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Abstract: This study quantifies the effluents generated during processing in three industry types,
estimates the energy potential from the quantified effluents in the form of biogas generation, and
determines the economic viability of the biogas recovered. Data were procured from the relevant
scientific publications to quantify the effluents generated from the production processes in the
industry types examined, using industrial process calculations. The effluent data generated are used
in the 2-module biogas energy recovery model to estimate the bioenergy recovery potential within
it. Economic and financial analysis is based on a cash-flow comparison of all costs and benefits
resulting from its activities. The effluents generated an average daily biogas of 2559 Nm3/gVS,
having a daily potential combined heat and power of 0.52 GWh and 0.11 GWh, respectively. The
life cycle analysis and cost-benefit analysis show the quantity of emissions avoided when using
the effluents to generate heat and power for processes, along with the profitability of the approach.
Conclusively, the study shows that the use of biomass effluents to generate biogas for Combined Heat
and Power (CHP) is a viable one, based on the technologies of a reciprocating engine, gas turbine,
microturbine, and fuel cell. However, it is recommended that the theoretical estimation be validated
using a field-scale project.
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1. Introduction

The single biggest challenge facing humanity, based on the 26th Conference of Parties
(COP26) held in 2015, which was the meeting that culminated in the Paris Agreement,
and the recent COP31, the Glasgow Climate Conference held in 2021 that built upon
the gains of COP26, is how to limit the extent of global warming. The goal of these
efforts was principally to limit global warming to well below 2 degrees Celsius, preferably
to 1.5 degrees Celsius, compared to pre-industrial levels. According to [1], industrial
effluents, to which the food and beverage industry (FBi) contribute a large part, account for
around 50% of the overall waste that is generated globally. Activities in the F&Bi connect
to three of the Sustainable Development Goals (SDG), namely, 7, 12, and 13, on clean
and affordable energy, responsible consumption and production, and climate action. The
process industry, which includes the FBi, is usually accompanied by the generation of a large
volume of effluents. Effluents are linked to methane generation, an influential greenhouse
gas. Through improper handling, effluents could contribute to increased atmospheric
temperature. Harnessing these effluents through conversion to biogas could be a means
of producing clean and affordable energy, may encourage responsible consumption and
production, and could serve as a climate action in the industry, showing the relevance
of this paper. The study combines system dynamics (SD) modeling principles, life cycle
assessment (LCA), and techno-economic analysis to examine the feasibility of converting
effluents into an energy source for combined heat and power use. Thus, the specific study
objectives are the quantification of the effluents generated during the process in these three
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industry types, an estimation of the energy potential from the quantified effluents in the
form of biogas generation, and the economic viability of the biogas that has been recovered.

Biogas is a good substitute for fossil fuels and can be used for heat and electricity pro-
duction in engines, microturbines [2], steam turbines [3], gas turbines [2], and fuel cells [4].
Biogas used in this way is capable of creating further emission reductions that could result
in carbon-negative systems. Biogas from organic waste is also capable of providing envi-
ronmental protection, investment, and job creation in developing economies [2]. Figure 1
shows a diagram of material flow in the biogas production process and its uses [5]. This
diagram explains the anaerobic digestion of wastes such as livestock, crops, wastewater,
and food, which generate biogas and digestate. Biogas can be used as a source of heat and
electricity, while digestate could be used as a fertilizer, soil amendments, and livestock
bedding. Biogas could also serve as biomethane for fuel and gas grids [5].
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1.1. Process Industry: Economic Importance and Effluent Generation in Food and Beverage Production

Our working definition of a process industry is an industry that is involved in the
processing of bulk resources, such as in the food and beverage industries, into other
products. Examples include turning cassava into cassava flakes for consumption, grains
and barley into beer, and refining sugarcane into sugar. Globally, one of the secondary
industries that are critical to every economy is the food and beverage industry [6]. The
food and beverage industry involves all manufacturing exercises concerning the processing
of raw food materials, packaging, and distribution, ranging from fresh, prepared foods
to packaged foods and both alcoholic and nonalcoholic beverages [7]. The industry has
two major segments, namely, production and distribution [8]. The production segment
concerns the processing of such items as meat, cheese, and the creation of soft drinks,
alcoholic beverages, packaged food, and other modified foodstuffs, including food directly
obtained from farming and other forms of agriculture. The distribution segment deals with
transporting finished food products to the consumer [7]. According to [9], the industries
in the food manufacturing subsector transform livestock and agricultural products into
products for consumption, and this includes animal food manufacturing, grain and oilseed
milling, sugar and confectionery products, fruit and vegetable preserving, specialty food
manufacturing, dairy product manufacturing, animal slaughtering and processing, seafood
product preparation and packaging, bakeries and tortilla manufacturing, and other food
manufacturing. The beverage industry includes soft drinks and ice manufacturing, along
with alcoholic beverages. The food and beverage industry contributes significantly to
the economy [10]; for instance, in the United Kingdom, the food and beverage industry
contributed more than GBP 28 billion to the economy, and exports more than GBP 20 billion
of food and drinks to the rest of the world as of 2017 [9]. Similarly, in the United States, the
food and beverage industry accounts for at least 5% of the total gross domestic product
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and contributes to at least 10% of the employment rate and more than 10% of consumers’
disposable incomes [9].

Being an extremely productive sector, the food and beverage industry generally also
produces large amounts of effluents in its processes [11]. For the most part, in this industry,
effluents or wastewater come from procedures requiring water, with the expectation that
solid and gaseous waste residues are carried along with this water [12]. The effluent
produced varies quantitatively and qualitatively according to the intrinsic characteristics
of the process, the industrial facilities, and the operational practices of each production
plant. These effluents pose a threat to the environment; hence, there is a need to minimize
the environmental impacts [13]. Such environmental impacts come from the processing
of fruit and vegetables, meat, poultry, seafood, beverages and fermentation, and dairy.
These impacts include the production of wastewater and solid wastes, blood by-products,
and waste streams, which are extremely high in biochemical oxygen demand (BOD),
generating a very high disease-prone environment spread by the pathogenic organisms
carried and transmitted by livestock, poultry, and seafood. Other impacts include process
wastewaters, carcasses, and skeleton waste; rejected or unsatisfactory animals; fats, oils,
and greases (FOG); animal feces; blood; eviscerated organs, and wastewater that is high in
suspended solids, organic sugars, and starches. This wastewater may also contain residual
pesticides and solid wastes from the process, such as organic materials from mechanical
preparation processes, i.e., rinds, seeds, and skins from raw materials. The beverage and
fermentation subsector impacts the environment through solid waste and wastewater,
with solid wastes resulting from spent grains and materials used in the fermentation
process, and its wastewater resulting from fermentation processes generating a higher
BOD and overall wastewater volume compared to other food-processing sectors [11]. The
concept of food industry effluents and their treatment is viewed based on a quantitative
and qualitative characterization of the effluent, which is the main key to the treatment
of effluents and the development of a logical and functional sequence of processes and
operations that offers the main tool for mitigating the environmental impact [12]. In another
study, several eco-efficiency indicators are proposed in order to quantify industrial effluents
in the food and beverage industries as a key step to the treatment of effluents and suggested
an elementary index used in the sugar industry, which is specific water consumption per
ton of sugarcane [14].

The brewery, sugar, and cassava waste streams are chosen for this study because
they are classed as high-strength organic wastes, due to their high biological oxygen
demand/chemical oxygen demand content, thus rendering them a suitable feedstock for
anaerobic digestion [11].

The technologies that could be implemented for the use of effluents include an anaero-
bic filter (AF), also called a packed bed, an anaerobic baffled reactor (ABR), the anaerobic
contact process (ACP), the up-flow anaerobic filter process (UAF), an anaerobic fluidized-
bed (AFB) reactor, an up-flow anaerobic sludge blanket (UASB), or an expanded granular
sludge bed (EGSB) reactor [15]. A study on the management of effluents in the food and
beverage industry in the southwestern region of Nigeria indicates that 50% of its effluents
are discharged into water bodies and septic tanks without treatment [16]. In particular,
the brewery industry first disposes of its wastewater by pumping it into a settling tank,
after which the supernatant is treated separately; prior to the construction of the settling
tank, a disposal unit was in use but had to be abandoned owing to odor problems [17]. The
concept of clean technology and water recycling was considered for effluent management,
and the beneficial use of sludge from the beverage industry in Pakistan was suggested as a
low-cost wastewater treatment [18]. For the treatment concept, Chmiel et al. [19] examined
integrated microfiltration and oil skimming for the treatment of spent process water for
product recovery and water use. Importantly, food and beverage industry effluents are
biodegradable wastewaters that contribute as much as 6% of all anthropogenic methane
emissions [19], suggesting the use of high-rate anaerobic digesters to treat such wastewaters
efficiently, as well as enabling the capture of methane for use as a relatively clean energy
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source. In Nigeria, the authors Kayode, Luethi, and Rene [17] report that there is a gap
in the treatment of effluents from the food and beverage industry for energy recovery
purposes, compared to some developing and developed countries.

1.2. Techno-Economic Assessment of Energy Recovery Potential from Effluents

Any energy recovery project is first and foremost an engineering project; therefore,
it is suitable for evaluation using techno-economic assessment tools [20], such as the en-
gineering economics approach. The engineering economics approach was applied to a
techno-economic assessment in evaluating the design and engineering alternatives for
energy recovery potential from the effluents generated from the process industry of the
food and beverage industry. The techno-economic assessment examined the appropriate-
ness of the project, estimated its value, and justified it from an engineering standpoint.
The approach allowed for evaluating costs and expenses by assigning financial value to
environmental as well as social benefits or costs. The parameters in engineering economics
used for project evaluation include the payback period, net present value and internal
rate of return, cost-benefit analysis, life cycle assessment, local economic impact, cost-
effectiveness analysis [21], and comparative costs [22]. Among the mentioned economic
analysis tools, cost-benefit analysis is the most widely used technique due to its use in
facilitating the aggregation of social, environmental, and economic benefits and costs [23].
The continual use of this analysis as a decision-making tool for environmental projects has
led to the development of approaches for effective evaluation of the economic performance
of wastewater treatment plants, which include quantification of the avoided environmental
damages in monetary terms [23]. This methodology is particularly applicable to energy
recovery systems as they contribute to environmental and social benefits [24].

Numerous techno-economic assessment studies on bioenergy from different sources
of effluents were examined for this study. For instance, Svanström et al. [25] conducted
a techno-economic assessment of the feasibility of commercial waste biorefineries for the
cassava starch industries. The study considered different commercial viability scenarios
and concluded that the integration of succinic acid production (6.9 Mg/h) in a biorefinery
co-producing bioethanol and CHP represents a potentially viable cassava waste biorefinery
with economic and environmental benefits. In their study, Padi and Chimphango [26]
evaluated long-term saving capability by conducting a techno-economic assessment of
CHP installation for a case study of a wastewater treatment plant. The wastewater plant
generates over 2 million cubic meters of biogas per year and utilizes over 36,000 GJ of
natural gas per year. Riley et al. [27] suggested that farm animal and meat processing
industry effluent was a potential sustainable energy source because the effluents generated
by this industry are critical sources for biogas production via anaerobic digestion. The
study revealed that farm animal waste and meat processing industry effluent represent
advantageous sustainable and low-cost energy sources that can be efficiently utilized for
the production of bioenergy and electricity and to lower greenhouse gas emissions into the
environment. Mofijur et al. [28] concluded that the conventional treatment of winery waste
is expensive, suggesting the valorization of winery waste using the concept of biorefinery;
that is, the conversion of waste to produce biofuels, heat, and energy.

2. Concept, Materials, and Methodology

The concept of this study is predicated on the principle that effluents from the processes
in the FBi are capable of generating biogas for energy recovery [29] if handled properly.
This is offered with the intent to contribute to the reduction of the carbon footprint from
production processes for environmental sustainability and to constitute non-solid waste
that is safe for environmental discharge. Thus, the utilization of waste becomes a valuable
commodity and platform chemical “mine”, representing an important step in the devel-
opment and deployment of alternative sources of energy production [29]. In addition, the
premise of developing the model (stock and flow diagram), a life cycle assessment (LCA),
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and a techno-economic assessment is to generate a framework for designing combined heat
and power plants for use by the food and beverage industries.

The processes are described using two causal loop diagrams for biogas production and
energy recovery potential for CHP use. Figure 2 presents the causal loop diagram (CLD)
for the biogas production process, showing our understanding of the anaerobic digestion
process that effluents undergo for biogas production. The figure contains 28 information
links showing interconnections in a typical anaerobic digestion system. The first 8 links to
the effluents are the factors that affect it in regard to biogas production under anaerobic
conditions. The effluent links to the hydrolysis stage, where the effluent is broken into
four different components (water, simple sugars, amino acids, and fatty acids) as shown by
the information links in the diagram. This leads to the second stage (acidogenesis) where
acidogenic bacteria act on the product of the hydrolysis stage and convert them to carbon
dioxide, ammonia, and H2S, as shown via the information links in the diagram. These links
connect to the acetogenesis stage, wherein carbon dioxide, ammonia, and H2S are acted
upon by the acetogenic bacteria to produce acetic acid, which leads to the methanogenesis
stage. In the methanogenesis stage, methanogens metabolize the acetic acids into methane,
CO2, H2S, and other trace gases, which are the last three information links [30].
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Figure 3 is the adapted CLD [30] for energy recovery potential from the biogas pro-
duced from the effluents generated in the processes of the three F&Bi types.
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The specific materials of interest are cassava, used in making cassava flakes or garri,
millet/sorghum adjuvants used in breweries that serve as malted grain in place of barley
for beer production, and sugar cane that is refined into sugar (see [11]).

The stock and flow diagram (SFD) in system dynamics explains the structure and
behavior of the adapted model, depicted in Figure 4. This stock and flow (or level and rate)
diagram (SFD) represents the structure of the 2-module biogas energy recovery model for
CHP purposes. The model is adapted from [31] and is then coupled to the energy recovery
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potential of the biogas production module (details of the model documentation are given in
the Supplementary Materials). SFD is the most common first step in building a simulation
model, showing more detailed information for the system than the causal loop diagram [32].
SFD defines the variables that are important in the structure of the model [32]. The SFD
also describes the way that the material flows in the system, while the model behavior is
given using equations that govern the direction in which the material can flow when the
model is simulated [33].
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Figure 4. System dynamics biogas energy recovery model for CHP.

Data on these materials were procured from the relevant scientific publications, as
well as such reports as those from the Food and Agricultural Organization (FAO) on the
cassava industrial revolution [34,35], grain (millet and sorghum) usage in the production of
beer in Nigeria [36], and the National Sugar Master Plan of the Nigeria Sugar Development
Council [37]. These data formed the bedrock of quantifying the effluents generated from
the production processes of cassava flakes, beer-making, and sugar refining using industrial
process calculations based on the mass balance equation, as shown in Equation (1). The
effluents were estimated based on the figures estimated from the quantity of effluents
generated in the small-scale production of cassava flakes and the sugar and beer industries
in the southwestern part of Nigeria. Next, the effluent data thus generated was fed into the
2-module model-biogas energy recovery model (see Figure 4) to estimate the bioenergy
recovery potential within it. The behavior of SD models is driven by equations. Therefore,
Equation (2) shows the formula for simulating the kinetics of the biogas produced from
effluents generated by the production processes in the food and beverage industry.

MN in ± MN generation = MN out ± MN consumption ± MN accumulation (1)

M indicates mass and MN denotes the Nth component of the system.

Gt=A

{
1 − exp[ (m − 1)(

t
t0
)
( 1

m )

] (2)

In Equation (2) [37]:
Gt is the accumulative biogas yield at digestion time t;
A is the biogas yield potential of substrates;
m is an intermediate constant;
t0 is the time when the biogas rate reaches a maximum.
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Equation (2), the basic equation in the model, was complemented with Equations (3)–(5),
respectively, to estimate the electric power, electric energy generation potential, and heat
energy generation potential from the biogas produced:

P =
LHV × η × Q × CCH4

31, 536
. (3)

In Equation (3) [38]:
P is the electric power;
LHV is the lower heating value of methane (MJ/m3);
H is the efficiency of the energy conversion technology (%);
Q is the biogas yield (m3/day);
CCH4 is the concentration of methane in biogas (%);
The factor for unit adjustment is 31,536.

E =
P × ∆t × f c

106 (4)

In Equation (4) [38]:
E is the electric energy generation potential (GWh/day);
∆t are the annual hours of operation (hours/day);
fc is the capacity factor of the plant.

Eth =
LCV × η × Q × fc

106 (5)

In Equation (5) [38]:
Eth is the thermal energy generation potential (GWh/day);
Q is the biogas yield (m3/day);
LCV is the lower calorific value of biogas (MJ/m3);
H is the thermal efficiency of energy conversion technology (%);
fc is the capacity factor.
The capacity is calculated based on the average power generation potential of the total

bioenergy recovered. The final step involves a techno-economic analysis of the processes,
namely, avoided emissions given by Equations (6) and (7):

Eav,el = E × E f (6)

In Equation (6) [38]:
Eav,el represents the emissions avoided using recovered bioenergy for electricity gener-

ation per year (tCO2eq/yr);
E is the annual electricity generation from bioenergy (GWh/yr);
Ef is the CO2 emission factor of the grid electricity matrix in Nigeria (tCO2/GWh).

Eav,th = Eth × EFf f (7)

In Equation (7) [38]:
Eav,th represents the emissions avoided from the use of bioenergy for thermal energy

(tCO2/yr);
Eth is the annual thermal energy generation potential (GWh/yr);
EFff is the emission factor of the specific fossil fuel per unit of energy (tCO2/GWh).
Estimating the cost of energy from the energy recovery potential project, using bio-

gas from the effluents in the process industry, involves the total present value of cash
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outflow, divided by the total energy generated in a fixed period. This is represented in
Equation (8) [39]:

Levelized cost o f electricity (LCOE) =
Total cost over a period

Total energy over the same period
. (8)

The economic and financial analysis of the project is based on the comparison of the
cash flow of all costs and benefits resulting from the project’s activities [40]. There are five
common methods of comparing alternative investments: (1) discounted cash flow/net
present value, (2) rate of return, (3) profitability index/cost-benefit analysis, (4) return on
investment, and (5) payback period. Each of these is dependent on a selected interest rate
or a discount rate to adjust cash flows at different points in time. The explanation of these
four methods is given below, as deployed for project selection [41].

1. In the discounted cash flow or net present value (NPV) method, the method deter-
mines the net present value of all cash flows by discounting them by the required rate
of return (also known as the hurdle rate, cutoff rate, and similar terms), as follows:

NPV = ∑n
t=0

Rt

(1 + i)t (9a)

In Equation (9a) [42]: NPV is the net present value; Rt is the net cash inflow–outflows
during a single period, t; i is the discount rate or return that could be earned in
alternative investments; t is the number of time periods.

2. The internal rate of return (IRR) is a metric used in financial analysis to estimate
the profitability of potential investments. IRR is a discount rate that makes the net
present value (NPV) of all cash flows equal to zero in a discounted cash flow analysis.
It should be noted that IRR calculations rely on the same formula as NPV, where
the annual return makes the NPV equal to zero. Generally speaking, the higher an
IRR, the more desirable an investment is to undertake. Being uniform for varying
project types, IRR can be used to rank multiple prospective investments or projects
on a relatively even basis. In general, when comparing investment options with
other similar characteristics, the investment with the highest IRR would probably be
considered the best.

0 = NPV = ∑T
t=0

Ct

(1 + IRR)t (9b)

In Equation (9b) [42]: C is cash flow at time t; IRR is the discount rate/internal rate of
return, expressed as a decimal; T is the time period. To include the impact of inflation
(or deflation) m where pt is the predicted rate of inflation during period n, we have
Equation (9c) [42]:

NPV = ∑N
n=0

Ct

(1 + r + pt)
n (9c)

3. Profitability index, also known as the benefit-cost ratio, this index is the net present
value of all future expected cash flows divided by the initial cash investment. (Some
firms do not discount the cash flows in making this calculation.) If this ratio is greater
than 1.0, the project may be accepted for Equation (10) [41]:

Net Present Value + Initial cash investment
Initial cash investment

(10)

4. Return on investment (ROI) is a performance measure used to evaluate the efficiency
or profitability of an investment or compare the efficiency of a number of different
investments. ROI tries to directly measure the amount of return on a particular
investment, relative to the investment’s cost. To calculate ROI, the benefit (or return)
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of an investment is divided by the cost of the investment. The result is expressed as a
percentage or a ratio in Equation (11) [42]:

Return on investment =
Net Present Value

Cummulative Cash out f low
. (11)

5. The payback period for a project is the initial fixed investment in the project divided
by the estimated annual net cash inflows from the project. The ratio of these quantities
is the number of years required for the project to repay its initial fixed investment.
This method assumes that the cash inflows will persist for at least long enough to pay
back the investment, and it ignores any cash inflows beyond the payback period. The
method also serves as an (inadequate) proxy for risk. The faster the investment is
recovered, the less the risk to which the firm is exposed, as in Equation (12):

Initial f ixed investment
Estimated annual net cash in f lows + Salvage value

. (12)

3. Findings and Analysis

The result of the industrial process calculations, as shown in Table 1, indicate that
the effluents generated are highest from the processing of cassava into cassava flakes, in
terms of nominal value. This is quite understandable considering the volume of cassava
processed in this region annually. The second-highest effluents that have been generated
come from beer production and the processing of malted grains using millet/sorghum
characteristics, with sugar being a very distant third. However, considering the input-
output ratio, beer production from unmalted grain and barley generated the highest
effluents at 74%, compared to cassava flakes at 24% and the sugar processing effluents at
about 4%. This is because more than 90% of the input for beer production is water, while an
efficient brewery will typically use between 4 and 6 L of water to produce 1 L of beer [43].

Table 1. Estimates of effluents from the process in the production of cassava flakes, beer, and sugar in
southwestern Nigeria.

Effluents Production from Amount (m3/day)

Cassava flakes 9554

Beer from un-malted grain and barley 4805.77

Sugar refining 2767.67

Model simulation results from the system dynamics biogas energy recovery model
for CHP (Figure 4) show that the average daily biogas generated from the effluents would
be 2558 Nm3/gVS (Figures 5 and 6). The potential combined heat and power this could
produce is 0.52 GWh/day and 0.11 GWh/day, respectively as shown in Figure 7. Theoreti-
cally, these results show that the effluents from the processing of cassava, sorghum/millet,
and sugar refinement of these industries could produce enough methane to adequately
support their CHP needs. In terms of viability, the techno-economic analysis using LCA
and cost-benefit analysis (profit and rate of returns), respectively, show the quantity of
avoided emissions from using the effluents to generate heat and power for processes and
also the profitability of the approach.

Table 2 shows the total avoided emissions from the average daily electricity generated
from the effluents. The table shows the average daily heat and electricity generation
potential of each source of effluent and the equivalent avoided emissions yearly. The
highest heat and electricity generation potential comes from the processing of cassava, with
the least potential from that of sugar. The first step in the LCA is to estimate the energy
recovery potential to handle the average daily methane generated from the effluents. The
next is to estimate the power capacity of the generator for the potential energy recovered.
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This is then followed by the calculation of the avoided emissions or fossil fuel displaced
when generating electricity and heat from the effluents.
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Table 2. Life cycle assessment of the avoided emissions from generated effluents.

Source of Effluents
Average Daily Heat

Generation Potential
(kWh/day)

Average Daily
Electricity

Generation Potential
(kWh/day)

Total Avoided
Emissions Yearly

(tCO2eq)

Malted Grains 127,924.80 27,648.89 17,264.55

Cassava 254,311.00 54,965.20 34,321.36

Sugar 73,657.78 15,919.94 9940.76

All effluents 455,893.58 98,534.03 61,526.67

Usually, in the early life of any engineering project, including the energy recovery
project considered, the net cash flow is negative because the major outflow was the initial
investment in the project (see [44,45]). For instance, in the three types of turbines and fuel
cells (FC) considered as alternatives, for RE, the net cash flow was negative for the first
two years and was then three years for gas turbine (GT) and 5 years for micro-turbine
(MT). However, the three alternatives became ultimately successful projects since the cash
flows became positive in the third, fourth, and sixth years, respectively, making the project
acceptable, with the sum of the net present values of all estimated cash flows over the life of
the project being positive for each of the types considered. However, the cash flow for a
fuel cell technology was different, being negative throughout the ten-year cycle. It can be
observed that with a fuel cell capacity of about 40% of the generation capacity of the other
technologies (i.e., 2.0 MW), the cash flow situation changed significantly, whereas it was
negative until the sixth year and became positive in the seventh year.

Table 3 shows the project specifications based on the turbine selected, while Table 4
shows the economic and financial analysis of the project. The electrical and thermal
efficiencies of energy conversion are assumed to be 33% and 45%, respectively [46–49]. The
electricity and heat are assumed to be generated simultaneously in a CHP engine [50,51].
Table 3 shows that the power capacity for each of the technology types examined is the same
for three of the turbine types and different for fuel cells, while the energy cost varies. The
first step in estimating these indicators was to calculate the levelized cost of electricity (LCE).
Four different generation technologies, namely, the reciprocating engine (RE), microturbine
(MT), gas turbine (GT), and fuel cell were considered as project types. Shown in Table 4
are five methods by which the alternative investments are compared, namely, net present
value (NPV), internal rate of return (IRR), profitability index/benefit-cost analysis, return
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on investment (ROI), and payback period (PP). The power-generating capacity for each of
the three turbines is 5.2 MW, as determined by the gas flow generated from the effluents
and that of the fuel cell, which was set at 2.3 MW, i.e., approximately 40% of the gas flow
capacity. The levelized cost of energy (LCE) in USD/kWh for the turbines is 0.06, 0.07, 0.08,
and 0.09 for RE, GT, MT, and FC, respectively, with the highest being fuel cells, followed
by microturbines, and is lowest for the reciprocating engines. All prices are, however,
higher than those currently being charged for residential tariffs by electricity distribution
companies in southwestern Nigeria. This implies that the project is financially viable. The
net present value (NPV) of the profit for the turbines is USD 7.9 million, USD 6.79 million,
USD 3.59 million, and USD 2.42 million for RE, GT, MT, and FC, respectively. This implies
that any of the technology that is considered is capable of generating a net return of profit
from the investment. In terms of return on investment, RE fared best at 46%, with GT
second-best at 41%, MT at 16%, and FC at 10%. The IRR also followed the same trend, at
45%, 36%, 34%, and 32%, respectively. The payback period is 6.09, 6.63, 8.09, and 7.69 years
for RE, GT, MT, and FC, respectively.

Table 3. Project specifications of energy recovery potential from process industry effluents.

Turbine Type Reciprocating
Engine (RE)

Gas Turbine
(GT)

Micro Turbine
(MT) Fuel CellProject Indicators

Power Generating
Capacity needed

(MW)
5.2 5.2 5.2 2.0

Levelised Cost of
Energy (LCE)

($/kWh)
0.06 0.07 0.08 0.09

Table 4. Economic and financial analysis of the energy recovery potential project specifications.

Project Type
Economic and

Financial Indicators

Reciprocating
Engine (RE)

Gas Turbine
(GT)

Micro Turbine
(MT) Fuel Cell

NPV of profit margin
(millions of dollars) 7.9 6.79 3.59 2.42

ROI (%) 46 41 16 10

IRR (%) 45 36 34 32

Payback period
(years) 6.09 6.63 8.09 7.69

Profitability index
(cost-benefit ratio) 1.50 1.39 1.17 1.12

Limitations of the Study

The scope of the study is theoretical; therefore, it has inherent limitations, making it
important to go through an empirical or evidence-based process to validate its findings.
However, a number of other studies by Di Fraia et al., Wong and Law-Flood, and Martin
and Dahl, as well as Novakovic [44–47] demonstrate that translating theory to field practice
could be achieved. For our study, the empirical approach will involve a detailed analysis of
how process industry wastes, particularly those from cassava processing, could be collected
from various sources in southwest Nigeria. Cassava processing was the most decentralized
processing industry that was examined for this study. Data paucity is also an issue, this
being a theoretical approach that was not also subjected to site selection processes for the
gathering of effluents from the various process industries examined.
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4. Conclusions and Recommendations

In considering the input-output ratio, beer production from unmalted grain and barley
shows the highest effluent generation at 74%, compared to cassava flakes at 24% and sugar
processing effluents at about 4%. The LCE of four different generation technologies, namely,
the reciprocating engine (RE), microturbine (MT), gas turbine (GT), and fuel cells were
considered as project types. Five methods by which the alternative investments can be com-
pared were examined. Four generating technologies were also considered, based on the gas
flow generated from the effluents. The LCE in USD/kWh for the turbines is 0.06, 0.07, 0.08,
and 0.09 for RE, GT, MT, and FC, respectively. These prices are higher than those currently
charged for residential tariffs by electricity distribution companies in southwestern Nigeria.
This implies that the project is financially viable. In conclusion, therefore, this study indi-
cates the use of effluents for generating biogas for use in CHP to be a viable one, based on
the technologies of a reciprocating engine, gas turbine, micro turbine, and fuel cell. The
fuel cell was made viable in the 10-year cycle used for financial assessments by reducing
the capacity of the power generator to about 40% of what it is capable of supporting. Using
a combination of the economic/financial indicators used, the reciprocating engine appears
to be the most viable of all the technologies considered. However, it is recommended that
the theoretical estimation be validated using a field-scale project.
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