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Abstract: One of the most common pavement distresses in flexible pavement is rutting, which is
mainly caused by heavy wheel load and various other factors. The prediction of rutting depth is
important for safe travel and the long-term performance of pavements. Factors that are considered in
this paper for the prediction of rut depth are Temperature, Equivalent Single Axle Load, Resilient
modulus, and Thickness of hot mixed asphalt. The input data for all factors are collected from the
Long-Term Pavement Performance Information Management System for the state of Texas. Regression
analysis is performed for dependent and independent variables to obtain the empirical relationship.
In various fields of civil engineering, artificial neural networks have recently been utilized to model
the qualities and behavior of materials and to determine the complicated relationship between various
properties. An Artificial Neural Network is used to develop a predictive model to predict the rutting
depth. A total number of 70 observations were considered for the predictive model. A mathematical
relation is developed and verified between rut depth and variable input data.
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1. Introduction

Rutting is one of the most prevalent types of distress in asphalt concrete pavements.
Rutting is described as the gradual accumulation of permanent deformation of each pave-
ment layer under repeated load [1]. Traffic loads have a significant impact on rutting, but
the environment can also have a significant impact, particularly if the pavement subgrade
experiences seasonal changes in the weather [2]. Rutting is one of the major problems that
asphalt pavements face and is extremely damaging to ride quality and safety. It develops
with more load applications and reduces asphalt performance [3].

Flexible pavement is a multi-layered elastic construction built to ease vehicle mobility
and rest on subgrade soil and a natural base. A typical flexible pavement has a top layer
of asphalt concrete, a base and subbase course, and compacted subgrade soil [4]. Distress
is a key factor to consider while designing pavement. Each failure criterion should be
established independently by mechanistic-empirical techniques to address each specific
distress. Rutting is common distress in pavement with asphalt concrete surfaces.

Rutting is caused by a permanent distortion in one or more of the pavement layers or
the subgrade, which is mainly caused by material consolidation or lateral movement caused
by traffic loads. Rutting is a depression or groove caused by the movement of wheels on a
road or route. Ruts can form because of wear, such as from studded winter tires, which are
frequent in cold climates, or as a result of deformation of the asphalt concrete, pavement,
or subbase material. Heavily loaded trucks are the primary cause of accidents on modern
roadways [5]. Over time, the tire impressions of these heavily loaded vehicles leave ruts
in the roads. Rutting is a common pavement disturbance that is frequently modeled in
pavement performance. Pavement uplift may occur along the rut’s sides. On the other
hand, ruts are sometimes only visible after rain, when the wheel pathways are waterlogged.
Rutting can also be caused by the asphalt mix’s plastic mobility in hot weather or by poor
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compaction during construction. Significant rutting can cause major structural problems as
well as the possibility of hydroplaning.

The ability to accurately predict its development is important not only for an effective
pavement management system but also for the mechanistic-empirical pavement design
technique for the examination of pavement structure and materials. A change in cross
profile impacts driving safety, reduces skid resistance, and increases pavement damage
(dynamic loading, narrow wheel loading distribution, etc.), as is shown in Figure 1 below,
which displays a cross-section of a road and how the rut depth looks. The production of
continuous deformation in asphalt layers is usually defined as a two-stage process. The first
stage mostly comprises consolidation (densification with volume change), while the second
stage primarily consists of shear deformation (plastic flow not associated with volume
change). Consolidation and shear deformation can happen at the same time in extreme
situations, causing severe layer distortion.
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Figure 1. Top view and Cross-Sectional View of Rutting depth.

The Long-Term Pavement Performance (LTPP) initiative, which began in 1987 as
a part of the Strategic Highway Research Program (SHRP) and has been managed by
the Federal Highway Administration (FHWA) since 1992, analyzes the performance of
in-service pavements. The LTPP program’s main purpose is to figure out how and why
pavements behave the way they do. LTPP has provided several advantages in terms of
field data collection equipment and techniques. Ninety percent of state transportation
agencies, according to estimates, use LTPP data collection equipment or test procedures.
The American Association of State Highway and Transportation Officials (AASHTO) and
the industry have established several LTPP data collection methodologies. The goal of the
LTPP initiative was to collect data that would be useful in describing elements that affect
pavement performance. Consistency and accuracy in data gathering are critical from site
to site as well as across States and Provinces. It is populated with the finest quality data
available thanks to extensive quality assurance methods.

An Artificial Neural Network (ANN) is a system that functions similarly to a fully
formed human brain, storing and retrieving data to solve complicated problems and gain
knowledge through experience. An ANN is a collection of connected units (nodes), which
are called artificial neurons. These units resemble the original neurons of a human brain. A
set of inputs, weights, and a bias value are used to construct each node. The hidden layers
contain the neural network weights. Weights and biases are machine learning parameters
that are changed during neural network training. It generates its own rules from the learned
examples to solve complex problems [6].

2. Literature Review

Rutting is one of the most common types of pavement distresses in flexible pave-
ments, and it occurs because of frequent traffic loading movement. There are two types
of deformation in the pavement layer: recoverable deformation (resilient behavior) and
non-recoverable deformation (absorbing behavior). Resilient behavior is mostly used for
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current design practices, and Figure 2 below shows the difference between the elastic strain
and plastic strain for the soil’s behavior [1].
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Gradation, asphalt and moisture contents, type of aggregate, density, compaction
method, temperature, amplitude and frequency of loading, and duration of each load
cycle can all affect the behavior of asphalt-bound layers, unbound aggregate bases, and
foundation soils (subgrades). Ruts are formed because of accumulated deformations caused
by traffic distribution. The behavior of the materials should be known to be calculated or
predicted for design purposes. Traffic and temperature were used as inputs to develop a
model in PAVRUT by assuming the volume and characteristics of the traffic stream and
the properties of the paving materials [8]. In addition, rutting causes the road surface to
become uneven, spotty, and rough, affecting vehicle handling and perhaps creating a safety
risk. Pavement design requires the capacity to estimate the amount and growth of the
rutting in flexible pavements. A time-dependent ANN-based rut depth prediction model
was constructed by [9].

The Asphalt Rubber Hot Mix-Gap Graded (ARHM-GG) overlays appear to give less
protection against rutting to the underlying layers at increased temperatures than the
DGAC overlays. Because of the DGAC overlays’ greater thickness and stiffness, they also
suggested that Caltrans should also monitor tire pressure and loads on the truck fleet. They
found that an increase in tire pressure will increase the probability of rutting [10]. They use
a model to observe the macro behavior of mixes subjected to shear strain, an increase in
shear modulus under the influence of hydrostatic pressure caused by heavy traffic, and
variation in behavior due to changes in temperature and type of loading and accumulation
of permanent deformation under repetitive loading to predict rutting [11].

The shear property of structure and materials, as well as traffic and environmen-
tal characteristics, are used to create a shear-based rutting prediction model. Full-scale
pavement testing and laboratory wheel tests at varying temperatures, pressures, and slab
thicknesses were used to obtain the parameters of the prediction model [12]. The structural
responses (stress–strain deflection) are linked to Asphalt Cement (AC) fatigue cracking
and rutting in component pavement layers (AC surface, granular base, subbase layers,
and subgrade) [1]. Temperature and Stress levels are essential to determine permanent
deformation. The authors in [13,14] stated that the slopes of the plot between permanent
strain and stress repetitions will be unaffected.

Using an IC section, the foundation type, lane type, surface type, and accumulated
number of vehicles were used as inputs to develop a prediction model of rutting depth; the
authors in [15] stated that this study was limited to the Hokuriku expressway. The authors
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in [16] studied the effects of temperature and traffic using the ABAQUS finite element
program, and found that the significant effects of both thermal and traffic loading conditions
on the rutting damage of flexible pavement, and higher temperatures will provide a high rut
depth more than traffic loading for the asphalt layer, base layer, and subgrade layer. Local
empirical models were used by the authors in [17] to calculate permanent deformation
such as environmental and traffic conditions using ANSYS software. They considered
Equivalent Single Axle Load (ESAL) and wheel spacing with tire contact pressure and
assumed homogeneous and isotropic materials with a specified resilient modulus and
Poisson’s ratio. A previous study predicted the rut depth by ANN using viscoelastic
parameters by trying to provide a model that can estimate the rutting depth; the model
provided good accuracy with a high R-value [18]. The neural network model for rutting
depth agreed well with the experimental data. Given the high R values, it is possible to
conclude that the neural network model can predict rut depth with an acceptable level of
accuracy [19].

3. Objectives

• To develop a prediction model using ANN to predict rutting depth.
• To extract an equation from ANN using weights and biases from ANN output.
• To perform a sensitivity analysis of the ANN model.

4. Data Collection

In this study, the data were collected from the LTPP database for the state of Texas.
A total of 70 observations from 5 sections were extracted from LTPP based on the availability
of data. Data for four input variables Temperature, Thickness, ESAL, Resilient Modulus,
and one output Rutting depth were obtained to predict the rutting depth.

5. Data Selection

Based on the literature review, it was shown that the environmental changes, the
thickness of the asphalt layer, the resilient modulus of the soil underneath the asphalt
layers, and the frequency of the repeated load. Based on that, it can be concluded the four
input variables (Temperature, Thickness, Resilient Modulus, and ESAL) were extracted
from the LTPP database to build an ANN model to predict rutting depth. Regression
analysis was performed between the variable inputs and outputs to find the correlation.
An R2 value of 0.6444 was obtained, which means that the 64.4% of the output values
are explained by the input variables. The difference between R2 and adjusted R2 is very
small, adding another reason to use other ways of regression to predict the model and to
significantly increase prediction accuracy (Table 1).

Table 1. Regression statistics for input variable to predict Rutting.

Regression Statistics

Multiple R 0.80
R2 0.64

Adjusted R2 0.62
Standard Error 3.16
Observations 70

The results from the regression analysis are good to proceed to develop a prediction
model for rutting depth to enhance the R2 to obtain better results. Table 2 shows the
hypothesis testing values for input variables.
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Table 2. Hypothesis testing values for input variables.

Coefficients Standard Error t Stat p-Value

Intercept −52.51 7.26 −7.23 6.72 × 10−10

Thickness 2.10 0.26 7.90 4.45 × 10−11

ESAL −1.55 × 10−5 3.65 × 10−6 −4.25 6.95 × 10−5

Temperature 2.70 0.26 10.41 1.76 × 10−15

Resilient
Modulus −0.76 0.25 −2.97 4.18 × 10−0.3

6. Developing a Prediction Model Using ANN

One recent advancement in deep learning is ANN. A computational model called
ANN imitates how neurons work in the human brain. Simply said, ANN uses learning
algorithms that can be modified by themselves as they gather new data. Therefore, they
provide a great modeling tool for non-linear statistical data. ANN models typically consist
of three layers linked by weighted linkages. The input layer is the top layer, directly
connected to the hidden layer, while the output layer is the third layer [20,21]. A prediction
model for Rutting Depth is developed using 4 input variables and 70 observations (Figure 3).
The main aim was to develop an ANN-based prediction model with fewer hidden neurons
possible to obtain the best results and to extract an equation. A multilinear ANN was used
to predict, with four hidden neurons to obtain a simplified equation with a good R2 value.
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Figure 3. The architecture of the developed ANN Model.

The architecture of the constructed ANN model includes an input layer that has four
input variables (neurons), which were initially normalized, and the second layer (hidden
layer) has four hidden neurons that receive the result of matrix multiplication and addition,
and at the end, there is an output layer consisting of a single output neuron with the value
of the predicted rutting depth. The weights and biases of the hidden layer are represented
by Wih and Bih. The input in the hidden layer is converted to a hyperbolic tangent using the
hyperbolic tangent function. The output from the hyperbolic tangent is used to multiply
with output weight and bias from the hidden layer. In the end, the normalized output
obtained from the output layer is then denormalized to obtain our desired output. It can be
understood using a flow chart as shown in the figure below [22]. The model was developed
and trained using MATLAB (MATLAB, 2020A).

ANN model is trained to give desired R2 value; in which, out of 70 observations,
70 percent of the randomly selected data is used for training, 15 percent of the data is used
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for model validation, and the remaining 15 percent of the data is used to test the model
(Figure 4). To prevent the model from overfitting, the input data were divided into three
categories. Otherwise, the model would remember each data point from the training and
perform poorly in a fresh database.
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Figure 4. Flow Chart for use of data for Training, Validation, and Testing.

Every input was normalized between [−1, 1] to reduce the influence of variables with
a huge numerical value. The normalized output is then finally denormalized to obtain the
actual output value. The ANN algorithm allocates weights and biases at random in the
first iteration. Then, the model’s output is compared to the training observations measured
data. The error is the difference between the ANN model output and the measured output.
The goal of the training was to reduce the Mean Square Error (MSE) as much as possible by
altering the weights and biases with each iteration. Backpropagation was used to modify
the weights and biases. An epoch is a unit of time that includes both forward and backward
propagation. With each epoch, the model’s MSE is improved. Figure 5 shows that the best
performance of the model was at the 19th iteration with 2.2375 MSE.
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Every step of the model’s performance was evaluated using linear regression. The
regression graphs from the training, validation, and testing phases are shown in Figure 6.
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The perfect model is shown by the 45-degree line of equality, in which the output and target
value are the same. Here, the model has an overall R2 of 0.87 in the regression plot, which
gives a high correlation coefficient and positive linear relation.
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The histogram of errors between target values and predicted values after training a
feedforward neural network is known as the error histogram. These error numbers can
be negative because they represent how anticipated values depart from target values. The
number of vertical bars shown below in Figure 7 is considered bins. The number of samples
from the dataset that fall into each category is represented on the Y-axis.
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7. Extraction of Weights and Biases from the ANN Model

Because of its versatility, the repeatable predictive model is very popular. As the acti-
vation function, the tangent hyperbolic function is employed. By using weights and biases
from ANN a rutting depth equation can be obtained by using the below equation form.

Rutting Depth = d ({Woh × Tanh (Wih × In + Bih)} + Boh) (1)

where
d = denormalization operator.
Wih =Weights from Input (First Hidden Layer).
Bih = Input Biases.
In = Normalized Input variables.
Who = Weights from hidden layer to output.
Boh = Biases from hidden layer to output.
The normalized Equation is given by

X = 2 × X − Xmin
Xmax − X min

− 1 (2)

where
Xmin = Minimum value of the variable x.
Xmax = Maximum Value of the variable x.
The Weights and Biases obtained from ANN’s output after Training, Testing, and

Validation are shown in the form of a matrix below.

Wih =

4.87638 −0.2371 2.2001 1.46476
1.21735 −0.6118 −2.221 2.59833
−0.8694 −0.4099 1.4865 −1.4562
2.52844 0.13403 −0.2813 1.84905

bih =

−3.0090
−0.4077
−1.9926
4.07327

Wh0 =

0.7805
0.2082
1.0594
2.3152

boh = −1.3850

The model’s weights and biases are used to derive an equation. The extracted equation
is written below.

D = 10 × (0.7805 × TANH (1.234 × H − 8.56 × 10−7 × ESAL + 0.473 × T + 0.662 ×
MR − 31.52)+0.208 × TANH (0.308 × H − 2.209 × 10−6 × ESAL − 0.477 × T +

1.17 × MR − 10.26) +1.05 × TANH (−0.22 × H − 1.47 × 10−6 × ESAL + 0.319 × T −
0.658 × MR + 3.53) + 2.315 × TANH (0.64 × H + 4.83 × 10−7 × ESAL − 0.06 × T +

0.836 × MR − 12.26) − 1.385 + 1) +1

where
D = Rutting Depth (in).
H = Thickness (in).
ESAL = Equivalent Single Axle Load.
T = Temperature (C◦).
MR = Resilient Modulus (ksi).

8. Sensitivity Analysis

One of each input variable is chosen for sensitivity analysis, while the remaining
variables are retained at their average value. The output of the model is recorded as the
selected variable changes and the values recorded and the same are plotted on a bar chart.
For sensitivity analysis, the anticipated Rutting Depth vs. the single input variable bar
chart is displayed using those data. Table 3 contains the minimum, maximum, and average
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values for all variables in this procedure. Figures 8–11 below show how the change in each
input can affect the rutting depth.

Table 3. Maximum, Minimum, and Average values for all input and output variables.

Thickness
(in) ESAL Temperature

(◦C)
Resilient

Modulus (ksi)
Rut Depth

(in)

Average 6.59 218,056.5 22.08 14.93 6.32
Std Deviation 2.37 161,725.88 3.09 1.61 5.15

Min 2.99 3011 16.20 13.35 1
Max 10.90 557,000 25.5 17.77 21
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Figure 9. Model sensitivity for Temperature.
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Figure 10. Model Sensitivity for ESAL.
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Figure 11. Model Sensitivity for Resilient Modulus.

The results of the sensitivity analysis for rutting depth showed that input variables
such as temperature and ESAL are directly correlated with the dependent variable, the
rutting depth. Whereas, thickness and the resilient modulus were inversely correlated to
the rutting depth.

9. Summary and Conclusions

A rutting depth prediction model was developed using ANN. Seventy observations
extracted from the LTPP database were used for the data collection, the model was fed with
four inputs; temperature, ESAL, resilient modulus, and thickness. an R2 with a value of
0.87 was developed. Comparing this R2 with the 0.64 that was observed from the linear
regression, the ANN shows a better result and higher R2. An Equation was extracted using
weights and biases and verified for rutting depth. The extracted equation and ANN output
were checked using a regression plot, and the R2 value of 1 was obtained. The output of
the extracted equation is identical to that of the model. To achieve the desired performance,
the significant factors found in the sensitivity analysis might be tweaked. The sensitivity
analysis showed that the temperature and ESAL affect the rutting depth very strongly in a
direct way. Moreover, thickness and resilient modulus affect the model but in an indirect
relation. The final output may be used for pavement performance prediction and modeling.

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization,
R.K., M.I.S. and M.B.M.B.; methodology: R.K., M.I.S. and M.B.M.B.; software: R.K. and M.B.M.B.;
validation: R.K., M.I.S. and M.B.M.B.; formal analysis: R.K., M.I.S. and M.B.M.B.; investigation:
R.K., M.I.S. and M.B.M.B.; data curation: M.I.S. and M.B.M.B.; writing—original draft preparation:
M.I.S. and M.B.M.B.; writing—review and editing: R.K. and M.I.S.; visualization: R.K. and M.I.S.;
supervision: M.I.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tayfur, S.; Ozen, H.; Aksoy, A. Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr.

Build. Mater. 2007, 21, 328–337. [CrossRef]
2. Archilla, A.R.; Madanat, S. Development of a pavement rutting model from experimental data. J. Transp. Eng. 2000, 126, 291–299.

[CrossRef]
3. Wang, H.; Zhang, Q.; Tan, J. Investigation of layer contributions to asphalt pavement rutting. J. Mater. Civ. Eng. 2009, 21, 181–185.

[CrossRef]
4. Singh, A.K.; Sahoo, J.P. Rutting prediction models for flexible pavement structures: A review of historical and recent developments.

J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 315–338. [CrossRef]
5. Banik, B.K.; Chowdhury, M.A.I.; Hossain, E.; Mojumdar, B. Road accident and safety study in Sylhet Region of Bangladesh. J.

Eng. Sci. Technol. 2011, 6, 493–505.
6. Zell, A. Simulation Neuronaler Netze (Simulation with Neuronal Networks); Wissenschaftsverlag: Oldenbourg, Germany, 2003.
7. Huang, Y.H. Pavement Analysis and Design; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004; Volume 2, pp. 401–409.

http://doi.org/10.1016/j.conbuildmat.2005.08.014
http://doi.org/10.1061/(ASCE)0733-947X(2000)126:4(291)
http://doi.org/10.1061/(ASCE)0899-1561(2009)21:4(181)
http://doi.org/10.1016/j.jtte.2021.04.003


CivilEng 2023, 4 184

8. Allen, D.L.; Deen, R.C. A computerized analysis of rutting behavior of flexible pavement. Transp. Res. Rec. 1986, 1095, 1–10.
9. Abiola, O.S.; Owolabi, A.O.; Sadiq, O.M.; Aiyedun, P.O. Application of dynamic artificial neural network for modelling ruts

depth for lagos-ibadan expressway, Nigeria. ARPN J. Eng. Appl. Sci. 2012, 7, 987–991.
10. Harvey, J.; Popescu, L. Rutting of Caltrans Asphalt Concrete and Asphalt-Rubber Hot Mix Under Different Wheels, Tires and Temperatures–

Accelerated Pavement Testing Evaluation; University of California: Berkeley, CA, USA, 2000.
11. Sousa, J.; Weissman, S.L.; Sackman, J.L.; Monismith, C.L. Nonlinear Elastic Viscous with Damage Model to Predict Permanent

Deformation of Asphalt Concrete Mixes; Transportation Research Board: Washington, DC, USA, 1993.
12. Sun, L.; Su, K.; Liu, L.P.; Tang, W.; Lu, Z.L. Development of shear-based rutting prediction model for asphalt pavements. In

Proceedings of the 11th International Conference on Asphalt Pavements, Nagoya, Japan, 1–6 August 2010; pp. 1–6.
13. Thompson, M.R.; Nauman, D. Rutting Rate Analyses of the AASHO Road Test Flexible Pavements; Transportation Research Board:

Washington, DC, USA, 1993.
14. Allen, D.L.; Deen, R.C. Rutting Models for Asphaltic Concrete and Dense-Graded Aggregate from Repeated-Load Tests; Annual Meeting

of The Association of Asphalt Paving Technologists: Louisville, KY, USA, 1980.
15. Shigehara, D.; Nishizawa, T.; Komatsubara, A.; Nakagen, T. A Model of Rutting Development of Asphalt Pavement in Expressway

Based on Artificial Neural Network. In Proceedings of the 11th International Conference on Asphalt Pavements, Nagoya, Aichi,
Japan, 1–6 August 2010.

16. Alkaissi, Z.A. Effect of high temperature and traffic loading on rutting performance of flexible pavement. J. King Saud Univ. Eng.
Sci. 2020, 32, 1–4. [CrossRef]

17. Abed, A.H.; Al-Azzawi, A.A. Evaluation of rutting depth in flexible pavements by using finite element analysis and local
empirical model. Am. J. Eng. Appl. Sci. 2012, 5, 163–169.

18. Kamboozia, N.; Ziari, H.; Behbahani, H. Artificial neural networks approach to predicting rut depth of asphalt concrete by using
of visco-elastic parameters. Constr. Build. Mater. 2018, 158, 873–882. [CrossRef]

19. Mirabdolazimi, S.M.; Shafabakhsh, G. Rutting depth prediction of hot mix asphalts modified with forta fiber using artificial
neural networks and genetic programming technique. Constr. Build. Mater. 2017, 148, 666–674. [CrossRef]

20. Saha, S.; Gu, F.; Luo, X.; Lytton, R.L. Use of an Artificial Neural Network Approach for the Prediction of Resilient Modulus for
Unbound Granular Material. Transp. Res. Rec. 2018, 2672, 23–33. [CrossRef]

21. Kim, S.H.; Yang, J.; Jeong, J.H. Prediction of Subgrade Resilient Modulus Using Artificial Neural Network. KSCE J. Civ. Eng. 2014,
18, 1372–1379. [CrossRef]

22. Acharjee, P.K.; Souliman, M. Development of Dynamic Modulus Predictive Model Using Artificial Neural Network (ANN). In
Proceedings of the 2022 ASEE Gulf Southwest Annual Conference, Prairie View, TX, USA, 16–18 March 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jksues.2018.04.005
http://doi.org/10.1016/j.conbuildmat.2017.10.088
http://doi.org/10.1016/j.conbuildmat.2017.05.088
http://doi.org/10.1177/0361198118756881
http://doi.org/10.1007/s12205-014-0316-6

	Introduction 
	Literature Review 
	Objectives 
	Data Collection 
	Data Selection 
	Developing a Prediction Model Using ANN 
	Extraction of Weights and Biases from the ANN Model 
	Sensitivity Analysis 
	Summary and Conclusions 
	References

