
����������
�������

Citation: Spikes, H.J.; Jarrett-Noland,

S.J.; Germann, S.M.; Olivas, W.;

Braddock-Wilking, J.; Dupureur, C.M.

Group 14 Metallafluorenes for Lipid

Structure Detection and Cellular

Imaging. Chem. Proc. 2021, 5, 83.

https://doi.org/10.3390/

CSAC2021-10455

Academic Editor:

Nicole Jaffrezic-Renault

Published: 30 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Group 14 Metallafluorenes for Lipid Structure Detection and
Cellular Imaging †

Helena J. Spikes, Shelby J. Jarrett-Noland, Stephan M. Germann, Wendy Olivas, Janet Braddock-Wilking
and Cynthia M. Dupureur *

Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO 63121, USA;
hjs7c5@mail.umsl.edu (H.J.S.); sjdzd@umsystem.edu (S.J.J.-N.); smg8v5@mail.umsl.edu (S.M.G.);
olivasw@umsl.edu (W.O.); wilkingj@umsl.edu (J.B.-W.)
* Correspondence: cdup@umsl.edu; Tel.: +1-314-516-4392
† Presented at the 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry,

1–15 July 2021; Available online: https://csac2021.sciforum.net/.

Abstract: Fluorescent compounds have been shown to be useful in probing lipid dynamics, and
there is ongoing interest in nontoxic, photostable, and sensitive dyes. Recently, we evaluated
a number of 2,7-disubstituted-alkynyl(aryl)-3,6-dimethoxy-9,9-diphenyl sila- and germafluorenes
for their potential as cellular fluorescent probes. These compounds exhibit remarkable quantum
yields in hydrophobic environments and dramatic increases in emission intensity in the presence of
surfactants. Here, we show that they exhibit significant emission enhancements in the presence of
small unilamellar vesicles and are nontoxic to E. coli, S. aureus, and S. cerevisiae. Furthermore, they
luminesce in S. cerevisiae cells with strong photostability and colocalize with the lipid droplet stain
Nile Red, demonstrating their promise as lipid probes.

Keywords: fluorescence; lipid; metallafluorene

1. Introduction

The introductory understanding of the role of biological membranes is that they are
barriers and are used to regulate transport and for energy processes. Only fairly recently
has there been a developing understanding that membranes are dynamic in their lipid
composition and properties, and that these local differences participate in cellular processes
in a profound way and have been linked to disease states [1,2], including cellular stress [3].

Fluorescence spectroscopy is an accessible and powerful tool for the sensing of
molecules and their behaviors, including binding interactions, conformational changes, and
catalytic activities, in both in vitro and in vivo via cellular imaging [4]. Due to their ability
to respond to changes in molecular environment, molecules that exhibit intramolecular
charge transfer (ICT) or excited-state intramolecular proton transfer (ESIPT) are particularly
attractive as probes of lipids, their interactions, and dynamics [5,6].

Probes commonly used for such purposes include Nile Red, dansyl, NBD [7], and
F2N12S [6]. These vary with respect to relevant properties such as the excitation and
extinction wavelength, extinction coefficient, working concentration (sensitivity), photosta-
bility, and quantum yield, all of which can impact their utility. When this is coupled with
the rapidly expanding research area, it is no surprise that a call for more probes to meet
expanding needs is prominently articulated [5].

Recently, we evaluated a small library of sila- and germafluorenes (metallafluorenes or
MFs) containing alkynyl(aryl) substituents at the 2,7-position ([8,9]; Figure 1) for their po-
tential as fluorescent probes of surfactants. These compounds are soluble and luminescent
in aqueous solution and exhibit high quantum yields and dramatic emission enhance-
ments in the presence of various surfactants (5–25-fold) [10]. These results suggest that
MFs could have biological applications. Here, we examine the sensitivity, toxicity, and
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photostability of MFs toward lipids both in vitro and in vivo and demonstrate the potential
of these compounds as lipid probes. Indeed, they are sensitive to DOPC small unilamellar
vesicles (SUVs) with significant fluorescence enhancements. These dyes show no toxicity
to Gram-positive bacteria, Gram-negative bacteria, and yeast cells and demonstrate high
photostability. When compared to the commercially available lipid droplet dye Nile Red,
these MFs show strong colocalization with more punctate staining, demonstrating their
potential as lipid probes.
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Xylene was obtained from ThermoFisher (Waltham, MA, USA). All chemicals were of 
reagent grade and were used as received without further purification. Compounds 1–4 
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4-ethynyl-1,1′-biphenyl substitutent; 2 germanium based 2-ethynyl-6-methoxynaphthalene substitutent;
3 silicon based 4-ethynyltoluene substitutent; 4 silicon based 1-ethynyl-3-fluorobenzene substitutent.

2. Materials and Methods
2.1. Materials

Phospholipids were purchased from Avanti Polar Lipids (Alabaster, AL, USA). Two-
hundred-proof ethanol was purchased from Decon Labs (King of Prussia, PA, USA). DMSO
and Nile Red were obtained from Millipore Sigma (Milkwaukee, WI, USA). p-Xylene was
obtained from ThermoFisher (Waltham, MA, USA). All chemicals were of reagent grade and
were used as received without further purification. Compounds 1–4 were synthesized as
previously described using an appropriate alkynyl(aryl) precursor in a palladium-catalyzed
Sonagashira cross-coupling reaction [8,9] and dispensed from stocks in DMSO as previously
described [10].

2.2. Preparation of Small Unilamellar Vesicles (SUVs)

At 25 ◦C, a stock concentration of 4.2 mM DOPC was prepared by drying under
inert gas and then resuspended in 10 mM Tris buffer. After 30 min, DOPC was sonicated
for 27 min at 25 ◦C until cloudy. The DOPC-SUV solution was then passed through
an Avanti Mini Extruder eleven times to make uniformly sized 0.1 µm DOPC-SUVs at
25 ◦C. DOPC-SUVs were then diluted to 0.1 mM in a quartz cuvette for fluorescence
measurements [11,12].

2.3. Spectroscopy

Absorbance spectra were recorded on a Shimadzu 1800 (Kyoto, Japan) with slits (band-
pass) set to 1 nm. Emission spectra were collected in an acid-washed quartz cuvette on a
Fluorolog-3 (SPEX) spectrofluorimeter (Horiba Scientific, Piscataway, NJ, USA). The temper-
ature was maintained at 25 ◦C with a thermostatted cell holder equipped with a magnetic
stirrer. Emission spectra were collected with the indicated excitation wavelength and slits
(bandpass). MF photostability in xylene was observed at the indicated emission maximum.
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2.4. Microbial Toxicity

Culture tubes containing LB media or YPD media were inoculated with Escherichia coli
(Gram-negative), Staphylococcus aureus (Gram-positive), or Saccharomyces cerevisiae, respec-
tively. Compounds 1–4 were added such that the final DMSO concentration was 2–10%
and the MF at its solubility limit in the media. The tubes were incubated at either 37 ◦C
(bacteria) or 30 ◦C (yeast) overnight and visually inspected for growth.

2.5. Confocal Laser Scanning Microscopy

Samples were prepared by smearing a small amount of cells onto a glass microscope
slide and heat-fixed by passing the slide through a flame no more than 5 times. Then, 1–4
or NR was applied to heat-fixed cells at 15 µM and incubated at room temperature for
15 min for MFs and 10 min for Nile Red. Slides were then rinsed with 2–3 mL of deionized
water, topped with coverslips, and sealed with clear nail polish. Cells were imaged with
a Zeiss LSM 900 (Zeiss, Oberkochen, Germany) confocal microscope with an excitation
wavelength of 405 nm. For photostability, the sample was illuminated with 1% laser power
and images collected periodically.

3. Results and Discussion
3.1. Spectroscopic Studies

To assess their sensitivity to a biologically relevant membrane, the emission spec-
tra of 1–4 were compared in the absence and presence of DOPC-SUVs. As shown in
Figure 2, fold-enhancements range from two- to sevenfold, with 1 and 2 showing the most
dramatic changes.
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Figure 2. Emission spectra of MFs 1–4 (as numbered in Figure 1) in the absence (dashed) and presence
(solid) of 0.1 mM DOPC-SUVs. Conditions: 1 µM MF, 0.1 mM DOPC, 10 mM Tris pH 8, 25 ◦C. The
excitation wavelength was 387 nm and the slits (bandpass) set to 1.0 nm. Three minute incubation.

The photostability of these MFs was initially probed by observing the emission signal
as a function of time in xylene, which is used to mimic the interior of membranes [13]. As
summarized in Figure 3, these signals are remarkably stable over two hours of continuous
excitation. Together, the responsiveness to SUVs and photostability in xylene indicate
promise for MFs as probes of lipids in vivo.
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Figure 3. Photostability in vitro. Compounds 1–4 (as defined in Figure 1) were diluted into p-xylene
and excited continuously. Conditions: 1 µM MF, 0.1–0.4% DMSO. 1: excitation at 387 nm, slits 1 nm;
2: excitation at 390 nm, slits 0.8 nm; 3: excitation at 376 nm, slits 0.9 nm; 4: excitation at 376 nm,
slits 0.9 nm.

3.2. Microbial Toxicity Studies

To assess their potential for use in cellular imaging, MFs were screened for toxicity
against microorganisms. For yeast, E. coli and S. aureus, no inhibition of growth was
observed at the MF solubility limit in media (at least 50 µM).

3.3. Imaging of S. cerevisiae with Metallafluorenes

To determine if these MFs can be used to stain cells, 1–4 were introduced to yeast cells
and subsequently imaged using confocal microscopy. Figure 4 illustrates that in all cases,
the MF emission intensity is visible inside fixed yeast cells.
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Figure 4. Confocal imaging of MFs 1–4 in yeast cells. Conditions: 15 µM MF as indicated, 63×. The
excitation wavelength was 405 nm and scan range 400–600 nm. Numbers refer to MFs as defined in
Figure 1.

To assess the MF photostability in yeast cells, excitation was applied and fluorescence
was observed as a function of time. As summarized in Figure 5 for 1 and 2, fluorescence
persisted for over 2 min, with 2 showing greater photostability. See Supplemental Figure S1
for photostability studies of 3 and 4.
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Finally, to determine where these MF localize in yeast, we costained with Nile Red, a
well-known lipid droplet stain [14]. As shown in Figure 6, 1 yields more punctate images
and colocalizes with this probe, demonstrating clear specificity for S. cereviseiae organelles,
including the vacuole and possibly lipid granules. See Supplemental Figure S2 for a
colocalization study of 2 and 4.
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4. Conclusions

We show here that these metallafluorenes have good photostability and are sensitive
to lipid structures in vitro, demonstrating impressive fold enhancements in the presence of
SUVs. Furthermore, they are non-toxic to cells and can enter cells and colocalize with Nile
Red, a lipid probe. In addition, the higher extinction coefficients of MFs and competitive
quantum yields [10] make them more sensitive. All of these observations bode well for the
application of MFs as lipid probes both in vitro and in vivo. The synthetic scaffolding of
these MFs provides convenient tuning of desired properties by changing the 2,7 substituent.
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This feature facilitates designs that incorporate optimal solubility, emission spectra, dipole
moment, and solvatochromism for specific applications.

5. Patents

WO/2020/210416; PCT International Patent Application No.: PCT/US2020/027355.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/CSAC2021-10455/s1, Figure S1: Photostability of 3 and 4 in Yeast Cells, Figure S2: 2 and
4 Colocalize with Nile Red in Yeast.
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