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Abstract: The separation of toxic pollutants like Pb2+, Cd2+ and Al3+ from water is a constant challenge 

as contamination of natural water bodies is increasing. Al3+ and especially Pb2+ and Cd2+ are ecotoxic 

and highly toxic for humans even in ppb concentrations, therefore removal below a dangerous level is 

demanding. Herein, the potential adsorber material starch as it is ecofriendly, cheap and abundantly 

available was investigated. Thus, four different native starch samples (potato, corn, waxy corn and 

wheat starch) and two oxidized starches (oxidized potato and corn starch) were comprehensively 

analyzed with streaming potential and charge density measurements, SEM-EDX, ATR-FTIR, 1H-NMR 

and TGA. Subsequently, the starch samples were tested for the adsorption of Pb2+, Cd2+ and Al3+ from 

the respective sulfate salt solution. The adsorption process was analyzed by ICP-OES and SEM-EDX 

and the adsorption isotherms were fitted comparing Langmuir, Sips, and Dubinin-Radushkevich 

models. Oxidized starch, which chemical modification is one of the simplest, and also native potato 

starch were excellent natural adsorber materials for Al3+, Cd2+ and especially Pb2+ in the low 

concentration range, exhibiting maximum adsorption capacities of 84 µmol/g, 71 µmol/g, and 

104 µmol/g for oxidized potato starch, respectively. 
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1. Results 

1.1 Characterization of the Starch Samples 

1.1.1 1H-NMR Spectroscopy  

 

Figure S1. Integrals of H1 (α 1,4) + H1 (t) and H1 (α 1,6) from oxidized potato starch. 
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1.1.2 ATR-FTIR Spectroscopy 

 

Figure S2. ATR-FTIR spectra of the solid native potato starch (blue), native corn starch (red), native waxy 

corn starch (orange), native wheat starch (green), oxidized potato starch (light blue) and oxidized corn 

starch (pink). 

Table S1. FTIR vibration modes [1–3] for the starch samples. 

Wavenumber (cm−1)  Vibration Mode  

3000–3680  O-H stretching 

2933 CH2νas 

2894 CH2νs 

1643 water adsorbed in amorphous regions of starch 

1457 CH2 δ 

1418 CH bending 

1371 CH δ 

1336 COH bending/ deformation 

1245 COH and CH bending of ring H 

1150 C-O, C-C stretching 

1079 C-O-H bending 

998  CH2 related mode 

930 C-O-C skeletal mode vibrations, related to α-1,4 glycosidic bond 

858 C-O-H bending 

765 + 706 C-C stretching 
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1.1.2 Moisture Analysis of the Samples 

 

 
Figure S3. Moisture analysis of the samples carried out at 150 °C. 
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1.1.3 Particle Size Measurement in Dry State 

 

Figure S4. Particle size distribution of the starch samples in dry state. 
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1.1.4 SEM-EDX analyses of the starch samples before adsorption 

 

 

Figure S5. (a) SEM images and SEM-EDX elemental mappings from native potato starch, (b) sum 

spectrum (blue) and maximum pixel spectrum (red). 
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Figure S6. (a) SEM images and SEM-EDX elemental mappings from native corn starch, (b) sum spectrum 

(blue) and maximum pixel spectrum (red). 
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Figure S7. (a) SEM images and SEM-EDX elemental mappings from native waxy corn starch, (b) sum 

spectrum (blue) and as maximum pixel spectrum (red). 
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Figure S8. (a) SEM images and SEM-EDX elemental mappings from native wheat starch, (b) sum 

spectrum (blue) and maximum pixel spectrum (red). 
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Figure S9. (a) SEM images and SEM-EDX elemental mappings from oxidized potato starch, (b) sum 

spectrum (blue) and maximum pixel spectrum (red). 
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Figure S10. (a) SEM images and SEM-EDX elemental mappings from oxidized corn starch, (b) sum 

spectrum (blue) and maximum pixel spectrum (red). 
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1.1.5 Gas Sorption Analysis and Pore Size Distribution 

 

Figure S11. (a) Nitrogen sorption isotherms at 77 K and (b) carbon dioxide sorption isotherms at 273 K 

of native potato starch (blue), native corn starch (red), native waxy corn starch (orange), native wheat 

starch (green), oxidized potato starch (light blue) and oxidized corn starch (pink). 
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1.2 Adsorption Experiments 

1.2.1 pH Values before and after the Sorption Processes of Screening Experiments with Al3+, Pb2+ and Cd2+ 

 

 

Figure S12. pH values for the experiments with Al2(SO4)3 solution of 0.11 mg/L and 1.09 mg/L Al3+ before 

(pH0) and after (pHeq) the adsorption process of native potato starch (blue), native corn starch (red), 

native waxy corn starch (orange), native wheat starch (green), oxidized potato starch (light blue) and 

oxidized corn starch (pink). pH0 corresponds to the pH value of the adsorptive solution before the 

experiment and pHeq corresponds to the pH value after the adsorption process. 
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Figure S13. pH values for the experiments with CdSO4 solution of 0.11 mg/L and 1.12 mg/L Cd2+ before 

(pH0) and after (pHeq) the adsorption process of native potato starch (blue), native corn starch (red), 

native waxy corn starch (orange), native wheat starch (green), oxidized potato starch (light blue) and 

oxidized corn starch (pink). pH0 corresponds to the pH value of the adsorptive solution before the 

experiment and pHeq corresponds to the pH value after the adsorption process. 

  



Supporting Information 
 

16 
 

 

Figure S14. pH values for the experiments with PbSO4 solution of 0.08 mg/L and 0.91 mg/L Pb2+ before 

(pH0) and after (pHeq) the adsorption process of native potato starch (blue), native corn starch (red), 

native waxy corn starch (orange), native wheat starch (green), oxidized potato starch (light blue) and 

oxidized corn starch (pink). pH0 corresponds to the pH value of the adsorptive solution before the 

experiment and pHeq corresponds to the pH value after the adsorption process. 
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1.2.2 Sulfate Adsorption in Screening Experiments with Al3+, Pb2,+ and Cd2+ 

 

Figure S15. Percentage adsorption of SO42− ions from (a) Al2(SO4)3 adsorption experiments with an initial 

concentration of aluminum ions of 0.11 mg/L (solid) and 1.09 mg/L (striped); (b) CdSO4 adsorption 

experiments with an initial concentration of cadmium ions of 0.11 mg/L (solid) and 1.12 mg/L (striped); 

(c) PbSO4 adsorption experiments with an initial concentration of lead ions of 0.08 mg/L (solid) and 0.91 

mg/L(striped) onto native potato starch (blue), native corn starch (red), native waxy corn starch (orange), 

native wheat starch (green), oxidized potato starch (light blue) and oxidized corn starch (pink) in 

screening experiments with Al3+, Pb2+, and Cd2+.  
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1.2.3 Sulfate Adsorption and pH Values before and after the Adsorption Process in Sorption Isotherm 

Experiments with Al3+, Pb2+, and Cd2+ 

 

 

Figure S16. (a) SO42− percentage adsorption and (b) corresponding pH0 and pHeq values from adsorption 

of Al2(SO4)3 solution onto the starch samples with native potato starch (blue), native corn starch (red), 

oxidized potato starch (light blue) and oxidized corn starch (pink). pH0 (black) corresponds to the pH 

value of the adsorptive solution before the experiment and pHeq corresponds to the pH value after the 

adsorption process. 

 

 

Figure S17. (a) SO42− percentage adsorption and (b) corresponding pH0 and pHeq values from adsorption 

of CdSO4 solution onto the starch samples with native potato starch (blue), native corn starch (red), 

oxidized potato starch (light blue) and oxidized corn starch (pink). pH0 (black) corresponds to the pH 

value of the adsorptive solution before the experiment and pHeq corresponds to the pH value after the 

adsorption process. 
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Figure S18. (a) SO42− percentage adsorption and (b) corresponding pH0 and pHeq values from adsorption 

of PbSO4 solution onto the starch samples with native potato starch (blue), native corn starch (red), 

oxidized potato starch (light blue) and oxidized corn starch (pink). pH0 (black) corresponds to the pH 

value of the adsorptive solution before the experiment and pHeq corresponds to the pH value after the 

adsorption process. 

 

 

Figure S19. (a) SO42− percentage adsorption and (b) corresponding pH0 and pHeq values from adsorption 

of PbSO4 solution onto 10 mg of the starch samples with native potato starch (blue), native corn starch 

(red), oxidized potato starch (light blue) and oxidized corn starch (pink). pH0 (black) corresponds to the 

pH value of the adsorptive solution before the experiment and pHeq corresponds to the pH value after 

the adsorption process. 
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1.2.4 SEM-EDX Analysis of Samples after Adsorption 

Spot analysis of oxidized potato starch (10 mg/ 30 mL adsorbent dose) after adsorption experiment 

with PbSO4 solution: 

 

Figure S20. SEM image of oxidized potato starch (10 mg/ 30 mL adsorbent dose) after adsorption 

experiment with PbSO4 solution at 1000 fold magnification with the location of the following spot 

analysis by EDS. 

 

Table S2. Relative atomic concentration derived from spot analyses (location in Figure S20) at oxidized 

potato starch (10 mg/ 30 mL adsorbent dose) after adsorption experiment with PbSO4 solution. 

Element  

 Symbol 

Element  

 Name 

Atomic Concentration 

in Rel. Atomic% 

Map Spot 1 Spot 2 Spot 3 Spot 4 

C Carbon 54.2 61.9 75.6 77.6 55.5 

O Oxygen 45.6 29.9 23.7 22.0 44.0 

Pb Lead 0.2 3.1 0.7 0.4 0.5 

S Sulfur 0.0 5.1 0.0 0.0 0.0 
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Figure S21. SEM image of oxidized corn starch (10 mg/ 30 mL adsorbent dose) after adsorption 

experiment with PbSO4 solution at 1000 fold magnification with the location of the following spot 

analysis by EDS. 

 

Table S3. Relative atomic concentration derived from spot analyses (location in Figure S21) at oxidized 

corn starch (10 mg/ 30 mL adsorbent dose) after adsorption experiment with PbSO4 solution. 

Element  

 

Symbol 

Element  

 Name 

Atomic Concentration 

in Rel. Atomic% 

Map Spot 1 Spot 2 Spot 3 Spot 4 Spot 5 

C Carbon 52.4 73.4 58.6 64.4 68.2 75.4 

O Oxygen 47.4 26.2 27.5 34.9 31.1 24.3 

Pb Lead 0.2 0.4 5.2 0.7 0.7 0.3 

S Sulfur 0.0 0.0 8.6 0.0 0.0 0.0 
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1.3 Comparison of Fitting Models for Sorption Isotherm Experiments with Al3+, Pb2+, and Cd2+ 

 

1.3.2 Fittings for Al3+ Sorption Isotherms 

 

 

Figure S22. Comparison of isotherms fitted for the Langmuir, Sips and Dubinin-Radushkevich models 

for the adsorption of Al3+ from Al2(SO4)3 solution with native potato starch (blue), oxidized potato starch 

(light blue) and oxidized corn starch (pink). Native corn starch (red) does not exhibit a viable fitting for 

the above mentioned models. 
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1.3.3 Fittings for Cd2+ Sorption Isotherms 

 

Figure S23. Comparison of isotherms fitted for the Langmuir, Sips and Dubinin-Radushkevich model 

for the adsorption of Cd2+ from CdSO4 solution with native potato starch (blue), oxidized potato starch 

(light blue) and oxidized corn starch (pink). Native corn starch (red) does not exhibit a viable fitting for 

the above mentioned models (R² < 0.7). 
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1.3.4 Fittings for Pb2+ Sorption Isotherms 

 

 

Figure S24. Comparison of isotherms fitted for the Langmuir, Sips and Dubinin-Radushkevich model 

for the adsorption of Pb2+ from PbSO4 solution with adsorbent doses of 100 mg/ 30mL of the respective 

starch. Native potato starch is shown in blue and native corn starch in red. Oxidized corn starch (pink) 

and oxidized potato starch (light blue) were not fitted due to not reaching a plateau.  
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1.3.4 Fittings for Pb2+ Sorption Isotherms 

 

Figure S25. Comparison of isotherms fitted for the Langmuir and Dubinin-Radushkevich model for the 

adsorption of Pb2+ from PbSO4 solution with decreased amounts (10 mg each) of native potato starch 

(blue), oxidized potato starch (light blue) and oxidized corn starch (pink). Native corn starch (red) does 

not exhibit a viable fitting for the above mentioned models. 
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1.4 Sorption Experiments with Real Water Samples 

1.4.1 Characterization of Real wWater Samples 

 

Figure S26. (a) Streaming potential vs. pH curves and (b) charge densities at pH value of 3.6 of water 2 

(brown) and water 3 (red). 

 

 

Figure S27. (a) pH values for the water samples with water 2 is shown in brown and water 3 is shown 

in red, (b) Solid content in % in water 2 and water 3 and (c) electrical conductivity of water 2 and 3. 
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1.4.2 Removal of Al3+ with Starch from Real Water Samples   

 

Figure S28. pH0 and pHeq values from adsorption of Al3+ onto the starch samples in real water 1 with 

native potato starch (blue), native corn starch (red), oxidized potato starch (light blue) and oxidized corn 

starch (pink). pH0 corresponds to the pH value of the adsorptive solution before the experiment and pHeq 

corresponds to the pH value after the adsorption process. 
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Figure S29. pH0 and pHeq values from adsorption of Al3+ onto the starch samples in real water 2 with 

native potato starch (blue), native corn starch (red), oxidized potato starch (light blue) and oxidized corn 

starch (pink). pH0 corresponds to the pH value of the adsorptive solution before the experiment and pHeq 

corresponds to the pH value after the adsorption process. 
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Figure S30. pH0 and pHeq values from adsorption of Al3+ onto the starch samples in real water 3 with 

native potato starch (blue), native corn starch (red), oxidized potato starch (light blue) and oxidized corn 

starch (pink). pH0 corresponds to the pH value of the adsorptive solution before the experiment and pHeq 

corresponds to the pH value after the adsorption process. 
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Figure S31. SO42− percentage adsorption onto the starch samples in real water 1 with native potato starch 

(blue), native corn starch (red), oxidized potato starch (light blue) and oxidized corn starch (pink). Also, 

for reference one blind sample without added adsorber material is presented (black and dashed 

horizontal line). 
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Figure S32. SO42− percentage adsorption onto the starch samples in real water 2 with native potato starch 

(blue), native corn starch (red), oxidized potato starch (light blue) and oxidized corn starch (pink). Also, 

for reference one blind sample without added adsorber material is presented (black and dashed 

horizontal line). 



Supporting Information 
 

32 
 

 

Figure S33. SO42− percentage adsorption onto the starch samples in real water3 with native potato starch 

(blue), native corn starch (red), oxidized potato starch (light blue) and oxidized corn starch (pink). Also, 

for reference one blind sample without added adsorber material is presented (black and dashed 

horizontal line). 
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2. Classification of the Obtained Sorption Capacities with Other Materials 

Table S4. Sorption capacities for removal of Al3+ compounds from aqueous solutions with different 

sorbent materials and adsorbent doses (a.d.). The obtained sorption capacities from this work were 

achieved in the batch adsorption experiments. 

Material Sorption 

Capacity 

q (mg/g) 

Salt Experimental Conditions Ref. 

pH0 a.d. (g/L) t, T 

Oxidized potato starch 2.3 Al2(SO4)3 4.2 2 2 h, 25 °C 
This 

work 

Oxidized corn starch 1.9 Al2(SO4)3 4.2 2 2 h, 25 °C 
This 

work 

Typha domingensis leaf 

powder 
0.35 n.a. 2.5 10 

120 min, 25 

°C 
[4] 

Date-pit activated carbon 5.83 
Al-Powder in 

HCl 
4 2 24 h, 22 °C [5] 

BDH activated carbon 6.56 
Al-Powder in 

HCl 
4 2 24 h, 22 °C [5] 

L. japonica algae 2.79 Al-(NO3)3 4.5 1 30 h, - [6] 

PM (PalPower M10) 27.78 
Al from waste 

water 
4 35 2h, 25 °C [7] 

Starch 292 AlCl3 7.5 10 
90 min, 25 

°C 
[8] 

Chitin (QTN) 15 
(Al2(SO4)3·(14–

18)·H2O) 
n.a 0.15 2h, 25 °C [9] 

Chitosan (QUIT) 10 
(Al2(SO4)3·(14–

18)·H2O) 
n.a 0.1 2h, 25 °C [9] 
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Table S5. Sorption capacities for removal of Cd2+ compounds from aqueous solutions with different 

sorbent materials and adsorbent doses (a.d.). The obtained sorption capacities from this work were 

achieved in the batch adsorption experiments. 

Material Sorption 

Capacity q 

(mg/g) 

Salt Experimental Conditions Ref. 

pH0 a.d. 

(g/L) 

t, T 

Oxidized potato 

starch 
7.9 CdSO4⋅H2O 6.1 2 2 h, 25 °C 

This 

work 

Oxidized corn starch 7.7 CdSO4⋅H2O 6.1 2 2 h, 25 °C 
This 

work 

Native potato starch 1.6 CdSO4⋅H2O 6.1 2 2 h, 25 °C 
This 

work 

Aminopyridine 

modified 

poly(styrene-alt-

maleic anhydride) 

(CSMA-AP) 

81.30 CdCl2∙H2O 5 2.5 60 min, 25 °C [10] 

Ficus religiosa Leaf 

Powder 
27.14 CdSO4∙8H2O 5 - 30 min, 30 °C [11] 

Aspergillus niger 2.2 CdSO4∙8/3H2O 6.01 5.22 24 h, 30 °C [12] 

Polyamide Resin 413.5 CdSO4∙8H2O 6 1 60 min, 30 °C [13] 

Carbon prepared 

from apricot stone 

(ASAC) 

33.57 CdSO4∙8H2O 6 2 48 h, 25 °C [14] 

Sporopollenin 1.64 CdCl2·H2O 7 16.67 60 min, 20 °C [15] 

L. japonica algae 1.21 Cd(NO3)2 4.5 1 30 h, - [6] 

Fe2O3 NPs-Starch 322.58 Cd(NO3)2·4H2O 6 0.4 60 min, RT [16] 

Chitosan 56 Cd(NO3)2 6.5 0.5 24h, 20 °C [17] 

Chitosan 100 n.a. 4.5 4 12 h, 25 °C [18] 

Poly(acrylamide)–

starch Graft 

Copolymer 

415.92 CdSO4 n.a 1.11 5 h, 20 °C [19] 

Biomass xanthates 19.6 CdCl2 6-8 0.20 2h, 20 °C [20] 

Graphene oxide 

composite (GO-

starch) 

29.04 n.a. n.a 2.5 2h, 25 °C [21] 

Dialdehyde 

phenylhydrazine 

starch (DASPH) 

550.8 n.a. 5.0 - 2h, - [22] 

Crosslinked 

carboxymethyl starch 

(CCS) 

47 CdCl2 6 50 1h, 25 °C [23] 
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Table S6. Sorption capacities for removal of Pb2+ compounds from aqueous solutions with different 

sorbent materials and adsorbent doses (a.d.). The obtained sorption capacities from this work were 

achieved in the batch adsorption experiments. 

Material Sorption 

Capacity 

q (mg/g) 

Salt Experimental Conditions Ref. 

pH0 a.d. (g/L) t, T 

Oxidized potato starch 21.6 PbSO4 5.6 0.2 2 h, 25 °C 
This 

work 

Oxidized corn starch 18.4 PbSO4 5.6 0.2 2 h, 25 °C 
This 

work 

Native potato starch 3.5 PbSO4 5.6 2 2 h, 25 °C 
This 

work 

Aspergillus niger 4.7 Pb(NO3)2 6.01 5.22 24 h, 30 °C [12] 

Anthranilic acid/o-

toluidine/formaldehyde 

(AOTF) 

30.31 n.a. 6.0 1 24 h, 21 °C [24] 

Typha domingensis leaf 

powder 
0.65 n.a. 2.5 10 

120 min, 25 

°C 
[4] 

Carbon prepared from 

apricot stone (ASAC) 
22.85 Pb(NO3)2 6 2 48 h, 25 °C [14] 

Sporopollenin 8.52 Pb(NO3)2 6 16.67 
60 min, 20 

°C 
[15] 

L. japonica algae 1.68 Pb(NO3)2 4.5 1 30 h, - [6] 

Glutaraldehyde-cross-

linked epoxyaminated 

chitosan (GA-C-ENCS) 

150 Pb(NO3)2 5.5 2 3h, 20 °C [25] 

CS/PVA/DNDs 121.3 n.a    6 0.4 24h, 20 °C [26] 

Chitosan-Modified fast 

pyrolysis BioChar (CMBC) 
5.8 Pb(NO3)2    5 2 24h, 25 °C [27] 

Dithiocarbamate-modified 

starch (DTC) 
80.80 Pb(NO3)2    4 0.1 12 h, 25 °C [28] 

DTC enzymolysis starch 

(DTCES) 
118.10 Pb(NO3)2    4 0.1 12 h, 25 °C [28] 

DTC mesoporous starch 

(DTCMS 
261.07 Pb(NO3)2    4 0.1 12 h, 25 °C [28] 

Crosslinked-amphoteric-

starch (CAS 1) 
21.01 Pb(NO3)2    4 0.8 1 h, 20 °C [29] 

CAS 2 62.11 Pb(NO3)2    4 0.8 1 h, 20 °C [29] 

CAS 3 156.25 Pb(NO3)2    4 0.8 1 h, 20 °C [29] 

Itaconate starch semiester 

(SI) 
506.44 Pb(NO3)2    - 2 24 h, RT [30] 

Itaconate Starch Diester (DI) 145.03 Pb(NO3)2    - 2 24 h, RT [30] 

Cationic starch bearing 

primary amine group 
53.4 PbSO4   6 1.25 24 h, - [31] 

Humic acid/starch 176.29 PbCl2   5 1 2.5 h, 25 °C  [32] 
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composite microspheres 

(HS-CM) 

Three-dimonsional 

nanoporous starch based 

nanomaterial (EDTA/3D-

PSN) 

238.39 Pb(NO3)2    - 0.2 12 h, 25 °C [33] 

Fe2O3 NPs-Starch 2000 Pb(NO3)2   6 0.4 60 min, RT [16] 

Biopolymer-modified 

MNPs 
46 Pb(NO3)2   5.5 2 4h, 25 °C [34] 

Cassava-starch-5-

choloromethyl-8-

hydroxyquinoline 

polymer(CSCMQ) 

43.859 Pb(NO3)2    6 1 2h, 35 °C [35] 

Modified potato starch-

magnetic nanoparticles, 

MPS-MNPs 

70 Pb(NO3)2   5.5 2 2h, 35 °C [36] 

Starch reinforced with TDI‐

modified birch cellulose 
66.66 Pb(NO3)2    5 4 120 h, 25 °C [37] 

Poly(acrylamide)–starch 

Graft Copolymer  
660 PbSO4 n.a. 1.11 5 h, 20 °C [19] 

Biomass xanthates 27.55 Pb(NO3)2 6-8 0.20 2h, 20 °C [20] 

Dialdehyde 

phenylhydrazine starch 

(DASPH) 

290.1 - 5.0 - 2h, - [22] 

Crosslinked carboxymethyl 

starch (CCS) 
80 Pb(NO3)2 6 50 1h, 25 °C [23] 
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