The schematic diagram of a neural network with an example of 5 compute nodes at the hidden layer, 4 input
nodes at the input layer, and 6 output nodes at the output layer. The weights between the input and hidden layer are given
by W1(i,j), and the weights between the hidden and output layer are given W2(j,k).

For the first iteration of FNN, the weights in the hidden and output layers are randomly
initialized so that the sum of weights in the hidden layer and the sum of weights in the
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output layer is less than or equal to 1. The gradient descent back-propagation method
is then used to assign these weights to some fixed values. The gradient descent back-
propagation method is one of the most straightforward and most efficient methods used
in supervised learning of a multilayer FNN. The network weights and correction factors
in each iteration are updated by propagating errors back to the network (and so-called
back-propagation) until the cost function (see Equation (4)) is minimized.

J(w) = 1/2
c

∑
k=1

(tk − zk)
2 =

1

2(t− z)2 , (4)

∆W = ï ∂J
∂w

∆wk,j =
ïδkyj =

ï(tk − zk) f′(netk)yj, (5)

∆wj,i =
ïδjxi =

ïxi f ′
(
netj

) c

∑
k=1

wkjδk, (6)

thus, the weights wi,j in the hidden layer and the weights wj,k in the output layer are
updated in each iteration by computing the error δk and δj at the output and hidden nodes,
respectively (see Equations (5) and (6)). The overall learning (or training) of FNN using
Equations (5) and (6) for fixing the network weights are controlled by a learning rate (η).

2.2.2. Sensitivity to Learning Rate

To initialize an optimal value of learning rate (η), we performed a sensitivity analysis
of η for the estimated value from FNN at the output layer against the number of iterations.
The variation of root-mean-square error (RMSE) against the number of iterations at the
three different learning rates (i.e., 0.01, 0.001, and 0.0001) is shown in Figure 3. The RMSE
variation against the number of iterations at the other η values between 0.01 and 0.0001 is
also calculated but is shown only for the above said η values. The learning rate η specifies
the relative size of the weight that needs to be changed during the weight updating process.
The RMSE is found to be very sensitive to the learning rate: at a learning rate of η = 0.01,
a large increase in RMSE with an increase in the number of iterations is seen, and at a
learning rate of η =0.001 and 0.0001, the variation of RMSE against the number of iterations
is seen to be optimized. The RMSE, however, is optimized at a slightly lesser number of
iterations at η = 0.001 than at η = 0.0001. As a result, we use a learning rate of 0.001 for
the inverse model in our subsequent analysis of this paper.
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2.2.3. Structure of the Inverse Model

The structure of the proposed FNN to profile temperature and humidity from mea-
sured/estimated brightness temperature is shown in Figure 4. We used eight parallel
FNN structures arranged in a vertical direction for increasing the accuracy of retrieved
vertical profiles. Each FNN is made of five output nodes, with each node corresponding
to a different altitude (or height). Thus, we use a total of 40 vertical levels (i.e., 8 FNN * 5
output nodes) with a resolution of 50 m up to 500 m, 100 m between 500 m and 2 km,
and 500 m beyond 2 km up to 10 km. The resolutions of vertical levels are divided so
that many levels occur close to the earth’s surface. Most of the other existing methods
are deteriorate/coarser to examine the processes occurring closure to the earth’s surface.
In addition, we also use a large number of hidden nodes in the FNN structure that are
close to the earth’s surface (see Figure 4). Therefore, the complete FNN framework is
used as an inverse model to estimate the temperature and humidity value at the various
vertical levels.
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Figure 4. Schematic structure of the inverse model used to profile the temperature and humidity based on a feed-forward
neural network. Here, MLP represents a feed-forward neural network, n1 corresponds to the number of nodes used in the
hidden layers, and N2 corresponds to the number of nodes at the output layer. Each MLP structure used in this case can
profile temperature and/or humidity at five different heights. A total of 8 MPL completes the inverse model algorithm and
profiles the atmospheric variables up to 10 km.

3. Results

Figures 5 and 6 show vertical profile of temperature and humidity, respectively, from
the inverse model and radiosonde (RS) observation over Mumbai on three different days
during winter season (December to February; or DJF). The brightness temperature at
different frequencies (see Table 1) over Mumbai (an input to inverse model) is calculated
using the feed-forward model because radiometric brightness temperature estimated from



Environ. Sci. Proc. 2021, 8, 17 7 of 12

GMWR was not available (see Rambabu et al. 2013 for more details on forward model and
GMWR measurement).
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Figure 5. Vertical temperature profile for three different days over Mumbai: (a) 5th January 2012,
(b) 23rd February 2013, and (c) 24th March 2014, from an inverse model (in black) and radiosonde
observation (in red), as well as the corresponding differences (d–f). The brightness temperatures
that are fed as an input to the inverse model, are calculated from a feed-forward model using
radiosonde observation.

The vertical profile of temperature and humidity calculated from the inverse model
varies very similarly to that obtained from the RS observation on all three days. The inverse
model based on a feed-forward neural network well captures the temperature inversion
seen in the RS observation. The temperature inversion occurs when a layer of cool air at
the surface is overlain by a layer of warmer air, causing a reversal in temperature structure
within the boundary layer (i.e., air temperature increases despite decreasing with an in-
crease in height). Further, in both the RS observation and the inverse model, the maximum
variation in humidity is seen near the earth’s surface (Figure 6). This maximum variation
in the humidity profile close to the earth’s surface is most likely due to precipitation, dew,
and fog. Furthermore, if we consider the temperature and humidity vertical profiles ob-
tained from RS observation as true profiles, we find that the inverse model overestimated/
underestimated (at some levels) by about ±2 ◦C for temperature, ±4 g/kg for humidity
in the lower troposphere, and about +4 ◦C for temperature and ±0.1 g/kg for humidity
in the upper troposphere for all three successive days, as compared to the RS observation.
However, this overestimation and underestimation in the vertical profile of temperature
and humidity cannot be considered as 100% accurate as the RS observation can itself have
some measurement bias due to the drift in balloon path during high horizontal wind flow
and in fog or rain conditions).



Environ. Sci. Proc. 2021, 8, 17 8 of 12

Environ. Sci. Proc. 2021, 8, 17 7 of 13 
 

 

 
Figure 5. Vertical temperature profile for three different days over Mumbai: (a) 5th January 2012, 
(b) 23rd February 2013, and (c) 24th March 2014, from an inverse model (in black) and radiosonde 
observation (in red), as well as the corresponding differences (d–f). The brightness temperatures 
that are fed as an input to the inverse model, are calculated from a feed-forward model using radi-
osonde observation. 

 
Figure 6. Same as Figure 5 but for specific humidity profile. Figure 6. Same as Figure 5 but for specific humidity profile.

In addition to validating the inverse model’s result with RS observation, we also
validate the inverse model with an existing GMWR along with RS observation for two
different days over Mahbubnagar, India, during the CAIPEX IGOC campaign in 2011, using
Figures 7 and 8 for temperature and humidity, respectively. In this case, the brightness
temperature measured by an existing GMWR over Mahbubnagar is used as an input to
the inverse model instead of calculating it from RS observation using the forward model.
We find good agreement between existing GMWR, RS, and inverse models in the lower
troposphere. The large difference in vertical temperature and humidity profile overesti-
mation/underestimation seen between RS observation and GMWR is seen to be reduced
between the RS observation and inverse model. For example, the temperature profile
calculated from inverse model shows a much smaller overestimation/underestimation
than that seen in existing GMWR with respect to RS observations at all levels. The pro-
files calculated from the inverse model agree better with RS observation than the existing
GMWR, not only for temperature but also for humidity, as evidenced by the reduced bias
at all heights compared to the existing GMWR. Further, we investigate how the inverse
model estimates the diurnal cycle of humidity and temperature with respect to existing
GMWR during the CAIPEX IGOC 2011 over Mahbubnagar for three successive days from
29 to 31st October 2011. Figure 9 shows the time–height plots for the diurnal variation of
temperature and humidity from the inverse model and existing GMWR and their corre-
sponding differences. We find that the temperature and humidity profiles retrieved from
an existing GMWR and inverse model are close at all levels except minor irregularities
near the surface. The difference between the existing GMWR and inverse model is noted in
the range of (+3, −1) ◦C for temperature, ±1 g/kg for humidity in the lower troposphere,
and in the range of (+1.5, −4) ◦C for temperature and a minimal difference for humidity in
the upper troposphere. The temperature inversion can be seen in diurnal variation as well
with both methods (Figure 9).
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Figure 7. Vertical temperature profile over the Mahbubnagar during the CAIPEX IGOC campaign on
(a) 29th October 2011 and (b) 31st October 2011 for three different retrieval techniques (i.e., inverse
model, existing ground-based microwave radiometer, and the radiosonde observation), as well as
the corresponding (c) and (d) difference. The brightness temperatures that are fed as an input to the
inverse model are taken from the existing ground-based microwave radiometer.
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Figure 9. Time–height plot for the diurnal variation of temperature (a,b) and specific humidity (d,e) 
over Mahbubnagar during the 29–31st October 2011 in CAIPEX IGOC campaign from the ground-
based microwave radiometer (GMWR) and the inverse model, as well as the difference plot for tem-
perature (g) and humidity (h). Right panels (c,f,i) of the figure show the 3-day mean profile of tem-
perature (c) and humidity (f), and the corresponding difference (error) plot (i) for temperature and 
humidity between the GMWR and the inverse model. 
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Figure 9. Time–height plot for the diurnal variation of temperature (a,b) and specific humidity (d,e) 
over Mahbubnagar during the 29–31st October 2011 in CAIPEX IGOC campaign from the ground-
based microwave radiometer (GMWR) and the inverse model, as well as the difference plot for tem-
perature (g) and humidity (h). Right panels (c,f,i) of the figure show the 3-day mean profile of tem-
perature (c) and humidity (f), and the corresponding difference (error) plot (i) for temperature and 
humidity between the GMWR and the inverse model. 

Figure 9. Time–height plot for the diurnal variation of temperature (a,b) and specific humidity
(d,e) over Mahbubnagar during the 29–31st October 2011 in CAIPEX IGOC campaign from the
ground-based microwave radiometer (GMWR) and the inverse model, as well as the difference plot
for temperature (g) and humidity (h). Right panels (c,f,i) of the figure show the 3-day mean profile of
temperature (c) and humidity (f), and the corresponding difference (error) plot (i) for temperature
and humidity between the GMWR and the inverse model.

Furthermore, Figure 10 shows daily annual variation of temperature and humidity
vertical profiles over Mumbai from the inverse model and RS observation during 2014,
with an input of brightness temperature to Inverse model computed using a forward
model from RS observation. The difference in temperature and humidity profiles between
the inverse model and RS observation are also shown in Figure 10e,f. The rapid fall in
temperature and increase in humidity during the transition of the pre-monsoon to monsoon
period and the increase in temperature and decrease in humidity during the transition of
the monsoon to the post-monsoon period, seen in the RS observation, are well captured
in magnitude and pattern by the inverse model. In both the RS observation and inverse
model, we find a stable humidity variation during winter, and the maximum variation of
temperature and humidity is located near the earth’s surface regardless of seasons. From
the difference between the inverse model and RS observation, we find the difference in
range of (−1 to −4) ◦C below 1.5 km, 2 to 4 ◦C above 7 km, and ±1 ◦C for the rest of the
heights of temperature during the monsoon period. However, in the case of humidity, we
notice the large differences during the monsoon periods and lesser difference during the
rest of the periods, with a variation of ±1.5 g/kg for all heights in all seasons except during
the monsoon season where it is about 3 to 5 g/kg.
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Figure 10. Time–height plot for the annual variation of temperature (degree Celcius; a,b) and specific humidity (g/kg; c,d) 
over Mumbai during 2014 from the radiosonde observation (a,c) and the inverse model (b,d), as well as the difference plot 
for temperature (e) and humidity (f) between the inverse model and the radiosonde observation. 
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Figure 10. Time–height plot for the annual variation of temperature (degree Celcius; a,b) and specific
humidity (g/kg; c,d) over Mumbai during 2014 from the radiosonde observation (a,c) and the inverse
model (b,d), as well as the difference plot for temperature (e) and humidity (f) between the inverse
model and the radiosonde observation.

4. Conclusions

An inverse algorithm (inverse model) was developed to profile the vertical structure
of temperature and humidity in the troposphere, using a feed-forward neural network.
The inverse model was used to calculate several temperatures and humidity profiles and
compared with different existing techniques/methods. The inverse model is found more
efficient in profiling the temperature and humidity vertical structure than other existing
methods. The statistical methods used in the existing ground-based microwave radiometer
(GMWR), known for their high computational cost and altitude-dependent inaccuracy, and
inability to estimate the vertical temperature and humidity profile, are enhanced when
an inverse model is used. The diurnal and seasonal cycle of temperature and humidity
vertical profiles calculated by the inverse model outperformed other existing methods,
which could be helpful for assimilation in numerical weather prediction models. We suggest
that introducing such an inverse model into GMWR will improve/increase the accuracy of
temperature and humidity retrieval and so the improvement in weather forecasting.

Data Availability Statement: Data used in this research are freely available in the community,
for example, the used radiosonde data can be found from the Upper-Air-Sounding Division of
University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html, accessed on 14 August
2019) and the data from CAIPEX IGOC campaign 2011 in India can be found at Indian Institute of
Tropical Meteorology Pune (https://www.tropmet.res.in/~caipeex, accessed on 23 November 2019).
However, the developed inverse model code can be shared on request to the corresponding author.
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