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Abstract: Detecting and identifying hydrogen gas leakage before a potential disaster is a critical
safety concern. To address this issue, a low-cost and simple-design sensor is required with high
response and fast sensing time, capable of detecting hydrogen gas even at low concentrations of
5–500 ppm. This study investigates the use of magnetron-sputtered SnO2 thin films with palladium
as a catalytic layer to achieve better sensing output. The developed Pd-caped SnO2 thin film sensors
showed increased sensitivity with increasing thickness, up to 246.1 nm at an operating temperature
of 250 ◦C. The sensor with a thickness of 246.1 nm exhibited excellent selectivity for H2 gas, even in
humid conditions, and was able to distinguish it from other gases such as CO, NH3, and NO2. The
sensor demonstrated high response (99%) with a response/recovery time of 58 s/35 s for (5–500 ppm)
hydrogen gas. The sensor showed linear response to H2 gas concentration variation (5–500 ppm)
at 250 ◦C. The sensor was found to be mechanically stable even after 60 days in a high-humidity
environment. The LOD of sensor was 151.6 ppb, making it a suitable candidate for applied sensing
applications. The Pd-caped SnO2 thin film sensor with thickness of ~245 nm could potentially
improve the safety of hydrogen gas handling.

Keywords: hydrogen energy; sputtering; tin oxide thin film; XPS; hydrogen sensor; selectivity

1. Introduction

The operation of resistive sensors is based on the resistance variation due to adsorption
or desorption of gas molecules in nanostructured metal oxide semiconductors. These
sensors are simple, low-cost, and effective for detecting the leakage of various gases [1]. The
gas sensing mechanism is primarily based on surface-controlled oxidation and reduction
properties, and various parameters like porosity, voids, grain size, stoichiometry, structure,
and surface morphology in thin films affect the sensing properties [2–4]. Nanomaterials
such as nanowires, nanotubes, and nanorod-based gas sensors can be highly sensitive
and suitable for commercialization. However, the mass production of these sensors is
constrained due to limited low-cost fabrication techniques [5]. Sanjay Kumar et al.’s
utilized pure ZnO, and Pt nanoparticles loaded ZnO pencil-like microstructures for H2
gas sensing at low temperature, but the sensor fabrication takes longer time and not
suitable for industrial purpose [6]. Thin film nanostructures are mostly investigated for
gas sensing due to their improved surface properties, simple configuration/design, and
scalable fabrication for commercialization. The most investigated nanostructures for gas
sensing are the thin film form because of their simple design, configuration, and scalable
fabrication for commercialization.

The size and magnitude of the increment of the sensor response depend on the
variation in thin film thickness. Salman Ali et al. focused on the ribbon-like morphology
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and thickness variation based on organic materials based on hydrazine and ammonia gas
sensors [7]. The importance of optimizing the porosity and thickness of the sensing layer
of oxide semiconductors for improved selectivity and durability has been reported by
Yamazoe et al. [8]. The variation of sensor response with the thickness of films has also been
explained by X. Du and George. The lower sensor response was found for films thicker than
Debye length due to the space charge region over the film [9]. J. Klober et al. [10] showed
that the gas sensitivity of thin film sensors for hydrogen detection exhibits a maximum at
about 30–45 nm thickness and palladium concentration due to changes in the Debye length.
Bruno et al. [11] reported that for SnO2 thin films, there is an optimal thickness at which the
gas sensor response is the highest. Specifically, when the film thickness is much larger than
the size of the grains within the film, the gas sensor response increases. However, when
the film thickness is lower than the size of the grains, the gas sensor response decreases.
H. Xie et al. have shown that the ZnO-modified graphene sensor’s sensitivity decreases
in response to an increase in the thickness of ZnO film [12]. Abdelghaffar Nasri et al. [13]
reported many organic semiconductors and other organic materials that have been used
as the sensing layer. The layers are deposited with SnO2, MoS2 and materials such as
polyvinylpyrrolidone (PNVP), polyimide (PI), polypyrrole/nitrogen-doped MWCNTs
(PPy/NMWCNT), PANI, cellulose, nanocellulose, and CNTs or graphene because they
have unique properties for selectivity and stability of sensors [13].

The stoichiometry of elements helps to improve gas sensing. Yulin Kong et al.
shows how SnO2 nanostructure affect the gas-sensing properties of adsorbed oxygen [14].
W. Izydorczyk et al. stated that sensor selectivity and sensitivity can be modified by adding
noble elements to the sensor material in small quantities [15]. Furthermore, it is also noted
that the performance of gas sensors based on two or more components is typically much
better than single-component sensors which is reported by Zhang et al. [16].

There are two ways to improve gas-sensing performance: synergistic effects and
heterojunction interactions between two components [17]. Heterojunction interactions
between oxide/oxide are particularly effective in improving gas sensor performance,
resulting in an excellent response and selectivity [18]. Palladium oxide (PdOx) can be used
for the selective detection of H2, as it reacts with H2 to form PdHx, which can lead to high
selectivity [19].

Moreover, studies have shown that some gas-sensing layers can work well even in
humid atmospheres. For instance, Kwak et al. demonstrated that a Terbium-doped SnO2
sensor was humidity independent and worked well in wet humidity [20]. However, the
response of gas sensors can be affected by humidity.

In some cases, the sensor response is reduced with increasing humidity. For example,
undoped SnO2 nanoparticles exhibit a reduced sensor response with increasing humidity
due to increasing hydroxyl poisoning [21]. Guo et al. fabricated Bi @ rGO/SnO2-based
benzene sensors and observed a three times reduction in the sensing response without
humidity [22]. Z. Wang et al. have also reported a 20% reduction in the sensor response of
Pd-SnO2-rGO-based NO2 sensors in the presence of 80% RH [23].

Overall, the studies suggest that the development of gas sensors with improved selec-
tivity and response in humid environments can be achieved by optimizing the composition
and design of the sensing material, as well as the operating conditions. Kumar et al. [24] syn-
thesized hydrophobic poly (methyl methacrylate) (PMMA) coatings that showed changes
in electrical response to H2 gas at room temperature under different humidity conditions.
They found that the sensor response was better in the presence of moisture, particularly at
higher humidity levels (65%) [24].

We have developed a process for making H2 gas sensors with high sensitivity, stability,
and selectivity, as well as high tolerance to humidity, using Pd-capped SnO2 thin films.
Our technique involves depositing Pd-SnO2 thin films onto glass substrates using the
RF-reactive magnetron-sputtering method. By incorporating Pd as a capping layer, we
were able to improve the H2 gas sensing performance of the SnO2 thin films, resulting in
enhanced selectivity of the sensor, particularly in humid environments.
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To further investigate the hydrogen gas sensing capabilities of the Pd-caped SnO2 film
sensors, we studied three different film thicknesses of SnO2: L1 (146.5 nm), L2 (246.1 nm),
and L3 (357.4 nm). Our analysis revealed the sensing characteristics and the mechanisms
responsible for the enhanced sensor performance.

2. Experimental
2.1. Fabrication of Sensing Materials

The sensing material was fabricated on a cleaned glass substrate using an RF-sputtering
technique. The Tin Oxide (SnO2) and Palladium (Pd) targets were used to prepare the sens-
ing material, and both targets were 2 inches in diameter and 3 mm in thickness. The purity
of the targets was 99.99%. The gases used in the process were Argon (Ar) and Oxygen (O2)
synthetic air, Hydrogen (H2), Nitric oxide (NO2), Ammonia (NH3), and Carbon monoxide
(CO), all 99.99% pure. Before the fabrication process, the glass substrates were cleaned with
laboratory reagent and ultrasonically cleaned for 30 min at 50 ◦C temperature and dried at
100 ◦C for 20 min.

The substrates were then kept in the sputtering chamber at a distance of 5 cm from
the targets. The sputtering chamber was initially pumped up to a base pressure of
7 × 10−5 mbar using the turbo molecular pump (TMP) and rotary pump. During the
deposition process of SnO2, the pressure of the sputtering chamber was kept constant at
5 × 10−3 mbar at a constant flow of Ar (30 sccm) and O2 (10 sccm) gases using mass flow
controllers (MFC). All sensors were fabricated at a substrate temperature of 450 ◦C and
applied 100 W (RF) power with varying deposited time (5, 10, and 15 min) for each sensor,
i.e., L1, L2, and L3, respectively. During the Pd deposition process, we have taken the same
parameters of sputtering except deposition of 3 s for each sensor with 30 W (DC) sputtering
power without any oxidized atmosphere at the same 450 ◦C temperature.

2.2. Characterization

X-ray diffraction (XRD) was used to confirm the crystal structure of the SnO2 thin
film sensors. The XRD measurements were conducted using a Bruker AXS D8 advance
instrument with CuKα radiation (k = 1.5418 Å) and (θ–2θ) geometry. The surface topogra-
phy of the sensors was analyzed using atomic force microscopy (AFM) with an NT-MDT,
NTEGRA instrument. The stoichiometry of the fabricated sensors was analyzed using
energy=dispersive X-ray analysis (EDAX). The optical properties of the sensors were inves-
tigated using double-beam UV-Vis spectroscopy with a wavelength range of 300–600 nm.
The composition and bonding characteristics of the SnO2 thin film were studied using
X-ray photoelectron spectroscopy (XPS) with a Perkin Elmer, 1257 instrument.

2.3. Gas Sensing Setup

The gas sensing measurements were carried out in a custom build setup made by
Excel Instruments, Mumbai, India. The setup included a PID controller for temperature
control. Before the sensing test, the silver paste was applied on the surface of the H2 gas
sensors as electrodes. The sensing chamber was evacuated to 6 mbar using a rotary pump.
The gas flow rates were controlled by mass flow controllers (MFCs) and the mixed ratio of
high-purity H2 gas (balance N2) and synthetic air was adjusted. The gases were diluted in
a dilution chamber (1-L capacity) and controlled by an Alicat Scientific MFC in the sensing
chamber. The electrical response of the sensors was monitored using a current source meter
and nano voltmeter (Keithley 2450) with either of the two probes as shown in Figure 1.
Humidity was introduced into the sensing chamber by a humidity valve attached to an
external chamber (1-L capacity) and was analyzed by a humidity meter (% RH).
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Figure 1. Schematic of the hydrogen gas sensing test set-up used for electrical resistance measure-
ments of a Pd caped SnO2 thin-film sensor.

3. Results and Discussion
3.1. Structural, Optical, Morphology, Stoichiometry and Topography Analysis

In Figure 2a, the XRD patterns demonstrate the tetragonal phase of SnO2, revealing
the (110), (111), and (211) planes at 27.36, 38.8, and 52.46, respectively (JCPDS ICDD
no. 41-1445 [25]). The XRD patterns of the L1 sensor exhibit low-intensity peaks, while the
XRD patterns of the L2 and L3 thin film sensors display high-intensity peaks including
(101) and (112). The crystallite size of the thin films was calculated using the Scherrer
formula, indicating an increase in crystallite size with increasing film thickness up to
357.4 nm [26,27]. Additionally, the micro-strain decreased with increased film thickness,
indicating an improvement in the film’s crystallinity [28]. The XRD pattern in Figure 2a
did not reveal the Pd peak [29], indicating a very low crystallinity content.

To determine the energy band gap of the Pd caped SnO2 thin films, we used the Tauc
relation and optical absorption spectra. The relation αhV = A (αh − Eg)n was applied,
where hV represents photon energy, α represents the absorption coefficient, Eg represents
the optical energy band gap, A is a constant, and the exponent n depends on the nature
of the optical transition, with n = 1/2 for direct allowed transitions [30,31]. We found that
the optical band gap of the Pd caped SnO2 thin films ranges from 3.91 to 3.78 eV. For more
detailed information regarding the crystallite sizes, lattice parameters, micro strain, and
dislocation densities of the thin films, please refer to Table 1.
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thin film sensors. 

Table 1. XRD Results, RMS Value of AFM Images, and Band Gap of L1, L2, and L3. thin film sensors. 

Thin 

Films 

Crystallin-

ity (nm) 

Inter Planer 

Distance 

Lattice 

Constant 

(a = b) 

Lattice 

Constant 

(c) 

Lattice 

Strain (ε) 

Dislocation 

Density (δ) 

Line/m2 

Resistance 

(MΩ) (in Air 

at RT.) 

RMS 

Values 

(nm) 

Band Gap 

(eV) 

L1 sensor 8.42 3.27 4.63 3.24 1.002 0.014 1.41 5.89 3.91 

L2 sensor 11.58 3.25 4.61 3.29 0.725 0.007 1.15 5.00 3.84 

L3 sensor 12.67 3.24 4.60 3.32 0.663 0.006 1.65 4.24 3.78 

Figure 3 displays FE-SEM images of the Pd-caped SnO2 samples with varying thick-

nesses, taken at a scale of 2 μm. The top-view image illustrates a clear and well-defined 

sensing area, while the high-magnification SEM image reveals the uniformity of the thin 

films. Due to the polycrystalline nature of the oxide, the Pd-caped SnO2 thin films possess 

high porosity, which is a result of using the sputtering deposition method. Notably, no 

cracks were observed in the thin films as seen in the SEM images of the top surface. Figure 

3 also presents the cross-sectional thicknesses of L1, L2, and L3 sensing films. The Pd-

decorated SnO2 thin films on the glass substrate measure 146.5 nm, 246.1 nm, and 357.4 

nm, respectively. 

To verify the presence of Pd, Sn, and Oxygen in the thin films, we utilized EDAX 

analysis. The inset of Figure 3 presents the EDAX images of L1, L2, and L3 thin film sen-

sors, which confirms a non-stoichiometric composition of Tin and Oxygen in SnO2 thin 

film. The 2D-AFM (atomic force microscopy) topography shows that the Pd-caped SnO2 

thin films have a uniform surface, free of any wrinkles or cluster pinholes. 

The AFM micrographs of L1, L2, and L3 sensors indicate that the SnO2 thin films 

consist of ellipsoid-shaped particles with different sizes, forming a nano-granular mor-

phology that fully extends over the substrates [26,32]. The root mean square surface 

roughness (δrms) of the sensing material was evaluated using AFM images, as shown in 

Figure 3j,k,l, and the results demonstrate a decrease in roughness as the thickness of the 

thin film sensors increases, as indicated in Table 1. These AFM results further confirm that 

the thin films possess a highly dense structure and a uniform distribution of grains. The 

RMS values of L1, L2, and L3 sensors are also listed in Table 1. 

Figure 2. (a): X-ray diffraction (XRD) patterns and (b) UV-Vis absorption spectra of L1, L2, and L3
thin film sensors.

Table 1. XRD Results, RMS Value of AFM Images, and Band Gap of L1, L2, and L3. thin film sensors.

Thin Films Crystallinity
(nm)

Inter
Planer

Distance

Lattice
Constant

(a = b)

Lattice
Constant

(c)

Lattice
Strain (ε)

Dislocation
Density (δ)

Line/m2

Resistance
(MΩ) (in Air

at RT.)

RMS
Values
(nm)

Band Gap
(eV)

L1 sensor 8.42 3.27 4.63 3.24 1.002 0.014 1.41 5.89 3.91

L2 sensor 11.58 3.25 4.61 3.29 0.725 0.007 1.15 5.00 3.84

L3 sensor 12.67 3.24 4.60 3.32 0.663 0.006 1.65 4.24 3.78

Figure 3 displays FE-SEM images of the Pd-caped SnO2 samples with varying thick-
nesses, taken at a scale of 2 µm. The top-view image illustrates a clear and well-defined
sensing area, while the high-magnification SEM image reveals the uniformity of the thin
films. Due to the polycrystalline nature of the oxide, the Pd-caped SnO2 thin films pos-
sess high porosity, which is a result of using the sputtering deposition method. Notably,
no cracks were observed in the thin films as seen in the SEM images of the top surface.
Figure 3 also presents the cross-sectional thicknesses of L1, L2, and L3 sensing films. The
Pd-decorated SnO2 thin films on the glass substrate measure 146.5 nm, 246.1 nm, and
357.4 nm, respectively.

To verify the presence of Pd, Sn, and Oxygen in the thin films, we utilized EDAX
analysis. The inset of Figure 3 presents the EDAX images of L1, L2, and L3 thin film sensors,
which confirms a non-stoichiometric composition of Tin and Oxygen in SnO2 thin film. The
2D-AFM (atomic force microscopy) topography shows that the Pd-caped SnO2 thin films
have a uniform surface, free of any wrinkles or cluster pinholes.

The AFM micrographs of L1, L2, and L3 sensors indicate that the SnO2 thin films con-
sist of ellipsoid-shaped particles with different sizes, forming a nano-granular morphology
that fully extends over the substrates [26,32]. The root mean square surface roughness
(δrms) of the sensing material was evaluated using AFM images, as shown in Figure 3j,k,l,
and the results demonstrate a decrease in roughness as the thickness of the thin film sensors
increases, as indicated in Table 1. These AFM results further confirm that the thin films
possess a highly dense structure and a uniform distribution of grains. The RMS values of
L1, L2, and L3 sensors are also listed in Table 1.
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Figure 3. FE-SEM images of L1 (a), L2 (d), and L3 (g) thin film sensors, along with their correspond-
ing cross-section thickness in L1 (b), L2 (e), and L3 (h) images. The EDAX pattern and chemical
composition (inset (c,f,i)) of Tin, Oxide, and Palladium in thin film sensors L1 (c), L2 (f), and L3 (i)
are also shown. Additionally, 2D-AFM images of L1 (j), L2 (k), and L3 (l) are included.

3.2. XPS Analysis

X-ray photoelectron spectroscopy (XPS) was employed to confirm the presence of
Pd in the Pd-caped SnO2 thin film (L2 sensor) by analyzing the surface compositions and
chemical states of the elements in the as-deposited film. The spectra of Sn, Pd, and O are
shown in Figure 4. The XPS survey spectra in Figure 4a revealed signals for Sn 3d, O 1s,
C 1s, Sn 3s, Sn 3p, Sn 4d, and Sn 4s. The C1s peak at 284.48 eV was used as a reference for
the other XPS peaks. During sputtering, the Sn (MNN) stable intensity and O (KLL) signals
were clearly visible, reflecting the analytical results at various depths of the sample within
the tin oxide layer. The peak spectrum of Sn 3d5/2 at 485.98 eV and 3d3/2 at 494.38 eV
were observed, and the binding energies of the peaks were consistent with Sn4+ species,
confirming the formation of SnO2 thin film. The difference between the binding energy of
Sn 3d3/2 and Sn 3d5/2 was 8.4 eV, confirming the oxidation state of Sn (IV), as reported in
the literature [33].
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Pd 3d5/2 (336.48 eV) and Pd 3d3/2 (341.88 eV) peaks were observed, indicating the
presence of Pd (IV). Another couple of Pd 3d5/2 (335.8 eV) and Pd 3d3/2 (340.44 eV) were
assigned to oxygen-chemisorbed Pd (Pd-Oab) in the prepared sensor (L2), as shown in
Figure 4c [34,35]. This indicates that the PdOx and Pd-Oab species formed at the surface
of the Pd atoms are connected with the oxidation of Pd. The Pd-Oab and PdO2 arise as
Pd atoms at the outer surface, which are highly exposed to ambient air and water [36].
This XPS analysis revealed that the majority of Pd atoms are present as PdO and Pd metal
species at the surface and form a heterostructure with SnO2 thin films [36,37].

The XPS high-resolution spectra of the O 1s region (Figure 4d) consist of an asymmet-
rical peak, which was deconvoluted into two peaks indexed to O 1s [38]. One of them,
centered at 529.84 eV, corresponds to oxygen, while the other peak, having a higher binding
energy (531.85 eV), is ascribed to the adsorbed oxygen bonded to the material’s surface,
which plays a vital role in the sensing mechanism [38].

The ratio of atomic% of [O]/[Sn] = 1.3 indicated a non-stoichiometric composition in
sensor L2 [15], and the atomic % of Pd 3d, Sn 3d, and O 1s were obtained as 7.76%, 10.89%,
and 14.2%, respectively.

3.3. Gas Sensing Analysis

The response of the deposited thin film to H2 gas was analyzed by varying the
operating temperature between 100 ◦C and 350 ◦C. The sensor response was determined
using the following relation,

S(%) =
Ra − Rg

Ra
× 100,



Fuels 2023, 4 286

where Ra and Rg represent the resistances of the sensing material in the presence of air
and the target gas, respectively [39]. Figure 5a shows the response of L1, L2, and L3 thin
film sensors to 500 ppm concentration of H2 gas. As depicted in the figure, the sensor
response increases with temperature due to the adsorption/desorption equilibrium of
gas molecules, which governs the chemical reaction kinetics [40]. The maximum sensor
response was observed at 250 ◦C, which was the operating temperature for all sensors. At
temperatures below 250 ◦C, gas molecules lack the thermal and kinetic energy required
to overcome the surface barrier, leading to low-adsorption capacity of gas molecules [41].
However, when the temperature of the Pd-caped SnO2 thin film exceeds 250 ◦C, the gas
molecules adsorb on the sensing material and desorb before the electron transfer due to
their high activation energy, resulting in a decrease in the sensor response of the sensing
material [28]. Additionally, the difference in the magnitude of the sensor response among
different sensors may be due to the variation in the thickness of the deposited materials.
Sensor L2 exhibited a higher response than L1 and L3 sensors, which may be attributed to
the non-stoichiometric composition of tin and oxide as deduced from EDAX Figure 3 and
XPS spectra Figure 4 [15]. When the sensor comes in contact with the gas under detection,
the gas molecules react with the adsorbed oxygen anions. The oxygen-trapped electrons
are released back to the conduction band of SnO2, which makes the resistance of the SnO2
gas sensor decrease. The change of resistance of the thin film-based gas sensor is converted
into an electrical signal, which can detect the target gas [14]. Therefore, the conductivity
of SnO2 depends on the density of oxygen ions adsorbed on the surface [14]. In the L2
sensor, there are more oxides species (EDAX and XPS results) to improve the active sites of
SnO2 through the surface, further improving the gas sensing performance of the gas sensor
compared to L1 and L3 sensors.

The operating temperature of 250 ◦C was chosen to measure the sensitivity of the
sensors L1, L2, and L3 towards H2 gas concentration in the range of 5 to 500 ppm, as shown
in Figure 5b–d. The resistance of the sensing material was decreased upon exposure to
H2 gas but returned to its initial value upon removal of the gas, confirming reversible
adsorption and desorption.

The response and recovery time improved with increasing H2 concentration due to the
catalytic and thermal activity of Pd. Figure 5e,f shows the response and recovery time of
the sensors as a function of H2 concentration. The recovery time decreased with increasing
Pd loading due to enhanced catalytic activity. The sensor response for different cycles in the
presence of 500 ppm H2 gas is shown in Figure 6, where L1(a), L2(c), and L3(e) correspond
to sensing duration and L1(b), L2(d), and L3(f) after 60 days. The L1 and L3 sensors showed
incomplete recovery after multiple cycles, whereas the L2 sensor showed good repeatability
up to the tenth cycle. The I-V characteristics of the sensors with H2 gas at 250 ◦C are shown
in Figure 7a, and the stability of the sensors after 60 days at 500 ppm H2 gas is shown in
Figure 7b. The selectivity of the sensors was tested with different gases such as H2, CO,
NH3, and NO2 at 250 ◦C. The response of the L2 sensor to carbon monoxide (CO), ammonia
(NH3), and Nitrous Oxide (NO2) gases were found to be very small as compared to L1 and
L3 sensors, as depicted in Figure 7e. The results suggest that L2 thin film sensor exhibits
a high response to hydrogen gas [42,43]. The instigation energy of hydrogen gas is small
than CO, NH3, and NO2 gases. The gases (CO, NH3 and NO2) with large molecular weight
and size are less reactive to the Pd layer [26]. Hence, hydrogen with its lower instigation
energy, weight, and size is highly reactive and sensitive on the Pd surface, making it highly
selectivity for hydrogen gas [26].
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Figure 5. (a) Response (%) of L1, L2, and L3 sensors at different temperatures. (b–d) Transit
response and recovery graphs of L1, L2, and L3 sensors in the presence of 5–500 ppm H2 gas at 250 ◦C.
(e,f) Transit response and recovery time graphs of L1, L2, and L3 sensors in the presence of 5–500 ppm
H2 gas at 250 ◦C.

However, humidity can affect the sensor performance, causing water poisoning, which
leads to reduced sensor response, response time, recovery time, and stability [44]. Water
vapor adsorption on the active sites of Pd-caped SnO2 thin film can decrease H2 response
and change the base resistance of sensors [45]. Therefore, the response, selectivity, and
stability of the sensors were observed to be lower in humid environments than in dry ones.
The reduction in sensing response of L1, L2, and L3 sensors at 80% relative humidity was
6.76%, 2.85%, and 5.33%, respectively, as shown in Figure 7c. However, the humidity effect
on the sensing performance was minimal.
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The sensor stability for 60 days and selectivity at 60% relative humidity were also
studied. The sensors L1, L2, and L3 worked at 60% relative humidity, and after 60 days,
the observed reduction in response was 12.32%, 8.06%, and 11.44%, respectively, as shown
in Figure 7d. In 60% relative humidity, L2 sensor exhibited higher sensitivity (97.36%)
compared to L1 (73.14%) and L3 (52.14%), as shown in Figure 7e. Thus, the L2 sensor
performed well in 60% relative humidity even after 60 days and exhibited better stability
in humid atmospheres. These results indicate that the fabricated Pd-caped SnO2 thin
film sensor (L2 sensor) is highly selective to H2 gas at lower concentrations (ppm levels)
with high sensitivity and good stability in humid environments. A linear relationship as
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concentration of H2 gas (5–500 ppm) vs. sensitivity (%) of all sensors at 250 ◦C is shown in
Figure 7f. The lower detection limits (LOD) of L1, L2, and L3 sensors were observed 184.61,
151.60, and 200.04 ppb. respectively [6]. Here, L2 sensor shows better linearity and lower
LOD comparison other sensors. A comparative summary of the sensor characteristics of
previously reported Pd caped SnO2 sensors is presented in Table 2.
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Figure 7. (a) Voltage–Current graph of L1, L2, and L3 sensors in 500 ppm H2 gas at 250 ◦C. (b) Stability
of L1, L2, and L3 sensors after 60 days in the presence of 500 ppm H2 gas. (c) Stability of L1, L2, and
L3 sensors in relative humidity (0–80% RH) in the presence of 500 ppm H2 gas. (d) Stability of L1, L2,
and L3 sensors after 60 days in 60% RH in the presence of 500 ppm H2 gas. (e) Selectivity of sensors L1,
L2, and L3 in different gases (H2, CO, NH3, and NO2) in air and 60% RH, with all gases present at a
concentration of 500 ppm, (f) Sensitivity (%) vs. H2 gas concentration (ppm).
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Table 2. Comparative Study of Our Sensor’s Sensing Parameters to Other Sensors with Similar
Thickness to H2 gas Detection in high Moisture.

S.No. Materials Morphology Synthesis
Process

Thickness
of Sensors

H2 Gas
(ppm)

Operating
Temp. (◦C)

Sensitivity
S* (%) = Ra−Rg

Ra ×100,
S = Ra

Rg

Response
Time (s)

Recovery
Time (s) Ref.

1. Pd/SnO2 Thin films Sputtering 40 nm 1000 300 28 15
(250 ppm)

4
(250 ppm) [46]

2. Pt/SnO2 Thin film DC Sputtering
Pt-5 nm,

SnO2-
150 nm

250 200 51.6 50 320 [47]

3. RTE Pt
NP/WO3

Thin film
Rapid thermal

evaporation
(RTE)/sputtering

4 nm (WO3
film) 1 ppm 200 1.41 × 106 201 26 [48]

4. Pd/SnO2 Thin film Sputtering 300 nm 1000 250 2.3 _ _ [45]

5. Pd/amorpusWO3 Thin film E-beam
evaporation 550 nm 1% RT 57* 400 16 [13]

6. SnO2@TiO2 Nano rods Hydrothermal _ 500 100 15.4 11 132 [25]

7. Pd/CuO Thin film Sputtering 283 nm 1000 300 3.01 10 50 [26]

8. 1.0 at%
Pd/SnS2/SnO2

Nano
composites Hydrothermal _ 500 300 95 1 9 [43]

9. Pd/WO3 Thin film Sputtering 100 nm 2% 300 340* 345 293 [41]

10. Pt/SnO2
Thin film

array Sputtering 150 nm 250 241 8.2 _ _ [40]

11. PdO-WO3 film Thin film

Polyol process
with metal

organic
decomposition

(MOD)

2.54 µm 100 160
45.1/29 (40%RH,

with N2
atmosphere)

4 110 [36]

12.
Pt/In2O3-

doped SnO2
sensor

Thin film
Sol–gel

dip-coating
technique

_ 600 RT. 1050* (14% RH)/134
(65%RH) _ _ [24]

13. Pd-SnO2 Thin Film Sputtering 246.1 nm 500 250 99*/96.15
(80% RH)

64
(100 ppm)

58
(5 ppm)

41.7
(100 ppm)
35 (5 ppm)

This
work

Our study demonstrates that the use of hydrophobic coatings may not be necessary
for certain types of sensors, as our sensor showed only a small reduction in response in the
0 to 80% moisture range. Furthermore, we observed that the thickness of the sensor film
played a crucial role in its performance, with films between 150 nm to 250 nm exhibiting
high response and stability, as well as a low reduction in high humidity. These findings
suggest that selecting the appropriate thickness of the sensor film is essential for optimizing
sensor performance in certain applications.

3.4. Sensing Mechanism

The sensing material operates based on a depletion conduction model, where exposure
of H2 gas to the surface of the pristine SnO2 thin film sensor interacts with pre-adsorbed
oxygen species (O2

−, O−, and O2−), resulting in electron release and an increase in the
total carrier concentration. This reduces sensor resistance by collapsing the electron de-
pletion region, which is a region of the sensor where there is a shortage of mobile charge
carriers [5,49]. In the Pd-capped SnO2 thin film sensor, both electronic and chemical re-
sponse mechanisms play a role in the sensing characteristics [50,51]. The catalytic activity
of Pd leads to the chemical response mechanism, which speeds up the dissociation of
oxygen and hydrogen molecules, causing a greater interaction between H2 gas molecules
and pre-adsorbed oxygen on the surface of the sensor material. This results in an increase
in sensor response to H2 gas [23]. The chemical response reactions are demonstrated in
Equations (1)–(4) and can be observed in Figure 8a [41].

H2 (ads) Pd→ 2H (ads) (1)
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H (ads) + O− (ads)→ OH− (ads) (2)

OH− (ads) + H (ads)→ H2O + e− (3)

PdO + H2 → Pd + H2O (4)
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Figure 8. (a) Chemical and electronic reactions occurring on the surface of Pd-caped SnO2 thin film
in both air and H2 gas atmospheres. (b) Schematic band diagram of Pd caped SnO2 thin film with
p-PdO type heterostructure on n-SnO2 type thin film in air atmosphere. (c) Schematic band diagram
of Pd caped SnO2 thin film in the presence of H2 gas.

It is challenging to provide experimental measurements to determine whether the
catalytic dissociation of oxygen or hydrogen is responsible for improving the sensor re-
sponse. While the dominance of oxygen dissociation due to Pd catalyst could enhance
the sensor response for all gases such as NH3, CO, and NO2, the observed results showed
the highest response corresponding to H2 gas due to Pd catalyzing the dissociation of H2
molecules into two active hydrogen atoms. As a result, SnO2 thin films are functionalized
with Pd catalyst to enhance their response to hydrogen gas. The Pd catalyst exhibits the
highest response to hydrogen gas because of its work function (Wf) of ~5.12 eV, which is
higher than that of n-type SnO2 (~4.4 eV). This modification of the conduction region of the
sensing material enhances its response to the analyte gas.

The dissociation of H2 molecules through Pd catalysis into active hydrogen atoms
and the Pd-capped SnO2 heterojunction junction dominates the significant enhancement
of hydrogen sensing for SnO2 thin films through the formation of PdOx during chemical
reactions Figure 8b. This chemical reaction further modifies the conduction region of
the sensing material and enhances its response to hydrogen gas. Both chemical and elec-
tronic mechanisms are responsible for the sensing response, but the chemical mechanism
dominates over the electrical mechanism [51].
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To enhance the sensitivity of the sensing material, the thin film decorated with a noble
metal like Pd should have high catalytic activity towards the desired gas. The advantage of
the catalytic activity of Pd in the dissociation of oxygen is that it results in a higher number
of pre-adsorbed oxygen species on the surface of the Pd-caped SnO2 thin film compared
to the un-decorated SnO2 thin film. This higher number of pre-adsorbed oxygen species
can interact with H2 gas molecules, leading to an increased response of the sensor to the
analyte gas.

X-ray photoelectron spectroscopy (XPS) results confirm the presence of PdO in Pd-
caped SnO2, and the work function of PdOx (~7.9 eV) is higher than that of SnO2. Electrons
flow from SnO2 to PdO, which leads to the formation of a p-n heterojunction. The expansion
in SnO2 due to the generation of the Schottky barrier and p-n heterojunction results in
an increase in baseline resistance (Va). Once Pd caped SnO2 sensors are exposed to H2
gas, part of Pd is converted into PdHx, and it has a lower work function (~4.4 eV) than
SnO2. Electrons flow from PdHx to SnO2, increasing the number of electrons in the
SnO2 region and decreasing the resistance (Vg) of the Pd caped SnO2 thin film. These
simultaneous conduction effects lead to a large variation in resistance and enhanced sensing
characteristics, as shown in Figure 8c.

4. Conclusions

The sputter-deposited Pd-caped SnO2 thin film sensors were thoroughly investigated
for their ability to detect hydrogen gas. The sensor with a thickness of (246.1 nm) exhibited
the highest response to hydrogen gas, as well as fast response and recovery characteristics.
Moreover, the sensor’s performance was only minimally affected by time, humidity, and
the presence of other gases, indicating a high degree of stability and selectivity. The sensor
maintained good mechanical stability even after 60 days and 10 cycles, with 100% recovery.

Taken together, these results demonstrate that the Pd-caped SnO2 thin film sensor
possesses superior sensing performance, including moderate operating temperature, high
response, fast response and recovery time, good repeatability, and selectivity towards H2
gas. Therefore, the Pd-caped SnO2 thin film is a highly promising material for H2 gas
sensors, particularly for detecting low concentrations.
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