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Abstract: This study investigates the flow of a magnetohydrodynamic (MHD) Maxwell fluid over a
stretching sheet using a Darcy-Forchheimer (DF) model. We employ numerical analysis with a copper
(Cu) nanofluid suspended in water, considering Cattaneo–Christov heat flow, viscous dissipation,
and joule heating. Nonlinear ordinary differential equations (ODEs) are solved using the bvp4c
method in Matlab and we examine the normalized shear stress, temperature profile, and heat flux
rate. Our findings reveal insights for practical applications, showing how parameters such as the
relaxation Prandtl number, magnetic parameter, Eckert number parameter, and radiation parameter
impact system behaviour.

Keywords: Darcy-Forchheimer model; Maxwell fluid; MHD; nanofluid; Cattaneo–Christov heat flux
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1. Introduction

The study of magnetohydrodynamics Maxwell flow over a stretching sheet has been
significantly influenced by the Darcy-Forchheimer model. The Darcy-Forchheimer model
has been investigated by a large number of researchers as a potential tool for analysing
the flow patterns shown by a variety of fluids in a variety of configurations [1]. Studying
magnetohydrodynamics Maxwell flow over a stretching sheet is a major application of the
Darcy-Forchheimer model. This is one of the most important applications of the model.
Researchers Muskat, Brinkman, and Forchheimer [2] were among the pioneers in the field
who first reported applying the Darcy-Forchheimer model to the investigation of nonlinear
systems. The magneto-Darcy-Forchheimer flow of Maxwell fluid over a convectively heated
surface was one of the topics that Seddeek researched. Seddeek looked into how the flow
characteristics of the Maxwell fluid were affected when magnetic fields and convective heat
transfer were taken into consideration. Both the Cattaneo–Christov model and the Darcy-
Forchheimer model were taken into consideration as Pal and Mondal [3] investigated the
flow of Oldroyd-B fluid with heat flux using the Cattaneo–Christov model. Jha et al. came
up with a nonlinear Brinkman–Forchheimer extended Darcy flow model, which further
improved the comprehension of how fluids behave when flowing through porous media [4].
In addition to this, Sadiq and Hayat looked at the Darcy-Forchheimer flow of a magneto
Maxwell liquid that was surrounded by a sheet that was heated convectively. Because it
offers a more accurate picture of how flow behaves in porous media, the Darcy-Forchheimer
model has seen extensive usage in the research of magnetohydrodynamics Maxwell flow
over a stretching sheet [5]. Because it takes into account both viscous and inertial forces
in porous media, the Darcy-Forchheimer model is an excellent choice for analysing the
behaviour of fluids in circumstances in which both forces play a substantial role, such as
MHD Maxwell flow over a stretching sheet [6,7]. Studies have demonstrated that the Darcy-
Forchheimer model provides a better understanding of the flow behaviour in porous media
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compared to the standard Darcian model. This is because the Darcy-Forchheimer model
takes into account the physics of flow in porous media. The Darcy-Forchheimer model
contains additional elements to account for the inertial effects in the flow, which become
increasingly relevant as the flow velocity increases. These inertial effects in the flow become
increasingly important as the flow velocity increases. These additional words allow for a
more realistic depiction of the flow behaviour, particularly in scenarios in which the flow
is influenced by external forces such as heat transfer or magnetic fields. This is especially
useful when describing flows that are affected by such factors [8]. The implementation of
the Darcy-Forchheimer model in the investigation of MHD Maxwell flow over a stretching
sheet has made a substantial contribution to our improved comprehension of the fluid
dynamics involved in these systems. Researchers have been able to obtain insights into
how the behaviour of the flow is affected by elements such as magnetic fields, convective
heat transfer, and varying viscosity by using this model.

2. Mathematical Formulation

In this study, magnetohydrodynamics (MHD) is used to explore the flow of a non-
Newtonian Maxwell nanofluid across a medium that has a Darcy-Forchheimer porous
structure. It is presumed that the flow is laminar and two-dimensional (2D), which indicates
that it takes place in two dimensions and that the different layers of fluid do not mix with
one another (Figure 1). It is assumed that the thermal conductivity of the nanofluid changes
as the temperature does, because the nanofluid is composed of nanoparticles of titanium
dioxide (TiO2) that are suspended in water. It is presumed that the flow is radiative as
well, which indicates that heat is being transmitted not just by conduction and convection
but also through radiation. It is assumed that the surface that is being stretched has a
Darcy porosity, which indicates that the flow through the surface is controlled by Darcy’s
law. The Cattaneo-Christov model is used to represent the heat flux; this model accounts
for the fact that the speed at which heat travels has a finite value. It is also taken into
account that the flow loses energy owing to friction, which is what is meant by the term
“viscous dissipation”. Because of these assumptions and limitations, it is possible to create
a simplified mathematical model that can be applied to the investigation of the flow of non-
Newtonian Maxwell nanofluids inside Darcy-Forchheimer porous structures using MHD.
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Figure 1. Under the above assumptions, the continuity, momentum, and energy of nanoparticles
equations based on a Darcy flow model are as follows: for numerous values of δm.
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The suitable boundary conditions are

u = uw = ax, v = 0, T = Tw at y = 0, u → 0, T → T∞, as y → ∞ (4)

where µn f , ρn f ,
(
ρCp

)
n f , kn f , and σn f are demonstrated below and the thermo physical

features of the considered nanofluid flow are given in Table 1.
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Table 1. Features of nanofluid and base fluid.

Nanoliquid Physical
Properties Cp(J/kgK) ρ(kg/m3) k(W/mK) σ(Sm−1)

Base Liquid (Water) 4179 997.1 0.613 0.05

Copper 385 8933 400 5.97 × 107

Alumina 765 3970 40 ------

The appropriate similarity transformation:

u = ax f ′(η), v = −√aν f f (η), θ(η) =
T − T∞

Tw − T∞
, η =

√
a

ν f
y (6)

With the help of Equation (6), the momentum and heat equation, along with boundary
conditions, transform to a non-dimensional form, as follows:

D1 f ′′′ + D2
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))
+ D5MEcPr f ′2 = 0

(8)

f ′(0) = 1, f (0) = 0, θ(0) = 1 f → 0, θ → 0, as η → ∞ (9)

The Maxwell fluid parameter, magnetic parameter, porosity parameter, local inertia
coefficient, Prandtl number, Eckert number, and thermal relaxation parameter are all
important factors in the equation.

3. Results and Discussions

The primary objective of this study is to examine the phenomena of flow and heat
transfer in the context of stretching sheets, specifically employing a nanofluid composed
of copper nanoparticles. The bvp4c technique is employed to transform nonlinear partial
differential equations into nonlinear ordinary differential equations, enabling the computa-
tion of numerical solutions and facilitating a thorough analysis of the system’s dynamics.
Figures 2–5 contain graphical depictions and analytical observations pertaining to the be-
haviour of the system, facilitating the derivation of well-informed conclusions and enabling
subsequent investigation. The findings presented in Figure 2 demonstrate that an increase
in the Maxwell fluid parameter leads to a corresponding increase in fluid elasticity. This
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heightened elasticity, in turn, gives rise to higher attractive forces among nanoparticles.
Consequently, the formation of particle chains occurs, which hinders the flow of the fluid
and subsequently reduces its radial velocity. The influence of the magnetic parameter,
represented as M, on fluid velocity is seen in Figure 3. This effect can lead to the emergence
of magnetic chains or clusters, particularly in fluids containing magnetic nanoparticles.
The study demonstrates a link between fluid temperature and the magnetic parameter
M, as depicted in Figure 4. The rise in fluid temperature is a consequence of the Joule
heating effect, resulting from an increase in the magnetic parameter. This increase leads
to oscillations in magnetic nanoparticles. This phenomenon results in the production of
heat and the dispersion of thermal energy. The establishment of this relationship holds
significant importance in the examination and manipulation of heat transfer characteris-
tics within magnetic fluid applications. Figure 5 illustrates the correlation between the
fluid temperature and the Eckert number parameter, Ec. The outcomes demonstrate that
with an upsurge in the Eckert number parameter, there is a corresponding upsurge in the
temperature of the fluid. The Eckert number parameter denotes the ratio of the fluid’s
kinetic energy flux to its thermal energy. When the Eckert number parameter is higher, it
indicates a greater conversion of kinetic energy into thermal energy within the fluid. This
conversion process is known as viscous dissipation, where the friction between the fluid
and its surroundings dissipates the fluid’s kinetic energy into heat. A higher value of the
Eckert number parameter results in a greater conversion of kinetic energy into thermal
energy, consequently leading to an elevated temperature of the fluid.

Figure 2. Moderation of f ′(η) for numerous values of δm.

Figure 3. Moderation of f ′(η) for numerous values of M.
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Figure 4. Moderation of θ(η) for numerous values of M.

Figure 5. Moderation of θ(η) for numerous values of Ec.

4. Conclusions

This study examines the flow and heat transfer characteristics of a copper nanofluid
over a stretching sheet using the bvp4c technique. The Maxwell fluid parameter, magnetic
parameter, and Eckert number parameter significantly impact the system’s dynamics. An
increase in the Maxwell fluid parameter leads to fluid elasticity, particle chains, and reduced
radial velocity. The magnetic parameter creates magnetic chains and clusters, affecting
fluid temperature and thermal energy production. The Eckert number parameter indicates
greater viscous dissipation, leading to elevated fluid temperature. These findings can be
used to design and optimize systems for various applications.
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