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Abstract: Implementing multivariate predictive analysis to ascertain stream-water (SW) parameters
including dissolved oxygen, specific conductance, discharge, water level, temperature, pH, and
turbidity is crucial in the field of water resource management. This is especially important during a
time of rapid climate change, where weather patterns are constantly changing, making it difficult to
forecast these SW variables accurately for different water-related problems. Various numerical models
based on physics are utilized to forecast the variables associated with surface water (SW). These
models rely on numerous hydrologic parameters and require extensive laboratory investigation
and calibration to minimize uncertainty. However, with the emergence of data-driven analysis
and prediction methods, deep-learning algorithms have demonstrated satisfactory performance in
handling sequential data. In this study, a comprehensive Exploratory Data Analysis (EDA) and
feature engineering were conducted to prepare the dataset, ensuring optimal performance of the
predictive model. A neural network regression model known as Long Short-Term Memory (LSTM)
was trained using several years of daily data, enabling the prediction of SW variables up to one
week in advance (referred to as lead time) with satisfactory accuracy. The model’s performance was
evaluated by comparing the predicted data with observed data, analyzing the error distribution, and
utilizing error matrices. Improved performance was achieved by increasing the number of epochs
and fine-tuning hyperparameters. By applying proper feature engineering and optimization, this
model can be adapted to other locations to facilitate univariate predictive analysis and potentially
support the real-time prediction of SW variables.

Keywords: stream-water; recurrent neural network; Long Short-Term Memory (LSTM); water quality

1. Introduction

Surface water has come to be the most crucial resource for societies as a consequence
of the growing demand for agriculture, drinking water sources, industrial use, production
of electricity, etc. as well as for the necessity to maintain river environmental flow for
ecological diversity [1–4]. Increasing climate change has caused harm to both the quality
and quantity of surface water, by reduction of freshwater flow due to abrupt changes in
rainfall patterns and through increased temperature [5–10]. Stream water (SW) is regarded
as the main source of drinking water supply [11]. Often, it is used for recreational purposes
such as fishing, swimming, and boating [12–14]. Aquatic life is impacted significantly due to
the seasonal changes in water level and discharge over time [15,16]. The demand for water
supply, environmental flow, and flood level assessment can all be assessed from discharge
and water level through data analysis and numerical modeling, which gives us the scope
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of water-quantity estimation [17–19]. Surface water quality on the other hand needs a few
more variables to be examined, which are dissolved oxygen, pH, turbidity, toxic substances,
and aquatic macroinvertebrate life [20–22]. According to the New Jersey Department of
Environmental Protection (NJDEP) (2012) Integrated Water Quality Report, at least one
designated use of the aforementioned parameters has below-standard conditions and is
termed as Not Supporting (NS) in the Trenton watershed and its sub-catchments [23].

For this study, Dissolved Oxygen (DO), Specific Conductance (SC), temperature, pH,
and turbidity are chosen as SW parameters. Temperature, the most important ecological
factor, is directly correlated with water’s chemical, physical, and biological characteris-
tics [24–27]. It is also the most significant parameter to be affected by climate change [28].
DO is essential for aquatic life to survive, with differing oxygen concentration tolerances
among species and life stages. pH and SC have a significant effect on the other metrics of
overall water quality, both constructively and adversely. According to previous studies, the
positive correlation between them and nitrate ions, ammonia, phosphorus, calcium, and
magnesium, or even the detrimental influence of high pH on exotic species invasions, could
induce disruptions in natural ecosystems [29–31]. Turbidity is the measure of the relative
clarity of water caused by suspended or dissolved particles. High values can significantly
reduce the aesthetic quality of streams and influence the natural migrations of species [32].
Assessment of turbidity improves the evaluation and indication of fecal contamination in
water bodies such as Escherichia coli, the most common water infection [33,34].

Traditional physics-based numerical models (e.g., HEC-RAS, MIKE) involve spatial
and temporal discretization for the entire computational space to compute SW variables,
and these require high computational efforts [35,36]. To address the partial differential
equation governing the behavior of shallow water in two dimensions, known as the
Navier–Stokes equation, various numerical techniques such as Finite Volume, Finite El-
ement, and Finite Difference methods are employed. The Navier–Stokes equation is a
comprehensive representation of the conservation of mass, energy, and momentum for
incompressible fluids. By utilizing these numerical methods, the equation can be solved,
allowing for the analysis and understanding of the dynamics of shallow water systems [37].
The cost of spatial and temporal discretization increases exponentially with the increase in
the required resolution and accuracy [38,39]. Input data for the physics-based river models
consist of a significant amount of morphological, operational, and measured data. Data
preprocessing for physics-based models can be daunting depending on the spatial and
temporal tags of the target variables. Physics-based numerical models require measurable
and empirical parameters to estimate the target variables [40,41]. Data-informed predictive
models provide an efficient alternative approach to forecasting and monitoring both the SW
flow and quality assessment of parameters. They offer reduced computational effort while
simplifying complicated systems and predict the outcomes using observational data only
and excluding complicated physics. Essentially, it is a data-driven model and the character-
istics of the data, and their stochastic properties define how the model will behave [42–45].
Lately, Deep Learning (DL), a cutting-edge branch of artificial intelligence, has gained
significant popularity as a favored approach for predictive modeling within the realm of
water resource management [46]. However, the traditional deep neural network algorithms
(e.g., Multilayer Perceptron (MLP)) are limited in their capacity to learn sequential input
due to their inability to retain prior knowledge. As a result, it is limited in making accurate
predictions for long-term time series, e.g., the temporal distribution of water-table depth
is restricted [47,48]. To achieve accurate predictions of the target variables, the Multilayer
Perceptron (MLP) algorithm requires intricate data preprocessing procedures [49–51]. En-
hancing the MLP model’s ability to comprehend the data can be accomplished through
data preprocessing techniques, although the involvement of subjective user intervention
remains vital. For instance, this includes decisions such as determining the appropriate
number of reconstructed components [52]. Numerous reconstructed components need to
be calculated, so the preprocessing takes a significant amount of time [53].
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Long Short-Term Memory (LSTM) is a unique neural network architecture designed to
retain and process extensive sequential data by storing it within a hidden memory cell [54].
LSTM performs well in processing long-term sequential data, utilizing its sophisticated
network structure specifically designed to carry the temporal linkage of the time-series
data. Water quality and quantity data have not been widely investigated in previous
work employing LSTM. The proposed LSTM model only needs a straightforward data
preprocessing method, as opposed to the MLP model mentioned earlier [55]. The LSTM
neural network exhibits a recurrent nature, with interconnected units forming a directed
cycle that enables data to flow in both forward and backward directions within the network.
Therefore, the model can preserve past information and use it for future prediction. The
LSTM model has been employed extensively in various fields of deep learning, such
as speech recognition, natural language processing, automatic image captioning, and
machine translation, showcasing its advanced capabilities [47,56,57]. In the realm of
water resource forecasting, there have been limited instances where researchers have
utilized Recurrent Neural Networks (RNNs) or LSTMs to predict multivariate time-series
data [58–60]. The objective of this research is to untangle the pattern of the temporal
distribution and the relation among the selected SW (surface water) variables for this study;
as well as perform predictive analysis using observed data. To accomplish the goal, a
comprehensive Exploratory Data Analysis (EDA) is conducted to investigate the temporal
dynamics of the SW variables, and LSTM prediction is performed to predict the future
values based on past records. The following sections of the paper demonstrate the study
location, data source and collection, EDA, LSTM prediction, performance evaluation, and
possible future directions.

This study introduces a novel approach using deep-learning algorithms, specifically
the LSTM neural network, to predict stream-water (SW) parameters. By leveraging data-
informed analysis and predictive modeling, the research demonstrates the satisfactory
performance of LSTM in forecasting SW variables up to one week ahead. Traditional
physics-based models are limited by calibration efforts and computational complexity, while
the data-informed approach simplifies the prediction process by relying solely on observed
data. The LSTM model’s ability to process sequential data makes it well-suited for capturing
temporal dynamics in SW variables. The study focuses on essential SW parameters such
as dissolved oxygen, specific conductance, discharge, water level, temperature, pH, and
turbidity, which are crucial for water quality preservation. By successfully applying LSTM
models, this research provides an alternative to traditional models, enabling the real-
time monitoring and prediction of SW variables. Overall, this study’s novelty lies in
integrating deep-learning algorithms, comprehensive data analysis, and feature engineering
to accurately predict SW variables, opening new possibilities for data-driven approaches in
water resource management.

2. Data and Methods
2.1. Study Area

The monitoring station used in this study is located along the Central Delaware
River, in Trenton City, Mercer County, NJ (New Jersey), USA [61]. It is positioned 450 feet
upstream of Trenton’s Calhoun Street Bridge, 0.5 miles upstream of Assunpink Creek, and
0.9 miles north of Morrisville, PA. The Hydrologic Unit number for this station is 02040105
based on the USGS (United States Geological Survey) water resources database and it is
located at 40◦13′18′′ N, 74◦46′41′′ W coordinates referenced to the North American Datum
of 1983 with the 6780 mi2 of drainage area (Figure 1).

The entire workflow of the EDA and LSTM prediction tasks is divided into three
distinct stages. In the first step, data are collected from the USGS web portal, and an
exploratory analysis of the SW variables is conducted. To transform the data for train-
ing/testing the LSTM algorithm feature engineering is conducted. Variables used in the
analysis are listed in Table 1. Activities in the first step are categorized as the transformer.
After investigating the dataset and performing data transformation on the variables, the
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LSTM neural network is trained using the data prepared in the first step to perform pre-
dictive analysis. LSTM neural networks regression model is assessed using several error
matrices. These activities are categorized as estimators. The LSTM algorithm is optimized
by altering the hyperparameters to reduce the errors in the prediction and achieve satisfac-
tory performance. In the third step, namely the evaluator, the model is deployed to predict
the recession rate for a new set of target variables. Model performance is further improved
through the iterative incorporation and validation of the input variables.
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Figure 1. Aerial photo of the research location with flow measuring station at Central Delaware 
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surrounding topography of USGS gage location of the study, (c) surrounding land covers and (d) 
gauge station. 
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Figure 1. Aerial photo of the research location with flow measuring station at Central Delaware
(HUC8 02040105). (a) the state of the study location is New Jersey state of the United States,
(b) surrounding topography of USGS gage location of the study, (c) surrounding land covers and
(d) gauge station.

Table 1. List of the stream-water variables used for exploratory data analysis and LSTM model.

SW Parameters Unit Descriptions

Discharge ft3/s Quantity of stream flow

Water Level ft Stream-water height/level at the gage location

Temperature ◦C Sensor-recorded temperature in ◦C at the gage

Dissolved Oxygen (DO) mg/L The amount oxygen dissolved in the SW.

Turbidity FNU Measure of turbidity in Formazin Nephelometric Unit (FNU)

pH - the acidity or alkalinity of a solution on a logarithmic scale

Specific Conductance (SC) µS/cm Measure of the collective concentration of dissolved ions in solution

The LSTM workflow of predicting the SW performance indicator is illustrated in
Figure 2. The first step of the workflow is data collection—time-series data of the SW vari-
ables are obtained from the USGS National Water Information System: Web Interface [61].
The range of the time-series data for all the variables was different due to the various
recorded duration. Mean values of the SW variables are used in this study. The range of
the data used in this research is from 25 February 2006 to 8 March 2022 with observed data
of approximately 21 years. Historically, from the years 1898 to 1906, peak discharges were
measured at Lambertville, NJ, 14.3 miles upstream from the Calhoun Street bridge. The
maximum discharge was recorded on 20 August 1955 with the amount of 329,000 ft3/s
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and the minimum discharge was 1180 ft3/s, on 31 October 1963. Extreme flooding oc-
curred on 11 October 1903 when the water level reached an elevation of 28.5 ft above the
NGVD (National Geodetic Vertical Datum) of 1929, which resulted in a discharge amount
of 295,000 ft3/s [61].
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Figure 2. Pipeline of the EDA and LSTM prediction tasks illustrates how the activities are linked
from the data preprocessing steps to the model deployment stage. The steps are further categorized
into their distinct group namely transformer, estimator, and evaluator.

The second step of the workflow is exploratory data analysis, which is covered in
Section 2.2. The third step is data transformation (done by feature engineering—discussed
in Section 2.3). The fourth step is model training with test data. Finally, the fifth, sixth, and
seventh steps of the prediction algorithm are model evaluation, model deployment, and
model improvement, respectively.

2.2. Multivariate Exploratory Data Analysis (EDA)

In the second activity in Figure 2, a detailed EDA is performed to perceive the attributes
and characteristics of the multivariate dataset. To ensure that the LSTM model runs correctly,
doing EDA is an essential step in conducting preliminary analyses of the data. Through
EDA, a variety of visual techniques and numerical indices are used to study the internal
temporal distribution of all the SW variables. To better comprehend the hidden pattern of
the distribution of the SW variables, EDA first investigates the variables. This procedure
can be further broken down into several steps, including the use of descriptive statistics,
the identification of outliers, extreme values, and the verification of normality. Descriptive
statistics offer a valuable method for examining the distribution of SW variable values. By
considering various statistical measures such as the number of data points, mean, standard
deviation, percentiles, interquartile range, and range, one can effectively analyze and
characterize the distribution of SW variable values. The complete multivariate descriptive
statistics are displayed in Table 2. Histograms with density plots and Pearson’s Coefficient
of Skewness (PCS) are used to visually display and measure the normality of the values,
respectively. The Nearest Neighbors (NN) method was used to find missing data as a
numerical imputation method to make the dataset consistent [62].
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Table 2. Storm-water variables’ descriptive statistics.

Count Mean Std Min 25% 50% 75% Max

Discharge (ft3/s) 255,066 13,265.43 10,657.91 2150 6240 10,800 16,100 150,000

Water Level (ft) 255,066 9.98 1.47 7.8 8.89 9.73 10.73 20.76

Temperature (◦C) 255,066 13.35 4.43 0 12.02 13.58 15.01 31.30

pH 255,066 7.90 0.208 6.6 7.00 8.23 9.16 9.71

SC (µS/cm) 255,066 208.19 22.23 49 201.11 208.64 221.09 453

Turbidity (FNU) 255,066 6.44 6.54 0.2 5.61 6.44 7.29 469

DO (mg/L) 255,066 11.02 1.11 6 11.02 11.07 12.67 16.90

Turbidity and other water quality and quantity variables, such as discharge and water
level, demonstrate a higher degree of non-normality when compared to other SW variables.
A numerical measure of non-normality/skewness, PCS values of discharge, water level,
and turbidity are also higher than the PCS values of other SW variables, which indicates
relatively less normality.

Figure 3 illustrates the linear connection between two SW variables. Low values of
the linear coefficients, delineating the overall non-linearity among several variables, are
high. The study has found that the linear correlations can be either positive or negative in
direction. A few variables are approximately linearly correlated e.g., discharge and water
level, temperature and DO, SC, and pH.
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2.3. Feature Engineering (FE)

FE is performed after a successful preliminary investigation of the dataset using
EDA. The LSTM approach may not produce a satisfactory performance with minimal
error without a successful FE. Additionally, without a thorough examination of the inputs,
it is impossible to achieve adequate optimization using the iterative gradient descent.
Therefore, an extensive feature engineering (FE) process is used to transform the variables
into those that most appropriately embody the LSTM learning algorithm [63,64]. FE in
this research involves data imputation, data transformation, data standardization, and
preparing training, testing, and validation datasets. The process of imputation is used to
replace missing data points in a dataset, therefore ensuring its overall consistency. Null
values or missing observations were detected in every data series due to issues with the
sensor malfunctioning. To address this, the missing values were imputed using the values
of the NN (Nearest Neighbor). After a successful imputation, the distribution of the variable
series is checked visually and numerically to confirm the normality. PCS (predictability,
computability, stability) is used as an indicator of the normality of the variables. Due to the
significantly left-skewed distribution and noticeable non-normality of discharge and water
depth, neural network regression techniques without the required data transformation do
not lead to satisfactory and optimized results [65–67]. Data transformation is performed to
decrease the non-normality of discharge and water level. In this research, the performance
of LSTMs can be improved using logarithmic transformation to stabilize the variance and
lessen the impact of outliers in the feature distribution. In Figure 4, the distributions of
the observed and transformed discharge and water level are shown. PCS values increase
for all the transformed datasets compared to the original datasets, showing an increase
in normality.
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The gradient descent method, in which the step size is influenced by the feature value,
is used by the LSTM recurrent neural network. This technique requires updating the steps
for all feature values at the same pace to provide a smooth descent towards minima. To
establish the LSTM model’s training and testing dataset, all the values are normalized
utilizing Equation (1).

Xnorm =
X− Xmin

Xmax − Xmin
(1)

X denotes the variable of interest and subscript norm, max, and min represent the
normalized variable, maximum, and minimum value of the values of the variable. A
training set and a testing set were generated from the entire normalized data series to
evaluate and test the model.

2.4. Long Short-Term Memory (LSTM) Recurrent Neural

LSTM has gained significant popularity as an algorithm for handling time-series data
in DL forecasting, specifically when variables rely on past information throughout the
series [68,69]. The connections and relationships between variables over a considerable
amount of time (long-term) can be captured by the LSTM model [70]. Due to erroneous
backpropagation’s declining effect, recurrent backpropagation requires a lot of computa-
tional power to learn how to maintain long-term data [71]. As a result, RNNs encountered
difficulties in accurately capturing long-term relationships, leading to the vanishing gra-
dient problem [72]. LSTM stands out from conventional feedforward neural networks
due to the fact it processes and retrieves long-term information because of its feedback
connections.

In a typical LSTM algorithm, both long-term memory (c[t − 1]) and short-term memory
(h[t − 1]) are processed using numerous gates to filter the data. The memory cell state is
updated by forget and update gates for a constant gradient flow [73,74]. Three gates, i.e.,
input gate ig (pink), forgot gate fg (red), and output gate og (violet), and the cell state (green)
control the flow of information by writing, erasing, keeping track of the past, and reading,
respectively. (Figure 5). Therefore, because LSTM can store information over a range of
intervals, it is an excellent choice for forecasting time-series data [75]. The forget gate in the
LSTM incorporates and filters long-term data, discarding unnecessary information through a
processing mechanism. The forget gate filters out redundant data using the sigmoid activation
function where the range of the function is 0 and 1 for open and close status, respectively.
An LSTM cell’s input gate filters and prioritizes incoming data to assess its relevance and
importance. The input gate controls the flow of both short-term and long-term information
within the cell, similarly to the forget gate, by removing extraneous information using binary
activation functions. The value of the upcoming concealed state is also determined by the
output gates and is based on the knowledge from preceding inputs.
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In this study, a neural network with an LSTM hidden unit accompanied by a dense
layer connecting the LSTM target output at the last time-step (t − 1) to a single output
neuron with a non-linear activation function. The LSTM model underwent training using
the Keras DL library in Python, utilizing the ReLU activation function and employing the
coefficient of determination (R2) and Nash–Sutcliffe model efficiency coefficient (E) as loss
functions. To predict the SW variable of a time-step in the future, e.g., daily/weekly, values
of the variables at previous time steps are used. Hyperparameters are tuned to maximize
the performance of the LSTM model through an iterative trial-and-error approach. This
work utilized Keras, a Python library that enables the exploration of machine learning
algorithms, to determine the optimal set of hyperparameters [76–78]. The impact of several
hyperparameters of the LSTM algorithm—specifically, the number of neurons, the batch
size, and the size of the epoch—were examined and investigated.

2.5. Model Evaluation and Improvement

In the model evaluation step in the fifth activity in Figure 2, the performance of the
LSTM model is evaluated using the top three standard error matrices e.g., R2, and the E.
Error matrices provide numeric values as the model performance indicator by comparing
the observed and predicted values. The R2 value is used to evaluate the LSTM model in
showing the model performance improvement. The highest R2 score corresponds to the
best predictive accuracy. In addition, the R2 and E are used to illustrate the model response
due to the variation in the lead time. The better the model fits the data, the closer the
R2 value is to 1. The “E” metric, which is another performance measure in hydrological
modeling, is frequently used to assess the model’s accuracy [79,80].

A positive E value suggests that the prediction value is a more accurate predictor of
the actual recession rate than the average observed value. This is because the anticipated
recession rate is more accurate than the average observed value. To ensure that training is
effectively fit, it is vital to choose a model’s hyperparameters and carefully consider the
controlling parameters that impact the learning rate of the model. By optimizing the size of
the epoch, batch, and neurons in the stochastic process of the LSTM neural network, the
LSTM algorithm’s performance in predicting SW parameters is further improved.

3. Results and Discussion

LSTM neural networks are employed to forecast the multivariate SW variables. Si-
multaneous prediction is conducted for various lead-time durations, including 6 h, 12 h,
1 day, 3 days, 1 week, 2 weeks, 3 weeks, and 1 month. The predicted values are then
compared to the observed dataset to calculate the error matrices, and R2 and E are used
to estimate the error from the predicted SW variables. The incorporation of more epochs
results in enhanced model performance. To show the relationship between model efficacy
and lead times, error matrices are obtained through numerous models runs. The LSTM
model’s hyperparameters are modified to effectively optimize model performance, taking
into account a set of batch size, epoch size, and the total number of neurons.

3.1. Predicted and Observed SW Variables

Figure 6 shows a visual representation of the output from the LSTM algorithm with the
observed values of the SW variables. The time-series plots both the observed and predicted
values of the SW variables against the number of observations. Because the projected values
of SW variables exhibit a distribution that reflects the observed data, the LSTM algorithm
functions satisfactorily. The error metrics recorded for all variables and full time-series
show LSTM performed well in the case of both training and test sets. In Figure 6, the orange
portion of the plot illustrates the training portion of the dataset whereas the green portion
shows the testing portion. Dashed lines in blue show the observed data.
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from the LSTM approach for the stream-water variables, discharge (a), water level (b), temperature (c),
DO (d), pH (e), turbidity (f) and SC (g) with train/test split (orange).

3.2. Model Evaluation Matrices

The LSTM neural network’s performance is assessed using three error matrices, namely
Root Mean Square Error (RMSE), R2, and E. The model’s performance is also evaluated and
enhanced by increasing the number of epochs in the neural network. Figure 7 illustrates
the change in the error matrix values as the number of epochs increases. The model’s
performance shows significant improvement from the initial iterations in both the train
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and test scenarios. The increase in R2 values reaches a near-steady state after around
15–20 epochs, while there is a slight decrease in performance indicated by an increase in
the RMSE value. Additionally, Figure 7 depicts the variation in performance in terms of
RMSE with changes in the lead time.

Eng 2023, 4, FOR PEER REVIEW 11 
 

 

train and test scenarios. The increase in R2 values reaches a near-steady state after around 
15–20 epochs, while there is a slight decrease in performance indicated by an increase in 
the RMSE value. Additionally, Figure 7 depicts the variation in performance in terms of 
RMSE with changes in the lead time. 

 
Figure 7. Improvement of the model prediction capability with the increase in the number of epochs 
for the train and test set. RMSE value is the indicator of the model performance for (a) discharge, 
(b) temperature, (c) dissolved oxygen, (d) turbidity, (e) pH, (f) specific conductance and (g) water 
level. 

Error matrices, e.g., 𝑅  and E, are reported for all selected lead times. Lead times are 
important parameters of the LSTM algorithm toward model performance. Lead-time val-
ues are 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, and one week. The values of 𝑅  and 
E decreases with the increase in lead time, showing the degradation in the model perfor-
mance with an increase in the lead times (Figure 8). Therefore, the selection of the lead 
times should be based on model performance and necessity. 

g) 

Figure 7. Improvement of the model prediction capability with the increase in the number of
epochs for the train and test set. RMSE value is the indicator of the model performance for
(a) discharge, (b) temperature, (c) dissolved oxygen, (d) turbidity, (e) pH, (f) specific conductance
and (g) water level.

Error matrices, e.g., R2 and E, are reported for all selected lead times. Lead times
are important parameters of the LSTM algorithm toward model performance. Lead-time
values are 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, and one week. The values of R2

and E decreases with the increase in lead time, showing the degradation in the model
performance with an increase in the lead times (Figure 8). Therefore, the selection of the
lead times should be based on model performance and necessity.
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Accuracies in the LSTM prediction for all SW parameters are presented in Figure 9
with the help of the coefficient of determination, R2. Observed and predicted values of SW
variables from the LSTM prediction are plotted to determine the R2 value. The range of
the R2 value for all SW parameters 0.552 to 0.953 delineates satisfactory performance from
LSTM model prediction overall. The best prediction with minimum error is found for the
DO prediction with the R2 value of 0.953.
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Figure 9. Model performances are presented using the scatterplot of the standardized observed
and predicted discharge values from the LSTM model and the histogram of the distribution of
the difference between the observed and predicted values of the SW parameters. (a) Discharge,
(b) Water Level, (c) Temperature, (d) Dissolved Oxygen (DO), (e) Turbidity, (f) pH, (g) Specific
Conductance (SC).

3.3. Hyperparameters Optimization

To ensure optimal model configuration for predictions, it is crucial to perform hyperpa-
rameter optimization of the LSTM algorithm. This study focuses on optimizing parameters
that specifically impact the SW variables, considering the stochastic nature of the neu-
ral network tuning procedure. Initially, the optimization process involves determining
the optimal epoch size while keeping the batch size at 4 and using a single neuron. A
range of increasing epoch values (50, 75, 100, 125, and 150) is selected to assess the LSTM
model’s performance. Similarly, a set of batch sizes (1, 3, and 5) and neurons (1 to 5) are
chosen with a fixed epoch size of 1000 to observe performance improvements. Further
optimization is carried out using an epoch size of 2000, considering the batch size and the
number of neurons, which yields the highest R2 value. Figure 10 shows that a batch size of
1 and 5 neurons result in the highest R2 values. Consequently, the optimal combination for
the LSTM model prediction is determined to be an epoch size of 2000, a batch size of 3, and
a neuron count of 5.
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4. Conclusions

Multivariate prediction of the SW variables under both the water quantity and quality
categories at a point location using the observed data can be highly beneficial to water
managers and decision-makers to perceive future flooding, irrigation works, and fluvial
ecology and aquatic life. Unlike the physics-based numerical models where additional
terrain data, land cover/vegetation data, meteorological data, river bathymetry, and human
interventions such as structures are pre-requisite as input data, the proposed approach
relies only on the previously recorded data of the surface water (SW) variables. The LSTM
framework to predict the SW variables can be highly beneficial for the nearby community,
where the short-term prediction of the dynamics of the SW variables daily/weekly/monthly
in the future plays a critical role. The prediction of water quantity, i.e., discharge and water
level, can substantially aid the preparation for flood inundation, irrigation work, and
water supply and demand. Prior knowledge of the water quality of the SW can be highly
beneficial for aquatic life sustenance, source management of drinking water supply, and
irrigation. Water sports activity and water-centric tourism also require a clean aesthetic
view of water. The model uses only historical observed data of the variables, and hence
it is a data-driven model which utilizes a neural network algorithm to find data patterns
and characteristics and predict through stochastic analysis. Several approaches through
physics-based numerical modeling techniques have proven inefficient in terms of real-time
forecasting and computational efficiency. However, the use of data-informed predictive
models is particularly effective at forecasting numerous SW variables without the need for
complex differential equations and presumptions. The LSTM algorithm can preserve both
the short- and long-term patterns of the time series to forecast.

This study provides a reproducible template for analyzing the distinctiveness of the
temporal dynamics of SW variables through comprehensive exploratory data analysis. The
distribution of SW variables throughout seven years of data was examined using a variety
of modern data exploration tools to find hidden patterns. The proper training of the LSTM
algorithm depends on this essential criterion. Utilizing an explicit iterative performance
record, the LSTM algorithm was adjusted and refined following a successful training phase.
In the same geographic area, SW variables can then be predicted using this improved
approach. The algorithm’s ability to predict river discharge was shown to be quite effective
for the discharge time series, with several error matrices indicating promising performance
and little error. The proposed LSTM configuration has been proven to offer satisfactory
performance for the SW variables with lead times of up to one week. However, increasing
the lead time increases the prediction error, limiting the performance of the LSTM model.
Physics-based models are also incompetent in real-time prediction, where the proposed
LSTM can easily be coupled with the sensor and cloud to predict the SW variables in real
time. Computational time may increase exponentially with the increase in the size of the
dataset. Principle parameters obtained after the training process with a minimum error are
the numbers of neurons, batch, and epoch size. The parameters optimized to obtain the
best LSTM configuration after training the model can be transferable in similar climatic
and geographic regions. For instance, if the distribution of the values of the SW variables
is identical, e.g., the difference among the PCS values being negligible, the parameters of
the trained LSTM model can be transferred and used for predictive analysis in a different
location. However, we should not use our LSTM model in an area where the distribution
of the feature values through time is dissimilar. The study has a few limitations that should
be considered. First, while the LSTM neural network model performed well in predicting
surface water variables, it would be beneficial to explore other deep-learning models as
well. Models such as CNNs or Transformer-based models may offer alternative approaches
and potentially yield different outcomes. Second, the computational efficiency of the LSTM
model needs to be considered. Deep-learning models can be computationally demanding,
especially with large datasets or complex architectures. Finding ways to optimize model
efficiencies, such as using model compression techniques or hardware acceleration, can
enhance its practical usability. Additionally, the study focused on a specific range of lead
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times, but it would be valuable to assess model performance at longer or shorter lead times.
Different lead times present varying prediction challenges and evaluating model reliability
across different forecasting horizons is important. Lastly, the generalizability of the LSTM
model may be limited to the specific location and dataset used in the study. Adapting and
fine-tuning the model for different locations and environmental conditions is necessary to
ensure its effectiveness in diverse settings. In summary, while the LSTM model showed
promise, exploring other deep-learning models, addressing computational efficiency, con-
sidering different lead times, and assessing model generalizability are important for a more
comprehensive understanding of the study’s findings.

Possible future work includes expanding the study to incorporate ensemble modeling
techniques, such as combining multiple deep-learning models, to further improve the
accuracy and robustness of the predictions. Additionally, exploring the integration of
external environmental factors, such as meteorological data or land use information, could
enhance the model’s predictive capabilities. Further investigation into the transferability
of the LSTM model to different geographical locations and its adaptability to varying
hydrological conditions is also crucial. The development of real-time prediction systems
using the trained LSTM model, along with the integration of data assimilation techniques,
would be valuable for operational applications. Lastly, considering the computational
efficiency aspect, exploring model compression techniques or implementing distributed
computing frameworks could optimize the model’s performance for larger datasets and
facilitate its practical implementation in water resource management.
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