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Abstract: It is now scientifically proven that specific categories of submarine raw materials, especially
deep seas such as Mn and Fe oxides, polymetallic nodules, polymetallic sulfides (SMS) and some
deep-sea sediment categories, can have significant potential for some critical metals for future use.
One characteristic of these deposits is that although they often have lower Rare Earth Elements (REE)
contents than the well-known land deposits, their sizes are very extensive, much higher than the
land-based deposits. Therefore, the future use of these submarine formations as a source of REEs can
be an important alternative to the exponentially growing demand for these strategic metals. These
formations have significant potential to be a source of REEs in the markets when they are extracted as
byproducts of the most critical metals such as copper, nickel, cobalt and manganese, from Mn nodules.
To prove how realistic, the extraction of REE from those deposits is in market terms, we studied the
economotechnical dimension and the potential or REEs compared to those of the well-known on-land
REE deposits. Two studies are presented concerning the existing exploration pre-feasibility cases for
REEs originated from two existing licences granted by the International Seabed Authority (ISA) in the
Clarion Clipperton Zone (CCZ). The examination of these two cases has clearly shown that compared
to the corresponding deposits of REE inland, the total basket prices of these submarine deposits are
higher due to the higher contents of heavy REE such as Nd, Pr and Dy and Sm, Eu, Gd, Tb and Y in
these marine deposits. Considering that the prices in the international markets for most of the REE
oxides between 2019 and 2021 were very high, they gave these deposits even greater economic value.
The significant advantage of the mining and metallurgical treatment of these manganese nodules and
cobalt-rich manganese crusts is also related to the fact that REEs are not part of the crystal lattice of
the minerals that host them, in contrast to what happens with land-based deposits. This makes their
metallurgical processing more manageable and cheaper. This fact makes mining and metallurgical
treatment economically favourable. On the other hand, the very low Th and U concentrations in these
deep-sea deposits do not pose environmental risks in many well-known land-based REE deposits.

Keywords: Clarion Clipperton Fracture zone; REE and REO; basket price; REO prices; evaluation

1. Introduction

Rare Earth Elements (REEs) have attracted specific and high interest in the last 15 years,
since they are now one of the most critical metals and appropriate category due to their use
in high-technology materials and an indispensable category for the transition to the green
era. China is the dominant country concerning the production and the processing of REE,
with figures exceeding 80%.

It is now well established that many deep-sea mineral marine deposits (some categories
of Fe–Mn nodules or Co-rich crusts) and, in some exceptional cases, deep-sea sediments or
marine phosphorites have very high concentrations of REEs. One general characteristic
of these deposits is that although they have lower contents of REEs, compared to the
well-known terrestrial deposits, their sizes are very extensive, much higher than those of
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land-based deposits. Therefore, the future use of these marine deposits as a source of REEs
could be an effective alternative to the mounding demand for these strategic elements.

However, all the above assessments must consider the most basic and sensitive pa-
rameter in the whole story, i.e., the markets and prices, in the present and their outlook of
different REEs in the coming years and the general geopolitical situation.

In 2013, Hein et al. [1] published a paper concerning the possibilities for the future use
of deep-sea mineral deposits as a source of critical elements for use in new high-technology
materials and use in green technologies. They compared these deposits with two of the
largest on-land REE deposits, i.e., Bayan Obo (Obo) in China and Mountain Pass (MP) in
the U.S. For their comparison, they used the contents of REEs in the Mn–Fe oxides nodules
from the Clarion Clipperton Zone (CCZ) deposits and Co-rich ferromanganese crusts from
the PCZ (Table 1). They concluded that although the two land-based deposits are higher
in grade their tonnages are considerably lower than those of the CCZ and PCZ deep-sea
deposits (Obo: 8.0 × 108 tonnes with 6% total rare earth oxide (TREO); MP, 0.48 × 108 tones
at 7.0% with total REE oxides; deep-sea CCZ: 211 × 108 tonnes with 0.07% TREO; PCZ
deposits: 75.3 × 108 tonnes with 0.21% TREO).

Here, we have to make it clear that in these deep-sea deposits, the extraction of REEs
in economic terms presupposes that they will be extracted as byproducts after extracting
the main elements, i.e., Ni, Cu and Co. A critical factor is associated with the metallurgical
processing of deep-sea Mn–Fe nodules and Co-rich crusts to extract Ni, Co, Cu, Mn and
REEs as byproducts after the extraction of the above-mentioned main elements [2,3].

Table 1. Global tonnages of metals in the Clarion Clipperton Zone (CCZ) polymetallic nodules versus
terrestrial deposits (from [4]).

Element
Total-Only CCZ

Nodule Resources
(×106 Tons) a

Global Terrestrial
Reserve-Based
(×106 Tons) b

Global Terrestrial
Resources

(×106 Tons) c
Example Metal Use

Mn 5992 5200 ND Steel and batteries
Ni 274 150 ND Stainless steel, superalloys, wind turbines and batteries
Cu 226 1000 5600 Electrical, electronic and most high-tech products
Ti 67 900 1200 Aerospace and superalloys
Co 44 13 ND Batteries, superalloys and electromagnets
Mo 12 19 25.4 Steel for the strength and the hardness
V 9.4 38 ~63 Steel alloys and jet engines
Zr 6.5 77 ND Nuclear industry
Th 4.2 0.0007 0.65 Photoresistors and infrared optics
Li 2.8 11 62 Batteries and aircraft
Y 2.0 0.6 ND Red phosphor for televisions

As 1.4 1.6 ND Semiconductors
W 1.3 6.3 ND High-strength steel, superalloys and electrodes
Te 0.08 0.05 ND Solar cells and superalloys

TREE 15.1 128 ND Turbines, high-tech smartphones, etc.

CCZ, Clarion Clipperton Zone; ND, no data; TREE, total rare earth elements. a Calculation based on the estimated
21.1 billion metric tons of CCZ nodules in place on the seafloor; b reserve base which is the measured plus
indicated resources that include resources which are currently economic (reserves) and marginally economic
and some that are presently subeconomic; c terrestrial resource which is a concentration of a naturally occurring
material in or on the Earth’s crust in such a form and amount that economic extraction is currently or potentially
feasible [4].

Most of the Fe–Mn nodules with economic interest are concentrated in the zone of the
Pacific Ocean in depths to a 5000 average meter at the boundary between the water and the
bottom of the sentiments and in the upper part of the column of the sediments.

The most promising on economic terms, Fe–Mn nodules, lies in the CCZ learning
between Hawaii and Mexico. It should be mentioned that already from the middle 1970 to
1980, there was high interest for these formations due to their high contents of Ni (1.4%), Cu
(1.3%) and Co (0.25%). Today, their high Mn content (30%) and the REE (average: 0.08%)
give additional economic value to those nodules.

Within the CCZ, a number of localities have exploration permits given by the Interna-
tional Seabed Authority (ISA) to various mining companies or state-owned organisations.
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One of the most important of our sites exploration permit was contracted during 2011 to
the company Tonga Offshore Mining Ltd. (TOML, Maufanga, Tonga), entirely owned by
Nautilus Minerals Company (Toronto, Ontario, Canada).

Another exploration licence was granted again on the CCZ to the S.Korean Govern-
ment during the late 2000s (Figure 1).
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ing Ltd. (TOML, Maufanga, Tonga). DeepGreen (Vancouver, Canada) gets the rights of the 

polymetallic nodule exploration contract awarded by the International Seabed Authority (ISA) 

(Kingston, Jamaica) which was initially awarded to TOML; (b) The S.Korean Government explora-
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Figure 1. The two chosen study cases shown in the map: (a) Nautilus Minerals-Tonga Offshore Mining
Ltd. (TOML, Maufanga, Tonga). DeepGreen (Vancouver, Canada) gets the rights of the polymetallic
nodule exploration contract awarded by the International Seabed Authority (ISA) (Kingston, Jamaica)
which was initially awarded to TOML; (b) The S.Korean Government exploration licence was granted
on the CCZ in the late 2000 [5].



Mater. Proc. 2021, 5, 112 4 of 14

In order to prove the economotechnical importance and the potential not only for
Co, Cu and Ni, but also for the REEs of these two licences in the CCZ, we analysed the
data from two existing exploration pre-feasibility cases for REEs, i.e., one from Nautilus
Minerals (TOML), which is now part of DeepGreen, and the other from the Korean Institute
of Ocean Science and Technology or on behalf of the Korean Government (Figure 1).

2. Materials and Methods

To reach a critical review evaluation of marine resources mining versus land-based
ones for REEs, it is necessary to present some basic terms and factors used to assess the
economic viability of REE deposits.

Some basic factors in evaluating the REE deposits’ economotechnical feasibility exist-
ing in the international bibliography and textbooks are as following: (i) the TREO tonnage;
and (ii) the ore grade. In the global markets, the ore grades of the most important on-land
REE deposits are usually reported as the rare earth oxide (REO) percentage. Therefore, the
REE contents of the seabed deposits presented in this study were also converted to REE
oxides to be compared with the ore grades of land-based REE-presented deposits.

It is useful to mention here that the ore grade and the tonnage are not the only
critical factors for the economic viability of an REE project. The content of some of high
importance for the technology which are usually heavy REEs (HREEs), is of great economic
importance [5]. As a result, those deposits have a higher basket price than about 80% of
total deposits even though their ore value is low [6].

In the international markets, the REE economic value is usually reported and measured
as oxides (REO), which have a 1.2 mass factor relative to the elements. Therefore, REE
deposits with a specified TREO percentage may vary in the proportion of HREEs, affecting
the ore’s value economically.

The ore grade, tonnage, REO’s basket value and REO’s ore value are the most critical
considerations in exploring or developing a new REE project, directly determining the
success or failure of an REE project to a certain extent.

In the international bibliography and the global markets, the REE projects, concerning
their economic viability, often use the term “basket price” meaning the contained value, to
assess the products they intend to produce economically. The basket price or contained
value is defined by the sum of the individual REOs in the product from an ore deposit,
multiplied by the individual REOs price in the international markets. Thus, the basket price
is exclusive to considering the ore grade or total recovery rate. Based on this terminology, it
should be emphasized that the basket price is a supposed product value, in US$/kg REOs
of the product, which is not the contained value of the REEs in the ore (which would be in
US$/t).

While the rare earth’ potential in nodules should not be ignored, the relative value
is likely to be modest, even if recovery is possible. As such, they are most appropriately
considered as a byproduct of any process that aims to extract the other metals hosted by
the nodules (Ni, Cu, Co, Mn and Mo).

The basket price of the REEs, which can be recovered from Mn nodules or Co-rich
crusts, is very often higher than those of land-based REE deposits due to the higher contents
of the most critical REEs such as Nd, Pr and HREEs, especially Dy and Tb. It is now quite
clear that in short and medium terms, the supply of main HREEs such as Dy, Nd, Tb,
Eu and Y stays behind concerning the market’s needs. This fact creates problems and
challenges concerning the broader application of green energy, since those elements are
necessary for green technologies. The increasing demand for clean energies technologies
applied in the permanent magnets and phosphor industries means that REEs such as Nd,
Pr and Dy (for permanent magnets) are critical in the international markets, leading to
very high prices. The so-called light REEs, such as La and Ce, have broad use as abrasive
constituents and naturally have lower prices than HREEs [7,8].

In the ore deposits, the REEs are mixed and concentrated in different minerals, so it is
necessary to have a classification for different REEs and REOs.
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We used the classification proposed by the Korean Institute of Ocean Science and
Technology [8] for the present study. According to this classification, the REEs are classified
into four groups reflecting the HREEs contents of the ore deposit. The first group included
REOs such as Sm2O3, Er2O3, Gd2O3, Tb2O3 and Y2O3 (the so-called SEGTY group from the
initials of those elements) of vital importance for the phosphor material manufacturing and
naturally have a higher basket price. Those REOs are used for lighting and other optical
applications to enable light correction, reduction and energy effectiveness. Some typical
applications of such REEs include phosphors for light-emitting diodes, lasers and electronic
video displays. The second group includes REOs such as Nd2O3, Pr2O3 and Dy2O3 (the
so-called NPD group), which are vital for producing permanent magnets. The third group
includes light REOs which includes La2O3 and Ce2O3 (the so-called LC group), a group
having wide applications as abrasive materials manufacturing. This group has a lower
basket price compared to the other groups. Furthermore, another group called (other REOs)
includes REOs such as Ho2O3, Yb2O3, Er2O3 and Lu2O3 having an intermediate basket
price. The Tm2O3 is not included, since the Tm content in the under examined marine
deposits is extremely low and in the most land-based deposits. Another essential term for
assessing REEs deposits is the comparative proportionately of the REOs split concentration,
which is usually expressed in %.

Based on the above terminology, we can express the basket price or contained value
mathematically using the equation [9]:

basket price =
Yb

∑
i=La

xi =
Yb

∑
i=La

(
content ore of i

REO in ore
·price i) =

(
La in ore

REO concentration ore
·price La

)
+ . . . +

(
Ytterbium in ore

REO content in ore
· price Yb

)
For each individual REO, the basket price in (US$/kg) was expressed as (1)

mean content of REO(%)× REO price
(

US$
kg

)
100

(1)

The relative REO split was expressed as:

Relative REO split =
mean REO content × 100

Total REO content
(2)

The REOs products’ different compositions are mirrored in their basket price. The
basket price is defined by the sum of the quantities of each specific REO in the final
concentrate product multiplied by the prices of the REOs (see Equation (1)).

With the basket price and the global market price for REOs, we can obtain any deposit’s
revenue. It must be stressed that the basket price can give a preliminary suggestion of the
existing price situation at a given time, since the ore composition is very different from
that of REEs deposits. It should also be emphasized that the REOs extraction process is
quite different for each REO. The basket price of on-land deposits varies from 14.7 $/kg of
REOs products from the MP mine, with an average of only a 13.5% content in critical REOs
(within an average REO content of 8.5% (w/w) in ore) up to 55 $/kg of REOs products
from the Round Top mine also in the USA having a proportion of almost 70% of critical
REOs within the total of 0.4% in the ore. If we multiply the production quantities with the
estimated basket prices, we have the total incomes for each project.

In order to process the calculations and comparisons between deep-sea deposits (Mn
nodules, Co-rich crusts and deep-sea sediments) with some well-known on-land REE
deposits for REEs, based on Equations (1) and (2) [10], we used two sets of prices. The first
set was the average prices in the international market in 2015, and the second one was the
recent average prices in the international market at the end of May 2021 [11].

We used the average prices in 2015, because the international markets for REEs exhibit
extraordinary high-level prices between 2011 and 2014. The reason was that since 2011
there has been a squeeze in supply from China, leading to extremely high prices. This
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turbulence on the REE international markets ceased slowly between 2012 and 2015 when
the prices have decreased to levels closer to long-term averages since 2011.

The two sets of prices used are presented in Table 2.

Table 2. Average rare earth oxide (REO) prices in the international market in 2015 [7] and REO prices
in the international market at the end of May 2021 [10].

REO Average REO Price in 2015
(US$/kg) [8]

REO Price in (US$/kg) at the
End of May 2021 [11]

La2O3 2.1 1.36
Ce2O3 1.9 1.47
Pr2O3 55.5 82.74
Nd2O3 40.5 78.86
Sm2O3 2.1 2.09
Eu2O3 104.3 30.3
Gd2O3 11.2 34.73
Tb2O3 440 986.68
Dy2O3 227.5 365.15
Ho2O3 55 109.55
Er2O3 26.44 31.47

Tm2O3
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3. Results
3.1. Pesentation of the Two Case Studies
3.1.1. Nautilus Minerals (TOML), Being Now Part of DeepGreen

According to an unofficial technical note [11,12] from the TOML (a personal com-
munication at the end of 2013), the Mn–Fe nodules from the TOML, which is now part
of DeepGreen, lies within the CCZ of the North-East Pacific Ocean. This zone (CCZ) of
the North-East Pacific Ocean contains total concentrations of REEs of the order of 800 g/t
(0.08%) on a dry basis or 600 g/t on a wet basis. This corresponds to an REO content of
about 950 g/t or 0.095% on a dry basis. The relative splitting of the REEs is 73% light or
relatively light REEs (Ce, La, Nd and Pr), 7% medium REEs (Sm, Eu and Gd) and 10%
HREEs (Tb, Dy, Ho, Er, Tm, Yb and Lu) as well as 8% Yttrium (Y) [11,12].

According to the same unofficial technical note, the possibilities of the recovery of the
REEs should be considered by using a hydrometallurgical test, since there are no analogies
of the REEs recovery from land-based deposits. Since the REEs recovery from nodules
will be a byproduct of the extraction of the primary metals (Ni, Cu, Co, Mn and Mo), the
method of acid leaching under pressure seems to be the most proper one.

Here, it must be stressed that although the potential of the REEs in these nodules
should not be overlooked, their relative value will be relatively low if the hydrometallurgical
tests are unsuccessful. However, if they are recovered as byproducts from the primary
metals of Mn–Fe nodules oxides ((Ni, Cu, Co, Mn and Mo), their economic value will be
much higher.

It should be mentioned that the basket price for any REE which can be recovered
from Mn nodules, will be higher compared to land-based REEs deposits, since these
nodules contain, on average, higher values of critical REEs such as Nd, Pr and HREEs (Dy)
compared to terrestrial REEs or deposits.

The total REEs concentrations in these nodules were reasonable to be about 800 g/t
(0.08%) on a dry basis or 600 g/t on a wet basis. Their distributions are listed in Table 3. In
the international market, REEs are often reported as REOs, which have a 1.2 mass factor
relative to the elements. For the composition shown in Table 3, of 788 g/t of REEs, the
corresponding REOs were 945 g/t [12].
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Table 3. Average rare earth content of manganese nodules from Tonga Offshore Mining Ltd., within
the CCZ (a personal communication at the end of 2013; the ratio of the REE content in g/t to the REO
in g/t was relatively constant between 0.83 and 0.87) [12].

Element Symbol REE
(g/t)

REO
(g/t)

Relative REO
Split (%)

Contained Value at the End of
2013 (US$/Dry of Nodules)

Lanthanum La 97 113 12 1.20

Cerium Ce 316 388 41 4.31

Praseodymium Pr 31 36 4 3.17

Neodymium Nd 131 153 16 11.72

LRE – 575 690 73 20.40

Samarium Sm 34 40 4 0.94

Europium Eu 8 9 1 –

Gadolinium Gd 30 34 4 1.69

MRE – 72 83 9 2.63

Terbium Tb 5 6 0.6 –

Dysprosium Dy 26 30 3.2 19.57

Holmium Ho 5 5 0.6 –

Erbium Er 13 15 1.5 9.53

Thulium Tm 2 2 0.2 –

Ytterbium Yb 13 14 1.5 9.41

Lutetium Lu 2 2 0.2 –

Yttrium Y 76 97 10 3.63

HRE + Y – 141 171 18 42.13

Total – 788 945 100 65.17

3.1.2. The Korean Licenses in the CCZ

The second significant case study concerned Mn–Fe nodules and deep-sea sediments
within the CCZ by the government of South Korean. This case also offers a significant
opportunity to evaluate and compare the well explored and under-exploited terrestrial
REEs deposits. Here, it should be stressed that certain deep-sea clay sediments, especially
in the Pacific Ocean, seem to be an important source of REEs [13–15]. According to Pak
et al. [7] from the South Korean Oceanographic Institute, the total REOs content within
Mn–Fe polymetallic nodules oxides varied between 0.037% and 0.302%, with an average
value of 0.13% (Table 3). According to the same authors, the distributions of the different
REEs within the oxide nodules were as following: 63.6% LC, 19.9% NPD and 16.5% SEGTY.
Pak et al. [7] also reported that Co-rich Fe–Mn crusts contained an average of the total
REO of the order of 0.185% with the distribution of REEs oxides as follows: 66.27% LC,
15.63% NPD and18.1% SEGTY (see previous pages for the terms LC, SEGTY and NPD
explanations).

In the cases mentioned above, deep-sea sediments (mainly red clay sediments) are
within the S. Korean licences in CCZ and promising. They had low total REO contents
including 37.33% SEGTY, 29.21% NPD and 33.45% LC. This means that these sentiments
were significantly enriched in critical REEs such as Sm, Eu, Gd, Tb, Nd and Pr.

From Table 4 and Equation (2), the average relative REO distribution (%) were cal-
culated and are shown in Table 5, together with the median REO content of manganese
nodules from the TOML for a comparison. The values concerning the deep-sea sediments
from the Korean licences in the CCZ were very close to the values presented by Pac et al. [7].



Mater. Proc. 2021, 5, 112 8 of 14

Table 4. REO contents (%) of Mn–Fe nodules, ferromanganese crusts and deep-sea sediments within
the Korean licences in the CCZ [8].

Resource Type (%) Polymetallic Nodule Ferromanganese Crust Deep-Sea Sediment

Mean Mean Mean

La2O3 0.0150 0.0250 0.0070

Ce2O3 0.0650 0.0930 0.0080

Pr2O3 0.0040 0.0050 0.0020

Nd2O3 0.0170 0.0190 0.0090

Sm2O3 0.0040 0.0040 0.0020

Eu2O3 0.0010 0.0020 0.0010

Gd2O3 0.0040 0.0050 0.0020

Tb2O3 0.0010 0.0010 0.0009

Dy2O3 0.0030 0.0040 0.0020

Y2O3 0.0110 0.0210 0.0120

Ho2O3 0.0010 0.0010 0.0008

Er2O3 0.0020 0.0030 0.0010

Yb2O3 0.0020 0.0020 0.0010

TREO 1 0.1300 0.1830 0.0500
1 Total rare earth oxide.

Table 5. REO relative split (%) from deep-sea deposits (polymetallic nodules, Fe–Mn Co-rich crusts
and deep-sea sediments *).

REO
Concentration

(%)

Polymetallic Nodules of
Nautilus Minerals Licence

in the CCZ [12]

Polymetallic Nodule
(Korean Licences) [8]

Ferromanganese
Co-Rich Crust

(Korean Licences) [8]

Deep-Sea Sediment
(Korean Licences) [8]

La2O3 12 11.54 13.51 14.89
Ce2O3 41 50.00 50.27 17.02
Pr2O3 4 3.08 2.70 4.26
Nd2O3 16 13.08 10.27 19.15
Sm2O3 4 0.00 2.16 4.26
Eu2O3 1 0.77 1.08 2.13
Gd2O3 4 3.08 2.70 4.26
Tb2O3 0.6 0.77 0.54 0.00
Dy2O3 3.2 2.31 2.16 4.26
Ho2O3 0.6 0.77 0.54 0.00
Er2O3 1.5 1.54 1.62 2.13
Tm2O3 0.2 0.00 0.00 0.00
Yb2O3 1.5 1.54 1.08 2.13
Lu2O3 0.2 0.00 0.00 0.00
Y2O3 10 8.46 11.35 25.53

Others A 0.2 3.08 0.00 0.00

* This special category of deep-sea sediments is originated from the areas of the Korean licences (Figure 1). A

Includes the REOs such as Ho2O3, Yb2O3, Er2O3 and Lu2O3.

The next step was to calculate and afterwards compare the basket price or the contained
value of deep-sea deposits mentioned above with some well-known and underexploited
REE deposits on land, based on Equation (1) and using the REO prices listed in Table 2.
The results of these calculations are given in Table 6, and the REEs grouping, i.e., LC, NPD,
SEGTY and others described on page 5 (see Table 6), was used. This is very useful, since it
reveals the HREEs contents of the ore deposit.
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Table 6. Mean REO concentrations, REO relative split and calculated total basket prices (contained value) of the studied deep-sea deposits compared with the
selected well-known REE land-based deposits.

Seabed Mineral Resources Land-Based REE Deposits

REO
Concentration

(%)

Polymetallic
Nodules of

Nautilus
Minerals Licence

in C.C.Z. [12]

Polymetallic
Nodule Korean

Licences [8]

Ferromanganese
Crust Korean
Licences [8]

Deep-Sea
Sediment

Korean
Licences [8]

Mt. Pass
USA [9]

Mount Weld
Australia [10]

Nolans Bore
Australia [9]

Longnan
China

[10]

Bay an
Obo China

[10]

Bear
Lodge

USA [16]

Strange Lake
Canada [17]

Round
Top USA

[16]

La2O3 12.00 11.54 13.51 14.89 33.20 23.90 19.10 7.80 23.80 26.83 4.60 3.74
Ce2O3 41.00 50.00 50.27 17.02 49.10 47.50 48.70 2.40 50.10 43.02 12.00 14.74
Pr2O3 4.00 3.08 2.70 4.26 4.30 5.20 5.90 2.40 5.78 4.90 1.40 1.93
Nd2O3 16.00 13.08 10.27 19.15 12.00 18.10 20.60 9.00 17.80 17.88 4.30 5.25
Sm2O3 4.00 0.00 2.16 4.26 0.80 2.40 2.30 3.00 0.90 2.99 2.10 1.89
Eu2O3 1.00 0.77 1.08 2.13 0.10 0.50 0.40 0.00 0.20 0.68 0.20 0.03
Gd2O3 4.00 3.08 2.70 4.26 0.20 1.10 1.00 4.40 0.69 1.64 2.50 1.87
Tb2O3 0.60 0.77 0.54 0.00 0.10 0.10 0.10 0.90 0.08 0.14 0.30 0.64
Dy2O3 3.20 2.31 2.16 4.26 0.10 0.30 0.30 5.30 0.07 0.45 8.20 5.61
Ho2O3 0.60 0.77 0.54 0.00 0.00 0.00 0.10 1.60 0.00 0.00 1.70 1.42
Er2O3 1.50 1.54 1.62 2.13 0.00 0.10 0.10 4.30 0.00 0.00 4.90 5.87

Tm2O3 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.70 1.29
Yb2O3 1.50 1.54 1.08 2.13 0.00 0.00 0.10 3.30 0.00 0.00 4.00 10.23
Lu2O3 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.40 1.59
Y2O3 10.00 8.46 11.35 25.53 0.10 0.80 1.40 56.20 0.10 1.30 52.80 43.90

Others A 0.20 3.08 0.00 0.00 0.00 0.29 0.21 2.37 0.00 0.07 0.00 100.00
Relative REO

distribution (%) LCB 53.00 63.49 63.78 31.91 82.30 71.40 67.80 10.20 73.90 69.85 16.60 18.48

NPDC 23.20 19.05 15.14 27.66 16.40 23.60 26.80 16.70 23.65 23.23 13.90 12.79
SEGTYD 19.60 13.49 17.84 36.17 1.30 4.90 5.20 64.50 1.97 6.75 57.90 48.33

Other REO 0.20 3.97 3.24 4.26 0.00 0.10 0.20 6.40 0.48 0.17 11.60 20.40
LC 1.03 1.19 0.92 0.64 1.63 1.40 1.33 0.21 1.45 1.38 0.32 0.36

Basket price 2015
(USD/kg) [8] NPD 15.98 12.25 10.58 19.80 7.47 10.90 12.30 17.03 10.58 10.98 21.17 15.96

SEGTY 4.65 4.90 4.34 3.88 0.59 1.17 1.08 6.93 0.66 1.63 4.12 4.98
OTHERS 4.17 1.65 1.40 1.88 0.00 0.03 0.14 10.35 0.00 0.00 9.74 28.68
TBP(2015

aver.prices) 25.83 19.99 17.24 26.20 9.69 13.50 14.85 34.53 12.69 13.99 35.36 49.98

TREO 4 (%) 0.13 0.19 0.05 8.0–8.9 7.9–15.5 2.80 0.05–0.2 6.00 2.6–3.2 0.97–1.16
LC 0.77 0.89 0.92 0.45 1.17 1.02 0.98 0.14 1.06 1.00 0.24 0.27

Basket price May 2021
(US$/kg) [11] NPD 27.61 21.28 18.23 34.16 13.39 18.58 22.22 28.44 18.82 19.80 34.49 26.22

SEGTY 8.18 9.30 7.19 3.44 0.14 0.58 1.57 13.18 1.11 0.84 6.48 9.13
OTHERS 3.17 1.65 1.33 1.12 0.00 0.03 0.16 8.11 0.00 0.00 7.69 19.26

TBP (May 2021
prices) 39.72 33.13 27.67 39.17 14.70 20.21 24.93 49.87 20.99 21.63 48.90 54.88

TREO 4 (%) 0.13 0.19 0.05 8.0–8.9 7.9–15.5 2.80 0.05–0.2 6.00 2.6–3.2 0.97–1.16

Abbreviations: LC, La and Ce; NPD, Nd, Pr and Dy; SEGTY, Sm, Eu, Gd, Y and Tb; other REO, Ho2O3, Er2O3, Yb2O3 and Lu2O3; TBP, total basket price. The average annual prices for
the REO data in 2015 were from Argus metal prices [8]. References for the REO data of the land-based REE deposits are from [9,10,17], except for Longnan deposit [8]. TBP: Total basket
price.
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3.1.3. Deep-Sea Sediments in the Korean Licenses in the CCZ

The study of this particular category of deep-sea sediments (mainly red clay sediments)
revealed that, in general, they contain low concentrations of REEs having a range of REOs
between 0.015% and 0.115% with an average of about 0.049%. This value is almost 1/3, if
we compare the REOs contents of the Mn–Fe polymetallic nodules lying within the Korean
licences in the CCZ [7]. The importance of the sentiments lies in the fact that they show
relatively high contents of some very critical REOs such as Sm, Eu, Gd and Y oxides and
high Nd, Pr and Dy oxides (Figure 2A). Therefore, as we can see from Table 6, the calculated
SEGTY and NPD values were 36.17 and 27.66, respectively, which means that although
these sediments had a lower average TREO content, at the same time, they showed higher
total basket prices (the total contained value), in the prices of REOs in May 2021 compared
to Mn–Fe polymetallic nodules and Co-rich crusts within the Korean licenses in the CCZ,
except polymetallic nodules of Nautilus (Tonga offshore mining) (Table 6, Figure 2B).
Knowing that the potential of such deep-sea muds is vast, those formations could indeed
be a very important source for REEs in the future.
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Figure 2. (A) Comparative REO values distributions of the studied seabed deposits with terrestrial
and under-exploited REEs. LC, La and Ce; NPD, Nd, Pr and Dy; SEGTY, Sm, Eu, Gd, Y and Tb; other
REOs, Ho2O3, Er2O3, Yb2O3 and Lu2O3 (Tm2O3 excluded due to its very low values); TREO, total
rare earth oxide (data from Table 6). (B) (TBP) in US$/kg (prices in May 2021) of the REOs from
seabed and land-based and land-based REE deposits. LC, La and Ce; NPD, Nd, Pr and Dy; SEGTY,
Sm, Eu, Gd, Y and Tb; OTHERS, Ho2O3, Er2O3, Yb2O3 and Lu2O3 (Tm2O3 excluded due to its very
low value).

4. Discussion and Conclusions

Based on the rare earth distributions in the CCZ nodules, the licences of both the stud-
ied areas were relatively high in the more critical Nd, Pr, Sm and HREEs (e.g., Dy, Gd, Y and
Tb) (Figure 2A) This is reflected in the current basket prices of the contained REEs, which
lies between 39.72 and 27.67 US$/kg of REOs. Unsurprisingly, this is significantly higher
than five out of eight REEs on land under exploited deposits we used for comparisons.
From Table 6, it is evident that only the well-known on-land REE deposits from Lognan
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in the southeast of Ganzhou, Jiangxi, China, Strange Lake located on the border between
Quebec and Labrador(Canada) and Round Top in Hudspeth County, West Texas, USA,
exhibit higher basket prices than the studied deep-sea deposits. Table 6 also shows that
the oxides of the rare earth in the polymetallic nodules from Nautilus Minerals (TOML)
licences exhibit higher total basket prices than the corresponding polymetallic nodules,
Fe–Mn crusts and deep-sea sediments of the Korean licences.

In REEO prices in 2021, the highest (in %) components La2O3 and Ce2O3 (LC) had
the lowest basket brace (0.45–0.92 USD/kg), whereas Nd2O3, Pr2O3 and Dy2O3 (NPD) are
the most expensive (18.23 to 34.16 USD/kg; Table 6). On the contrary, the Sm2O3, Eu2O3,
Gd2O3, Tb2O3 and Y2O3 (SEGTY) group had a considerable high basket price, meaning
it had a higher overall value (9.3 USD/kg) than LC, despite its lower abundance (Table 6;
Figure 2A,B).

From the economic point of view, the virtual content of the critical HREEs is higher in
deep seabed deposits than in the most extensive land-based REE mines, for example, the
largest REE mine, Obo (China) and the second-largest, MP (U.S.A.) [7,17]. Both land-based
deposits mentioned above contain less than 1% HREEs (a percentage of the total REE
content). In contrast, the CCZ nodules have a relative content of 26% HREEs, and Pacific
crusts have an average of more than 18% HREEs [12].

For example, smaller land-based REE deposits, the ion-adsorption clays in Southern
China, have similar HREE concentrations in marine deposits.

Linking CCZ nodules and Pacific prime crusts with these two largest existing land-
based REE mines, we concluded that land-based deposits are generally higher in grade
but considerably lower in the ore tonnage. However, the contained REEs in the crusts and
nodules are comparable and evidently better than those in Obo and MP confirming Hein’s
findings in 2012 [17].

A major advantage of the studied deep-sea deposits is that the SEGTY group (Sm2O3,
Eu2O3, Gd2O3, Tb2O3 and Y2O3) appears to have higher basket prices than six out of the
eight studied land-based under-exploited REE deposits (Table 6; A implying the huge
potential of these deep-sea deposits for a future major source of REEs.

5. Concluding Remarks

Our data and calculated evaluation proved that the total basket prices (total contained
value) of REOs from the studied two licences in the CCZ were considerably higher than
many well-known terrestial REE deposits being under exploitation. These data confirmed
the findings of Hein et al. that these types of deep-ocean mineral deposits can be an
economically acceptable source of critical metals, especially REEs for high- and green-
technology applications, compared with well-known terrestrial REE deposits, for example,
Obo in China and MP in the U.S.

Compared with terrestrial REE deposits, these deep-sea mineral deposits were low-
grade mineral deposits with a much higher tonnage. In addition, our calculations proved
that the relative quantities of the more valuable rare earth components, i.e., NPD and
SEGTY, were higher in the nodules and Fe–Mn Co-rich crusts than terrestrial ores. This
resulted in a nominal product basket price considerably higher than product mixes from
terrestrial deposits. However, it should be stressed that there is no concrete know-how of
possible recovery profiles.

The significant advantages in the technology of deep-sea mining and metallurgical
treatment of nodules and crusts are in combination with the fact that significant terrestial
REE deposits are exhausted due to heavy exploitation, making the whole story economically
attractive and promising.

It is essential to mention here that this future economic potential is even more signifi-
cant if we take into account that the existing fields of Mn nodules and Co-rich crusts with
high amounts of REEs in the other areas of the Pacific Ocean (Cook Islands, Peru basin), as
well as in the Atlantic and Indian Oceans [18], have not yet been passed from technical and
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economic assessment to have a clear view of their economic value in base metals (Ni, Co
and Cu) and REEs.

We must clarify that while most terrestrial mines produce REEs as the primary ore,
REEs in Fe –Mn nodules and Co-rich crust deposits will be extracted as a byproduct of
the principal metals Mn, Ni Cu and Co. Therefore, the costs of mining, transportation,
initial ore crunching and tailings dumping are associated with the costs of extracting the
four primary target metals. This fact will enhance the economic feasibility of extracting
significant commodities.

One significant issue is also that REEs are not part of the crystal lattice of host minerals
within deep-sea mineral deposits. This fact makes mining and metallurgical treatment
economically favourable. In addition, it means there is no requirement to crush or pulverise
REE-bearing host minerals during ore processing, and the very low Th and U concentrations
do not pose environmental risks as happens in many well-known land-based REE deposits.

Spiekermann [19] verified that the metallurgical processing for the extraction of Ni, Cu,
Co and Mn (and water) increases the value of HREEs in the manganese nodule byproduct
material to $380/tonne in metals prices in 2012. According to the same author, this is a
desirable value, as it is 165% of MP (approximately $230) and 57% of Kutessay II ($664) [13].

The environmental factor is a significant and complicated part of the story. There is no
doubt that any mining activity on land or in the sea will have environmental impacts of
different kinds. It is also true that the marine environment has been studied less than the
terrestrial environment, and it seems to be more fragile compared to the land environments.
Therefore, systematic studies and stringent environmental regulations should be applied for
the mining companies, which will undertake deep-sea mining. Deep-sea mining certainly
will have an impact on the deep-sea environment. The nature and extent of the possible
environmental effects remain unknown in many aspects, which is necessary for a cautious
approach to the deep sea’s development. However, deep-sea mining might also have
positive environmental impacts. For example, according to the research published recently
by Canada’s DeepGreen Metals [20], their project to produce cobalt and other battery metals
from mining Co-rich crusts and nodules “generates up to 70% less direct CO2 emissions,
94% less stored carbon risk, as well as 90% fewer sulphur oxides (SOx) and nitrogen oxides
(NOx) emissions—air pollution from maritime transportation” [20].

The ISA has set up some environmental rules and regulations concerning deep-sea
mining, which is compulsory for mining companies working in international seas, beyond
national jurisdiction.

We also have to clarify that any environmental impact is applicable not only for
REEs, but primarily for the main products of manganese nodules and Fe–Mn crusts rich in
valuable battery metals, i.e., Ni, Co and Cu.
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