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Abstract: Leydig cells, located in the testis interstitial space, are the primary source of testosterone in
males. Testosterone plays critical roles in both reproductive and metabolic functions and therefore is
essential for male health. Steroidogenesis must be properly regulated since dysregulated hormone
production can lead to infertility and metabolic disorders. Leydig cell steroidogenesis relies on
the coordinated interaction of various factors, such as hormones and signaling molecules. While
luteinizing hormone (LH) is the main regulator of Leydig cell steroidogenesis, other molecules,
including growth hormones (GH), prolactin, growth factors (insulin, IGF, FGF, EGF), and osteocalcin,
have also been implicated in the stimulation of steroidogenesis. This review provides a comprehensive
summary of the mechanisms and signaling pathways employed by LH and other molecules in the
stimulation of Leydig cell steroidogenesis, providing valuable insights into the complex regulation of
male reproductive and metabolic health.
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1. Introduction

Steroid hormones play a vital role in various physiological processes, including growth
and development, reproduction, and metabolism. Steroid hormones are synthesized by
different endocrine glands and organs, and their secretion is tightly regulated to maintain
homeostasis. Among the organs involved in steroid hormone synthesis, the testes play a
crucial role in male physiology through the production of androgens by Leydig cells. Leydig
cells, located in the testis interstitial compartment, are responsible for the production and
secretion of testosterone and insulin like-3 (INSL3), two critical hormones for reproductive
function and overall health in men. In addition to regulating male fertility, testosterone
also plays essential roles in the development of secondary sexual characteristics, muscle
mass, bone density, and red blood cell production (reviewed in [1]).

The homeostasis of steroidogenesis is of paramount importance for male health.
Testosterone deficiency or excess can result in differences of sex development (DSD), as
well as other pathologies in men, including infertility, erectile dysfunction, osteoporosis,
and metabolic disorders. Testosterone synthesis and secretion in males is therefore tightly
regulated by multiple signaling pathways, and not surprisingly, understanding these
pathways remain a topic of active research.

In contrast to endocrine cells that produce polypeptide hormones, steroidogenic cells
store minimal amounts of steroid hormones and lack secretory vesicles for rapid release
(reviewed in [2]). Therefore, a prompt steroidogenic response involving the coordinated
action of several pathways is required for rapid de novo synthesis of steroid hormones.
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This review provides a comprehensive summary of the current state of knowledge of
signaling pathways involved in the stimulation of Leydig cell steroidogenesis.

2. Main Factors Involved in the Stimulation of Leydig Cells
2.1. Luteinizing Hormone

Luteinizing hormone (LH) belongs to the glycoprotein hormone family, which also
comprises follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) [3].
LH is a glycoprotein heterodimer composed of an alpha and beta subunit. While the alpha
subunits of LH, FSH, and TSH are identical, the beta subunit of each hormone is distinct
and confers its unique biological effects [3].

Gonadotrope cells located in the anterior pituitary gland synthesize and secrete LH
in a pulsatile manner due to hypothalamic GnRH, which is also secreted in a pulsatile
manner. LH, along with FSH and placental chorionic gonadotropin (CG), are classified
as gonadotropins due to their effects on the gonads. LH is a crucial component of the
hypothalamic-pituitary-gonadal (HPG) axis that links the nervous system with the gonads.
The HPG axis is controlled by a classic negative feedback loop where circulating testosterone
secreted by the testes continuously feeds back to the hypothalamus and pituitary to adjust
GnRH and LH output. In males, the LH receptor is primarily present in Leydig cells.
Although CG is exclusively found in primates and equids, the LH receptor recognizes both
LH and CG and is thus referred to as the luteinizing hormone/chorionic gonadotropin
receptor (LHCGR) (reviewed in [4]). The LHCGR receptor, along with other glycoprotein
hormone receptors, belongs to the G protein-coupled receptor superfamily. In Leydig cells,
the binding of LH to LHCGR induces a conformational change in the receptor, initiating a
signaling cascade that ultimately results in increased testosterone synthesis.

Multiple mouse models have been utilized to elucidate the functions of LH in Leydig
cells, including GnRH-deficient mice and knockout mice for LH and LHCGR. GnRH-
deficient hypogonadal (hpg) mice have significantly decreased pituitary and plasma go-
nadotropins, which directly affect the reproductive system. This condition results in the
development of cryptorchidism, accompanied by underdeveloped testes and a significantly
diminished number of Leydig cells (approximately 10% of normal values), and ultimately
infertility [5,6]. Similarly, Lhb and Lhcgr knockout mice are infertile, have reduced levels of
serum and intratesticular testosterone, smaller testes and accessory glands, and possess
only a few Leydig cells [7–10] (reviewed in [11]). In addition, Lhcgr knockout mice exhibit
cryptorchidism and increased serum LH levels [7,8]. Sexual differentiation and fetal go-
nadal development are, however, normal in the knockout models, indicating that, unlike
humans, fetal testosterone production required for masculinization is not dependent on
gonadotropins in mice.

Naturally occurring mutations and polymorphisms in the LHB and LHCGR genes have
been identified in humans (reviewed in [12]). Most mutations are in LHCGR and only a few
in LHB (reviewed in [11,12]). Inactivating mutations in LHCGR lead to a failure of Leydig
cell differentiation, resulting in Leydig cell hypoplasia (LCH). Males with inactivating
mutations in LHB are normally masculinized at birth but later present delayed or lack of
spontaneous puberty that is accompanied by hypogonadism, low testosterone levels, and
infertility (reviewed in [11,12]). As expected, the phenotype of the homozygous Lhb knock-
out male mice closely mimics that of humans harboring inactivating LHB mutations [9]
(reviewed in [12]). These findings indicate that LH participates actively in the control of
Leydig cell differentiation, steroidogenesis, and male fertility.

The binding of LH to LHCGR on the surface of Leydig cells activates multiple path-
ways, which trigger downstream signaling cascades via G-proteins (Figure 1). In the text
that follows, we provide an overview of the primary pathways downstream of LH that
promote Leydig cell steroidogenesis, which include PKA, CAMKI, ERK1/2, PKC and
PKB/AKT.
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LHCGR, multiple pathways are activated: (i) LHCGR activation stimulates adenylate cyclase (AC), 
increasing the conversion of ATP to cyclic AMP (cAMP). Elevated cAMP levels activate protein ki-
nase A (PKA) by releasing its catalytic subunits (C) from its regulatory subunits (R). (ii) LHCGR 
activation triggers phospholipase C (PLC), resulting in the breakdown of phosphatidylinositol 4,5-
bisphosphate (PIP2) in diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). DAG activates 
protein kinase C (PKC), while IP3 binds to its receptor (IP3R) in the endoplasmic reticulum (ER), 
leading to calcium (Ca2+) release. The ryanodine receptor (RyR) in the ER also facilitates Ca2+ release. 
Calcium can also enter the cell through plasma membrane channels. Calcium-bound calmodulin 
(CaM) activates calcium/calmodulin-dependent protein kinase kinase I (CAMKKI), which phos-
phorylates calcium/calmodulin-dependent protein kinase I (CAMKI). (iii) LH binding to its receptor 
activates Ras, subsequently activating the MAPKKK Raf. This activation triggers the phosphoryla-
tion of MAPKKs (MEK1/2) and MAPKs (ERK1/2). (iv) The activation of LHCGR activates phospha-
tidylinositol-3-kinase (PI3K), which phosphorylates protein kinase B (PKB). Once activated, these 
kinases translocate to the nucleus (indicated by grey dashed arrows), where they phosphorylate 
various transcription factors, such as COUP-TFI, COUP-TFII, GATA4, CREB, STAT5A, STAT5B, 
NOR1, NURR1, JUN and NUR77. This leads to the upregulated expression of genes involved in 
steroidogenesis and, ultimately, increased testosterone production. See text for references. 
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Figure 1. Key pathways in LH-mediated steroidogenesis in Leydig cells. Upon LH binding to
LHCGR, multiple pathways are activated: (i) LHCGR activation stimulates adenylate cyclase (AC),
increasing the conversion of ATP to cyclic AMP (cAMP). Elevated cAMP levels activate protein
kinase A (PKA) by releasing its catalytic subunits (C) from its regulatory subunits (R). (ii) LHCGR
activation triggers phospholipase C (PLC), resulting in the breakdown of phosphatidylinositol 4,5-
bisphosphate (PIP2) in diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). DAG activates
protein kinase C (PKC), while IP3 binds to its receptor (IP3R) in the endoplasmic reticulum (ER),
leading to calcium (Ca2+) release. The ryanodine receptor (RyR) in the ER also facilitates Ca2+

release. Calcium can also enter the cell through plasma membrane channels. Calcium-bound
calmodulin (CaM) activates calcium/calmodulin-dependent protein kinase kinase I (CAMKKI),
which phosphorylates calcium/calmodulin-dependent protein kinase I (CAMKI). (iii) LH binding
to its receptor activates Ras, subsequently activating the MAPKKK Raf. This activation triggers
the phosphorylation of MAPKKs (MEK1/2) and MAPKs (ERK1/2). (iv) The activation of LHCGR
activates phosphatidylinositol-3-kinase (PI3K), which phosphorylates protein kinase B (PKB). Once
activated, these kinases translocate to the nucleus (indicated by grey dashed arrows), where they
phosphorylate various transcription factors, such as COUP-TFI, COUP-TFII, GATA4, CREB, STAT5A,
STAT5B, NOR1, NURR1, JUN and NUR77. This leads to the upregulated expression of genes involved
in steroidogenesis and, ultimately, increased testosterone production. See text for references.

2.1.1. cAMP-Dependent Protein Kinase

Activation of LHCGR/G-proteins stimulates adenylate cyclase (AC), which increases
the conversion of ATP to cyclic AMP (cAMP). cAMP acts as a second messenger, activating
cAMP-dependent protein kinase A (PKA). This signaling pathway is commonly known as
the Gs/AC/cAMP/PKA pathway (reviewed in [13]). PKA is a ubiquitous serine/threonine
protein kinase that recognizes a consensus sequence RRXS*/T*Hpo in target proteins,
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where “*” represents the phosphorylation site and “Hpo”, a hydrophobic residue [14]
(reviewed in [15]).

Since its discovery in 1968 [16], PKA has been linked to several cellular functions such
as growth and cell division [17], metabolism and regulation of energy balance (reviewed
in [18]), cell differentiation [19], transcriptional regulation [20], and spermatogenesis and
sperm motility [21]. In an inactive state, PKA exists as a tetrameric holoenzyme composed
of two regulatory subunits (R) bound to two catalytic subunits (C) (reviewed in [15]).
The binding of cAMP to the PKA regulatory subunits leads to the release of the catalytic
subunits from the regulatory subunits [22,23]. Over the years, two different forms of PKA,
referred to as PKA type I and type II, have been identified. These isoforms share the same
catalytic subunit but possess different regulatory subunits (RI and RII) [24].

In mice, inactivation of the Prkaca gene, which encodes the catalytic alpha subunit (Cα)
of PKA, leads to partial lethality, with less than 30% of animals surviving to adulthood [25].
While testis size in these mice appears normal compared to their body weight, they nonethe-
less exhibit a reduction in sperm count and an increase in abnormal spermatozoa [25]. In
humans, around 65% of Carney complex (CNC) tumor patients exhibit haploinsufficiency
of the RIα gene (PRKAR1A), which correlates with a notable decrease in fertility among
male CNC patients [26,27].

In the mouse MA-10 Leydig cell line, active PKA translocates to the nucleus, where it
phosphorylates multiple transcription factors, such as GATA4 and bZIP family members.
Phosphorylation of GATA4 at Ser261 leads to increased GATA4-dependent activation of
several gene promoters such as Star, Cyp17a1, aromatase, and Inha (inhibin α) [28,29]. More
recently, we have shown that PKA also cooperates with COUP-TFII (NR2F2) and STAT5B
to activate the Star promoter in MA-10 Leydig cells [29].

2.1.2. Calcium

LHCGR activation in Leydig cells triggers the production of inositol 1,4,5-triphosphate
(IP3), which in turn binds to its receptor (IP3R), resulting in the release of calcium (Ca2+) [30].
Ca2+ release alters cytosolic Ca2+ concentration, playing a crucial role in facilitating steroido-
genesis. Calcium serves as a key second messenger, controlling various cellular functions
such as autophagy, apoptosis, and cell proliferation (reviewed in [31]). The levels of cytoso-
lic Ca2+, directly and indirectly, regulate the activity of proteins and enzymes. Cells actively
store Ca2+ at high concentrations, particularly in the endoplasmic reticulum (ER), due to its
essential role in intracellular processes (reviewed in [32]). The release of Ca2+ from the ER
is facilitated by the ryanodine receptor (RyR) and the IP3R, acting as the primary channels
responsible for this process [30]. These channels rapidly release Ca2+ into the cytoplasm,
providing the cell with the necessary Ca2+ for the execution of various intracellular pro-
cesses, including fertilization, gene transcription, muscle contraction, exocytosis and cell
differentiation, proliferation and motility (reviewed in [33]). Extracellular Ca2+ can also
enter through plasma membrane channels, thus serving as an additional source of Ca2+ for
the cell.

Studies using rat Leydig cells have revealed that both LH and dibutyryl cyclic AMP
(db-cAMP), an analog of cAMP, increase intracellular Ca2+ concentration through extracel-
lular and intracellular sources [34,35]. Additionally, stimulation of MA-10 Leydig cells with
forskolin (Fsk) increases intracellular Ca2+ levels, resulting in enhanced steroid produc-
tion [36]. Conversely, inhibition of RyRs in these cells leads to reduced steroidogenesis. This
inhibition specifically impacts the activity of the cAMP-induced Star promoter, leading to a
decrease in STAR production and subsequently affecting the translocation of cholesterol
from the outer to the inner mitochondrial membrane [36].

Calmodulin (CaM), a protein highly responsive to Ca2+ levels, serves as an up-
stream activator for several calcium-dependent proteins, including calcium/calmodulin-
dependent protein kinases I, II and IV (CAMKI, CAMKII, and CAMKIV) (reviewed in [37]).
Among the calcium/calmodulin-dependent protein kinases, CAMKI has been identified as
the main CAMK that significantly influences steroidogenesis in MA-10 Leydig cells [38].



Endocrines 2023, 4 577

Calcium/Calmodulin-Dependent Protein Kinase I

CAMKI, the smallest member of the Ca2+/CaM-dependent protein kinase family, is a
versatile serine/threonine-specific multifunctional protein kinase. It recognizes a consensus
sequence BXRXX(S/T)XXXB, where B represents a hydrophobic amino acid, and X can
be any amino acid [39]. Structurally, CAMKI is a monomeric enzyme consisting of an
N-terminal catalytic domain and a C-terminal regulatory domain. The N-terminal do-
main includes the ATP-binding domain (residue 1–100) and the substrate-binding domain
(residue 101–275). In the absence of Ca2+, CAMKI remains in an autoinhibited state due to
the folding of the regulatory domain over the catalytic domain (reviewed in [40]). The key
factor governing the maximal activation of CAMKI involves two crucial steps. First, there
must be an elevation in the intracellular concentration of Ca2+. Second, CAMKI kinase
(CAMKKI) phosphorylates a specific residue, Thr177, in CAMKI [41]. These two events act
as limiting factors in achieving peak CAMKI activation.

CAMKI is the most recently identified kinase in Leydig cells and has emerged as
a subject of interest in recent studies, particularly in MA-10 Leydig cells. Although our
understanding of CAMKI action in Leydig cell function is still in its early stages, emerg-
ing evidence suggests it is involved in crucial cellular processes. Previous studies have
revealed that CAMKI acts as an activator, collaborating with multiple proteins, including
transcription factors, to enhance the expression of genes associated with steroid hormone
production [29] (reviewed in [42,43]). Some of the transcription factors found to cooperate
with CAMKI include members of the nuclear receptor family NR4A (NUR77/NR4A1,
NURR1/NR4A1, NOR1/NR4A3), NRF2 members (COUP-TFI/NR2F1 and COUP-TFII/
NR2F2), GATA4, STAT5B, CREB, and cJUN. These findings highlight the multifunctional na-
ture of CAMKI and its potential role in regulating steroidogenesis downstream of LHCGR
activation in Leydig cells.

2.1.3. Protein Kinase C

Protein kinase C (PKC) is another important kinase that is activated by the binding of
LH/hCG to its receptor. One of the signaling pathways triggered by LHCGR activation
involves phospholipase C (PLC). Through the process of hydrolysis, PLC breaks down
phosphatidylinositol 4,5-bisphosphate (PIP2), resulting in the release of diacylglycerol
(DAG) and IP3 [44]. DAG plays a vital role as a potent activator of PKC, while IP3 leads to
an increase in Ca2+ levels, as mentioned above (see calcium section).

PKC is a family of serine/threonine protein kinases that are involved in several cellular
functions, including cell proliferation and differentiation (reviewed in [45]), autophagy and
apoptosis [46], and regulation of chloride channel in the human kidney [47].

The PKC family comprises several isozymes that are classified into four subfamilies
based on their activation mechanism: cPKC, nPKC, aPKC and PKN [48]. Each subfamily
shares a common structural organization consisting of a regulatory domain, a highly con-
served catalytic domain, and variable regions (reviewed in [48–50]). Importantly, all PKC
isozymes recognize the consensus phosphorylation sites (R/K)X(S/T), (R/K)(R/K)X(S/T),
(R/K)XX(S/T), (R/K)X(S/T)(R/K), and (R/K)XX(S/T)XR/K in target proteins (reviewed
in [50]).

The conventional or classic cPKC subfamily proteins consist of cPKCα, βI, βII, and
γ, which are activated by DAG, phosphatidylserine, and Ca2+. In contrast, the novel or
non-classic nPKC subfamily proteins include nPKCδ, ε, η, and θ, which are activated by
DAG and phosphatidylserine but not Ca2+ due to the absence of Ca2+ coordinating residues.
The atypical subfamily of aPKC proteins comprises aPKCζ, ι, and λ. These aPKC members
contain a PBI domain that confers specificity in intracellular signaling by interacting with
scaffold proteins. Unlike other subfamilies, aPKC kinases are not activated by DAG, as
their C1 domain does not bind DAG. Lastly, the PKN subfamily includes PKN1, PKN2,
and PKN3, which all contain an HRI domain that mediates their activation by Rho proteins
(reviewed in [48–50]).
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MA-10 Leydig cells express several PKC isozymes, including PKCα, βI, βII, δ, γ, ε,
θ and ζ [51,52]. Furthermore, studies in MA-10 Leydig cells have shown that phorbol
12-myristate 13-acetate (PMA), an analog of DAG, can increase the levels and phosphory-
lation of PKCα, δ, and ε, which was also associated with an increase in the level of STAR
protein and progesterone production [51,53]. In R2C Leydig cells, inhibition of PLC and
PKC leads to a significant decrease in steroid production and phosphorylation of cAMP-
responsive element binding (CREB) [54]. This decrease is accompanied by a reduction in
Star gene transcription [54]. The PKC pathway also influences the orphan nuclear receptor
DAX1/NR0B1, which modulates Star expression [55].

2.1.4. Extracellular Signal-Regulated Kinase

Extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2) are serine/threonine
kinases, members of the MAP kinase (MAPK) signaling cascade. This pathway is in-
volved in many cellular functions such as growth, proliferation, cell differentiation, mitosis,
metabolism and apoptosis (reviewed in [56,57]). Although ERK1 and ERK2 have minor
differences, they share numerous functions and are collectively referred to as ERK1/2.
The activation of ERK1/2 is mediated through a sequential cascade of reactions known
as the Ras/Raf/MEK/ERK1/2 signaling pathway. In response to extracellular stimuli,
Ras is activated, subsequently activating the MAPKKK Raf. This, in turn, triggers the
activation of two MAPKKs, MEK1 and MEK2, which phosphorylate the MAPKs ERK1/2.
Once activated, ERK1/2 translocates to the nucleus, where it phosphorylates and activates
transcription factors that influence gene expression, recognizing preferentially a consensus
sequence PXS/TP (reviewed in [58,59]).

Several studies have explored the role of ERK1/2 in Leydig cells, revealing its involve-
ment in steroidogenesis and the proliferation of postnatal Leydig cells [55,60,61] (reviewed
in [62]).

A Cyp17a1-iCre mouse line, which expresses the Cre recombinase in steroidogenic tis-
sues, including Leydig cells, was utilized to conditionally inactivate Mek1 and Mek2 [61,63].
MEK1/MEK2-deficient male mice exhibit a reduction in the number of Leydig cells com-
pared to control animals. Moreover, testosterone levels upon hCG stimulation are reduced
in these mice, along with a significant decrease in the expression of key steroidogenic
genes, such as Star, Hsd3b6, Cyp17a1 and Hsd17b3 [61,63]. These findings demonstrate that
ERK1/2 plays a pivotal role in the regulation of steroidogenesis.

In various Leydig cell models, including MA-10, MLTC-1, and primary rat Leydig
cells, it has been observed that activation of LHCGR induces Ras activation, subsequently
leading to the phosphorylation of ERK1/2 [64,65]. In addition, treatment of MA-10 and
MLTC-1 Leydig cells with two different MEK inhibitors, U0126 and PD98059, significantly
reduces LH-induced steroidogenesis while increasing STAR protein levels, but not its
phosphorylation [55,65].

In MA-10 Leydig cells, ERK1/2 has been found to functionally cooperate with STAT5B
and GATA4 to activate the Star promoter [29]. The ERK1/2-GATA4 cooperation on Star is
consistent with a study conducted in rat primary cardiomyocyte cells, which revealed that
ERK1/2 phosphorylates GATA4 at Ser105 [66]. Interestingly, mice carrying a GATA4 S105A
mutation exhibit a substantial decrease in plasma and intratesticular testosterone levels,
indicating the crucial role of this phosphorylation in the regulation of testosterone [67].

2.1.5. Protein Kinase B

Following LHCGR activation, another kinase called protein kinase B (PKB), also
known as AKT is activated. PKB is a widely expressed serine/threonine protein kinase
that comprises three isoforms: PKBα/AKT1, PKBβ/AKT2, and PKBγ/AKT3 [68–71].
The PKB/AKT isoforms phosphorylate target proteins at a consensus sequence known
as RXRXX(S/T) (reviewed in [72]). Since its discovery, PKB/AKT has been associated
with several cellular processes, including glucose metabolism, cell proliferation, apoptosis,
gene transcription, and cell migration (reviewed in [72]). The activation of PKB/AKT
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depends on the upstream kinase phosphatidylinositol-3-kinase (PI3K), a lipid kinase that
phosphorylates PKB/AKT on Thr308 and Ser473 [73].

In MA-10 Leydig cells, hCG stimulation leads to the activation of PKB/AKT, which is
associated with increased levels of several genes and proteins important for steroidogenesis,
including STAR, JUNB, and NUR77/NR4A1 [74]. Consistent with this, activation of
PKB/AKT in MA-10 Leydig cells results in increased production of steroid hormone [74].

2.2. Growth Hormone (GH)

In addition to LH, other hormones are known to stimulate Leydig cell steroidogenesis
(Figure 2), including growth hormone (GH). GH is a crucial peptide hormone that regulates
several essential physiological processes in the body. It is primarily secreted by somatotrope
cells located in the anterior pituitary, but local production of GH by many tissues has also
been reported (reviewed in [75]). GH mediates its effects by binding to the GH-receptor
(GHR) and, in some species, including humans, to the prolactin receptor (PRLR) [76,77]
(reviewed in [78]).
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Figure 2. Additional signaling pathways implicated in the stimulation of Leydig cell steroidogenesis.
Several hormones and molecules contribute to increased steroid production in Leydig cells. Upon
growth hormone (GH) binding to the GH-receptor (GHR), the receptor becomes activated, leading to
the formation of GHR dimers. Prolactin receptor (PRLR) is also activated by prolactin (PRL) binding.
Both active GHR and PRLR induce the activation of JAKs, which phosphorylate STAT5A and STAT5B
transcription factors. Phosphorylated STAT5s hetero- and homodimerize, and translocate to the
nucleus where they regulate gene transcription. In addition to GH, other growth factors involved in
steroidogenesis are insulin (INS), insulin-like growth factor 1 (IGF1), fibroblast growth factor (FGF),
and epidermal growth factor (EGF). Insulin and IGF1 actions are mediated through the activation of
two related receptors: INS receptor (INSR) and IGF1 receptor (IGF1R). Both INS and IGF1 can bind
to both receptors, albeit with different affinities. INS, IGF1, FGF9, and EGF trigger a series of events
upon binding to its tyrosine kinase receptors, resulting in the activation of at least two pathways,
phosphatidylinositol-3-kinase (PI3K)/protein kinase B (PKB) and MAPKs. Conversely, high levels of
insulin activate DAX1/NR0B1, indicated by red dashed arrows, which represses hormone-induced
steroidogenesis. FGF9 can also activate the protein kinase A (PKA) pathway. EGF receptor (EGFR)
can activate protein kinase C (PKC), cJun N-terminal kinases (JNK) and casein kinase 1α (CK1α). In
addition, undercarboxylated osteocalcin (unOCN) binds to and activates G protein-coupled receptor
family C group 6-member A (GPRC6A) coupled to adenylate cyclase (AC). This leads to increased
cAMP production, activation of PKA, and subsequent activation of the downstream transcription
factor, CREB. Activated vitamin D (1,25(OH)2D) acts through two pathways: non-genomic and
genomic. In the non-genomic pathway, 1,25(OH)2D binds to the vitamin D receptor (VDR) on the cell
membrane, activating phospholipases, second messengers, and kinases. In the genomic pathway,
1,25(OH)2D enters the cell, binds to the VDR in the cytoplasm, and forms a complex with the retinoid
X receptor (RXR). This complex acts as a transcription factor, recognizing vitamin D response elements
(VDREs) in target gene promoter regions. See text for references.
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In contrast to dimeric glycoproteins such as gonadotropins, two receptors are needed
to establish a trimeric structure composed of two membrane receptors and the GH molecule
(reviewed in [79]). While the majority of human GHR is found in the liver, it is also abundant
in all cellular components of the human reproductive system [80]. In males, GHR and
GH binding proteins are present in the testes (Leydig and Sertoli cells), seminal vesicles,
epididymis, vas deferens, and prostate [80].

GH acts both directly and indirectly to induce anabolic and metabolic responses in
multiple target tissues. Directly, GH acts via the GHR, while indirectly, GH stimulates the
production of insulin-like growth factor 1 (IGF1) not only in the liver but also in peripheral
target tissues (reviewed in [78,81]).

Studies using animal models have revealed the importance of GH in male repro-
ductive health (reviewed in [81]). GH-deficient male rats and mice exhibit smaller testes,
underdeveloped secondary sex organs, delayed puberty, and reduced fertility rates [82–85].
In addition, male mice lacking GH have lower intratesticular testosterone levels and their
ability to produce testosterone in response to LH is also diminished [82–84]. Stimulation of
Leydig cells with GH increases Star gene expression and testosterone production [86–88].
Moreover, GH improves Leydig cell responsiveness to physiological hCG concentration
(reviewed in [89]). In prepubertal male rats, treatment with recombinant hGH results in an
increase in body weight, early onset of puberty, activation of spermatogenesis, Leydig cell
differentiation and testosterone production [90]. These findings suggest that in the testis,
GH mediates its effects, at least in part, by acting directly on Leydig cells.

Janus Kinase

Janus kinase (JAK) is a distinct family of tyrosine kinases that comprises four mem-
bers: JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2). In mammals, JAK1, JAK2, and
TYK2 are ubiquitous, while JAK3 is found mainly in bone marrow, the lymphatic system,
endothelial cells, and vascular smooth muscle cells (reviewed in [91]). Members of the
JAK family exhibit a unique structure with more than one kinase domain, contributing
significantly to their functional versatility and regulatory capabilities (reviewed in [92]).
In mice, inactivation of Jak1 or Jak2 leads to embryonic lethality, emphasizing their critical
roles [93–95].

In the canonical pathway, binding of GH to GHR leads to receptor activation and
formation of GHR dimers. This triggers the transphosphorylation of JAKs, which subse-
quently phosphorylate tyrosine residues on the bound receptor, creating a docking site for
members of the Signal Transducers and Activators of Transcription (STATs) family of tran-
scription factors. Upon docking, JAKs phosphorylate STATs, which then dissociate from
the receptor. Phosphorylated STATs dimerize and translocate to the nucleus to regulate
gene transcription. STATs bind to the promoter region of target genes, specifically to the
γ-interferon-activated sequence (GAS; TTCNNNGAA) (reviewed in [91,96]).

Among the STAT family members, STAT5A and STAT5B have been identified in
Leydig cells [97]. In MA-10 Leydig cells, GH treatment induces phosphorylation of STAT5B,
facilitating its translocation to the nucleus [97]. A recent study conducted in MA-10 Leydig
cells showed that activated-STAT5B increases Star transcription by directly binding to a
GAS sequence and by cooperating with cJUN [87]. In addition, activated-STAT5B activates
the Nr4a1/Nur77 promoter in MA-10 Leydig cells [87]. Consistent with this, inhibition of
JAK by tofacitinib in Leydig cells decreases STAT5B phosphorylation [98].

2.3. Prolactin

Prolactin (PRL) is a peptide hormone that is predominantly produced and secreted
by lactotrope cells of the anterior pituitary gland. The structural similarities between the
PRL and GH genes and receptors suggest a shared evolutionary origin, likely derived
from a common ancestral precursor [99]. The role of PRL in females has been extensively
studied and is mainly associated with lactation and mammary gland development. In
the context of male reproductive physiology, several studies have provided evidence for
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the involvement of PRL, particularly in Leydig cell steroidogenesis (reviewed in [100]).
However, it is important to acknowledge that there is conflicting data regarding the precise
role of PRL in Leydig cells, which can be attributed to the functional state of Leydig cells
and the timing and dosage of PRL exposure.

In vitro studies have shown that PRL plays a significant role in male reproduction by
potentially stimulating testicular steroidogenesis. PRL indirectly contributes to testosterone
production in Leydig cells by modulating the release of gonadotropins from the pituitary
gland (reviewed in [100]). PRL is also thought to directly regulate steroidogenesis by
increasing the number of LH receptors in Leydig cells and enhancing the sensitivity of
these cells to LH stimulation [101–105]. For instance, when plasma PRL levels are reduced,
LH receptor levels in rat Leydig cells are also reduced [106–108]. In addition, in MA-10
Leydig cells, the influence of PRL on hCG-induced steroidogenesis was found to be biphasic;
at low concentrations of PRL, steroidogenesis is stimulated, whereas, at high concentrations
of PRL, steroidogenesis is inhibited [109]. On the other hand, genetic deletion of either
the hormone (PRL-KO) or its receptor (PRLR-KO) in the mouse had no impact on male
reproductive functions [110,111]. This lack of male reproductive phenotype could be due to
compensation by other hormones, cytokines, or homologous receptors (reviewed in [100]).

The membrane receptor for PRL, PRLR, is present in Leydig cells across various species,
including humans, mice, rats, and rams [112–115]. However, in humans, it appears that
Leydig cells do not exhibit detectable PRL binding to interstitial cells [116]. Similar to GHR,
activation of PRLR involves ligand-induced sequential receptor dimerization (reviewed
in [117]). Upon PRL binding to PRLR and subsequent dimerization, a signaling cascade is
initiated with the activation of JAK2, which in turn phosphorylates STAT5A and STAT5B
(Figure 2). As described above, for GH action, phosphorylated STAT5B then translocates to
the nucleus, where it activates gene transcription (reviewed in [117]). STAT5 was found to
be involved in PRL signaling in the MA-10 Leydig cell line. However, the role of STAT5 in
steroidogenesis in primary Leydig cell cultures depends on the developmental status of
Leydig cells. While STAT5 is not involved in PRL signaling in primary Leydig cell cultures
from juvenile rats [97], in primary Leydig cell cultures from adult rats, PRL increases STAT5
phosphorylation and Lhcgr mRNA levels [98]. Conversely, the JAK inhibitor tofacitinib
reduces PRL-mediated phosphorylated STAT5 and Lhcgr mRNA levels in primary Leydig
cell cultures from adult rats [98]. PRL also regulates Ca2+ uptake in Leydig cells via
increased Ca2+ entry [118]. It is well known that free calcium activates steroidogenesis
via the CAMKI pathway, as described above. Therefore, it is likely that PRL regulates
steroidogenesis via both the JAK/STAT and the CAMKI pathways.

2.4. Growth Factors

Several growth factors also contribute to Leydig cell steroidogenesis, including in-
sulin, insulin-like growth factor (IGF), fibroblast growth factor (FGF), epidermal growth
factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF)-β,
TGFα, as well as IGF-binding proteins (IGFBPs). In the following sections, the roles and
contributions of a subset of these factors that have been widely studied in Leydig cells is
summarized (Figure 2).

2.4.1. Insulin Family of Growth Factors

The insulin family of growth factors, including insulin, insulin-like growth factor
1 (IGF1), IGF2, and relaxin, are small polypeptides that play critical roles in controlling
growth, metabolism, and reproductive functions. Among them, insulin and IGF1 have
been extensively studied in the context of testicular function. Insulin and IGF1 actions are
mediated through the activation of two related tyrosine kinase receptors, insulin receptor
(INSR) and IGF1 receptor (IGF1R). These receptors are composed of two extracellular α
subunits and two transmembraneβ subunits, which come together to form heterotetrameric
glycoproteins (reviewed in [119]). Interestingly, both insulin and IGF1 can bind to both
receptors, albeit with different affinities. Insulin exhibits a high affinity for INSR but can
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also bind to IGF1R, albeit with a lower affinity. Similarly, IGF1 exhibits preferential binding
to IGF1R while also displaying a lower affinity for INSR (reviewed in [119]).

Insulin

Insulin is a hormone produced primarily by the β-cells of the pancreas in response to
elevated blood glucose levels [120] (reviewed in [121]). It acts by binding to its receptor
INSR present in several tissues, leading to lower blood glucose levels by promoting cel-
lular uptake and utilization of glucose. Insulin also stimulates the synthesis and storage
of glycogen and fat and inhibits the breakdown of stored glycogen, fat, and protein in
muscles (reviewed in [121]). Insulin deficiency affects the entire metabolism, including
male fertility [122]. The role of insulin in the regulation of metabolic processes is often
investigated in patients with type 1 diabetes, who produce very little or no insulin, and
type 2 diabetes, characterized by insulin resistance.

Several animal models were developed to investigate the molecular mechanisms and
histopathological processes involved in insulin function, including spontaneously diabetic
rodent strains, streptozotocin (STZ)-induced diabetes, Ins2 and Insr knockout mice, among
others [123–126]. In diabetic rats, Leydig cell function is impaired, resulting in lower
testosterone levels [124,126,127], a condition partially reversed by insulin treatment [126].
Similarly, male patients with type 2 diabetes exhibit significantly lower serum INSL3 con-
centrations [128]. This is consistent with data from diabetic rats where lower INSL3 levels
are also observed, levels that are increased in insulin-treated rats [126]. In mice, double
knockout of Insr and Igf1r results in a dramatic reduction in the number of Leydig cells
that are unresponsive to hCG stimulation, while steroidogenesis in individual knockout
male mice is not affected [129]. This indicates a functional redundancy between the two
receptors and pathways in post-natal Leydig cells.

INSR is present in Leydig cells, and the addition of insulin to Leydig cells in primary
culture and to TM3 Leydig cells increases steroidogenesis [130,131]. Conversely, several
studies have reported the negative impact of insulin deficiency on Leydig cells [124–126].
Very high levels of insulin, such as those observed in obesity and type 2 diabetes, have
negative effects on steroidogenesis through the induction of the atypical nuclear receptor
DAX1/NR0B1, which represses hormone-induced steroidogenesis [132].

Insulin triggers a series of events upon binding to its tyrosine kinase receptor INSR,
resulting in the activation of at least two pathways, PI3K/PKB and Raf/Ras/MEK/ERK1/2
(reviewed in [133]). In Leydig cells, both pathways appear to play a role in mediating
insulin action. However, the exact mechanism of insulin action in the regulation of Leydig
cell steroidogenesis remains to be fully characterized.

Insulin-like Growth Factor 1

Insulin-like Growth Factor 1 (IGF1) is a small peptide hormone produced primarily
by the liver in response to GH stimulation, but almost all tissues, including the testes, can
synthesize IGF1 ([134,135], reviewed in [78]). In the testes, IGF1 and its receptor (IGFR)
are present in Sertoli, Leydig, germ, and peritubular cells [119,130,135,136]. In rodent
Leydig cells, IGF1 secretion and upregulation of IGFR can be stimulated by LH, hCG, and
GH [137–140].

Several studies involving animal models have shown that IGF1 is essential for male
reproduction [141] (reviewed in [78,119,142]). In fact, IGF1-deficient male mice are infer-
tile [141]. Consistent with this, studies have shown that IGF1 is critical for the proliferation,
development and functionality of Leydig cells [130,136,143,144]. This growth factor exerts
its effects through both para- and autocrine action [143]. Specifically, IGF1 stimulates
the proliferation of Leydig cell precursors [136,145] (reviewed in [78]). Conversely, IGF1
deficiency results in altered proliferation and differentiation of Leydig cell precursors,
leading to fewer and smaller Leydig cells and lower serum testosterone levels in adult-
hood [141,146]. As mentioned previously in the section on insulin, inactivation of both Insr
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and Igf1r leads to a drastic reduction in Leydig cell number and size and steroidogenic
failure [129].

Similar to INSR, activated-IGFR leads to the activation of PI3K/PKB and Raf/Ras/MEK/
ERK1/2 pathways. In primary cultures of immature rat Leydig cells, IGF1 stimulates the
phosphorylation of AKT and ERK1/2 [147,148]. In addition, IGF1 stimulates fetal Leydig
cell proliferation through the MEK/ERK1/2 pathway [149].

2.4.2. Fibroblast Growth Factor 9

Fibroblast growth factor 9 (FGF9) belongs to the FGF family, which comprises at least
22 members found in a wide range of cell types (reviewed in [150]). FGF members interact
with the extracellular domain of the FGF receptor (FGFR), leading to the activation of
the intracellular tyrosine kinase domain, followed by the activation of signaling cascades.
Although there are four known FGFRs, there are at least seven functionally distinct receptors
due to alternative splicing events [150]. The different isoforms of FGFRs suggest a distinct
function in each system. FGF9 is the main FGF family member present in the mammalian
testis and binds to FGFR2IIIc, FGFR3IIIb, FGFR3IIIc, and FGFR4 (reviewed in [151]). Within
the testes, FGF9 is present in a specific spatiotemporal pattern in Leydig, Sertoli, and germ
cells [152–155]. The presence of FGF9 and its receptors in Leydig cells suggests that FGF9
functions as an autocrine factor in the regulation of Leydig cell steroidogenesis. Indeed, its
effects are believed to be primarily mediated through autocrine and paracrine signaling
within the testicular microenvironment rather than systemic effects via circulation [156].

Although Fgf9 knockout mice die at birth, analysis of embryos revealed partial or
complete XY gonadal sex reversal [157]. A similar phenotype is observed in humans
harboring an FGF9 variant (D195N) associated with 46 XY Difference of Sex Development
(DSD) [158].

In mouse primary Leydig cells and MA-10 Leydig cells, treatment with FGF9 increases
testosterone production [154,156,159], and this involves phosphorylation and activation
of AKT, MAPK and PKA pathways [156,159]. Although the downstream targets of FGF9
action in Leydig cells remain to be identified, the importance of the FGF9 pathway for
Leydig cell function is well-established.

2.4.3. Epidermal Growth Factor (EGF) Family

The EGF family consists of 11 members divided into four sub-groups based on their
receptor binding specificity. Most EGF family members, including EGF, transforming
growth factor α (TGFα), amphiregulin (AREG), epigen (EPGN), heparin-binding EGF-like
growth factor (HB-EGF), epiregulin (EREG), and betacellulin (BTC), recognize and bind
to the EGF receptor (EGFR) also known as ErbB1. Upon ligand binding, EGFR homod-
imerizes with another EGFR or heterodimerizes with other EGFR/ErbB family members
(reviewed in [160,161]). EGF family members have been implicated in the regulation of cell
proliferation, differentiation, survival, and motility in several tissues, including the male
gonad (reviewed in [160]).

To better understand the function of EGF, numerous mouse knockout models have
been developed (reviewed in [161]). While single and even triple (EGF, AREG, TGFα)
knockout mice are viable and fertile, disruption of the Egfr gene leads to pre-implantation
or post-natal lethality [162,163]. This indicates that the various EGF family members can
compensate, at least in part, for the absence of some family members [162–164].

Leydig cells of several species, including humans and rodents, contain both EGF
and EGFR [165,166]. The impact of EGF on Leydig cell steroidogenesis is controversial.
Current data suggest that its effects are subject to various factors, such as cell maturity
and experimental conditions, including treatment duration and the cell line used. Several
studies reported a stimulatory role for EGF on Leydig cell steroidogenesis. In MA-10
Leydig cells, a time-dependent effect of EGF was observed [167]. Exposure to EGF initially
decreases the activity of adenylate cyclase activated by hCG within the first hour. In the
next 7 h, EGF stimulates steroidogenesis via a cAMP-independent pathway. Finally, at 8 h
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post-EGF treatment, a reduction in LHCGR levels is observed. Other studies also support
a stimulatory role for EGF in Leydig cell steroidogenesis [148,166,168–171]. Furthermore,
EGFR signaling is required for early hCG-induced steroidogenesis in mouse MLTC-1
Leydig cells, suggesting a crosstalk between EGFR and LHCGR [168]. In addition, male
mice treated with an EGF inhibitor (AG1478) exhibit a substantial reduction in serum
testosterone levels [168]. Conversely, an inhibitory role for EGF in testosterone production
in Leydig cells has also been reported [172]. EGF was found to reduce steroidogenic gene
expression and steroid production in progenitor Leydig cells (PLCs) [173]. Moreover,
EGF was found to stimulate the proliferation of stem Leydig cells (SLCs) and PLCs while
blocking their differentiation into mature adult Leydig cells [173].

Mechanistically, binding of EGF to its receptor EGFR induces phosphorylation of EGFR
and ERK1/2 through the extracellular calcium-sensing receptor (CASR). This observation
was made in Rice H500 rat non-metastasizing Leydig tumor cells treated with Ca2+. In
these tumor cells, activated-CASR increases the production of parathyroid-hormone-related
peptide (PTHrP) via multiple signaling pathways, including PKC, MEK, and JNK [174].
In MLTC-1 Leydig cells, treatment with EGF increases testosterone production and STAR
protein levels without any significant change in phospho-STAR levels [166]. More recently,
LH-mediated EGFR activation was found to activate casein kinase 1α (CK1α), leading
to increased testosterone synthesis [175]. Consistent with this, conditional and partial
inactivation of the Csnk1a1 gene (encoding CK1α) in steroidogenic cells in the mouse
results in a significant reduction in the expression of several steroidogenic genes leading to
lower testosterone levels and decreased male fertility [175].

Although these findings support a role for EGF in Leydig cell steroidogenesis, con-
flicting data on the effects of EGF on Leydig cell function highlights the complexity of
this pathway. Additional work is necessary to fully decipher the role of EGF/EGFR in
steroidogenesis.

2.5. Vitamin D

Vitamin D (VitD) is a steroid hormone, and its active form 1,25 dihydroxyvitamin
D (1,25(OH)2D) is essential for maintaining calcium and phosphate homeostasis and
promoting skeletal health (reviewed in [176,177]). In the classical pathway (genomic), VitD
binds to the vitamin D receptor (VDR), which forms a heterodimer with the retinoid X
receptor (RXR). This VitD/VDR-RXR heterodimer acts as a transcription factor, recognizing
vitamin D response elements (VDREs) present in the promoter regions of various target
genes (reviewed in [178,179]). VitD also acts through non-genomic pathways involving
phospholipases, second messengers, and kinases (reviewed in [178,179]).

While the liver and kidneys are commonly recognized as the primary organs involved
in VitD metabolism, the presence of VitD metabolizing enzymes is not confined exclusively
to these organs. In tissues other than the liver and kidneys, VitD was shown to have
paracrine/autocrine functions (reviewed in [177,180]).

The male reproductive system, including the testis, contains several VitD metabolizing
enzymes as well as VDR (reviewed in [178,181]). In the human testis, the enzyme CYP2R1
is predominantly found in Leydig cells [182], where its expression is hCG-dependent [183].
Another essential enzyme, CYP27B1, is also present in Leydig cells. A transgenic reporter
mouse model with a 1.5 kb fragment of the human CYP27B1 promoter revealed significant
expression in the testis, including Leydig and Sertoli cells [184,185]. VitD action is depen-
dent on the presence of VDR. This receptor is present in Leydig cells and other cells of the
male reproductive system, such as Sertoli cells, germ cells, spermatozoa, and epithelial cells
(reviewed in [176]). In the human testis, VDR is present in Leydig cells from both the fetal
and adult population [186–188]. These studies collectively suggest that Leydig cells locally
metabolize VitD, indicating an intracrine/autocrine role in testicular function, particularly
in steroidogenesis.

Consistent with this, numerous studies have explored the relationship between VitD
levels and steroidogenesis (reviewed in [181,189]). For instance, some studies have reported
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a correlation between decreased 25-hydroxyvitamin D (25-OHD) levels (the immediate pre-
cursor of VitD) and lower testosterone concentrations [190–192] (reviewed in [189,193,194]).
In addition, CYP2R1, CYP27B1, and VDR levels are lower in infertile men compared to
those with normal testicular function (reviewed in [181]). A study using testis samples from
young men affected by testicular disorders revealed lower levels of 25-OHD compared to
those with normal testicular function [182].

To better elucidate the relationship between VitD and male reproduction status, stud-
ies using mice models were performed. In CYP27B1- and VDR-deficient mice, reproductive
and endocrine function was impaired [195–197]. More specifically, in Vdr knockout mice
(VdrKO), reproductive performance and sperm quality declined, resulting in smaller litter
size, lower live birth rate, and lower number of successful breeding performances [197–200].
The absence of VDR also affected testes morphology, with smaller adipocytes and reduced
lipid droplet accumulation [197]. These results suggest that VDR is a regulator of lipid
metabolism and essential for maximal male fertility. Moreover, expression of Hsd3b1 and
Cyp11a1 was significantly decreased in the testes of VdrKO mice [197,201]. Interestingly,
male rats receiving a VitD-deficient diet for 3 months presented a decrease in the pro-
duction of testosterone, reduced testis volume, and decreased number of spermatids and
spermatocytes, suggesting an essential role of VitD for male testicular function [202]. In
the mouse TM3 Leydig cell line, downregulation of VDR results in a notable reduction
in the expression of crucial steroidogenic genes, such as Cyp11a1, Hsd3b1, Star, Nr5a1,
and Prkaca [197,201]. Conversely, the upregulation of VDR enhances the expression of the
majority of these genes. VDR was found to directly regulate Hsd3b1 expression by binding
to a VDRE in the proximal promoter region [201]. The modulation of VDR levels also
has a significant impact on genes associated with lipid metabolism [197]. Moreover, the
knockdown of VDR in TM3 Leydig cells impairs steroid production, further emphasizing
its importance in this process [197,201].

Despite the presence of VDR and its associated enzymes in Leydig cells, our under-
standing of the role and mechanism of VitD action in steroidogenesis remains limited. In
addition, there is currently no evidence supporting VitD supplementation for improving
testosterone levels (reviewed in [193]). The current literature on the correlation between
sex hormone production and systemic changes in VitD levels presents conflicting findings,
especially due to compensatory mechanisms (reviewed in [181]). More work is needed to
fully comprehend how VitD influences steroid hormone production in Leydig cells.

2.6. Osteocalcin

Osteocalcin (OCN) or bone γ-carboxyglutamic acid protein is a bone-derived factor
produced primarily by osteoblasts (reviewed in [203]). Post-translationally, osteocalcin is γ-
carboxylated and considered biologically inactive [204]. A fraction of osteocalcin undergoes
decarboxylation and reaches the circulation, acting as a hormone. In target tissues, the
undercarboxylated (unOCN) form of osteocalcin mainly binds to the G protein-coupled
receptor family C group 6-member A (GPRC6A), while in the central nervous system, it
binds to GPR158 as well [205,206].

In vivo studies using null mouse models have demonstrated that osteocalcin is es-
sential for male fertility. In fact, osteocalcin knockout mice exhibit reduced testis weight,
oligospermia, and low testosterone levels and produce smaller litter sizes than wild-type
animals [207]. A similar phenotype was found in Gprc6a knockout mice [205,208]. The
correlation between osteocalcin and male reproduction was also investigated in humans
(reviewed in [209]). Using populational-based samples and bone disorders patient-based
samples, osteocalcin was found to be positively correlated with testosterone serum con-
centration; patients with lower OCN had lower testosterone levels and vice-versa [210].
Moreover, Oury and collaborators [205] found in a cohort of patients with primary testicular
failure two individuals carrying a missense mutation in the Gprc6a locus. Consistent with
this, a recent study strongly suggests a role for the unOCN/GPRC6A axis in the regulation
of testosterone production [211].
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In the testis, the osteocalcin receptor Gprc6a is highly expressed in Leydig cells [208].
The binding of unOCN was shown to regulate steroidogenesis independently of the HPG
axis [205]. The GPRC6A receptor is coupled to adenylate cyclase, and once activated,
results in increased cAMP production, activation of signaling pathways, and ultimately the
activation of downstream effectors such as CREB, which then upregulate the expression
of multiple genes encoding essential steroidogenic proteins and enzymes such as STAR,
CYP11A1, CYP17A1, and 3βHSD [207] (Figure 2).

unOCN is also implicated in the regulation of vitamin D metabolism in mouse MA-
10 Leydig cells, where it was found to stimulate Cyp2r1 gene expression [212], which
codes for the CYP2R1 enzyme involved in the conversion of vitamin D into its active form
1,25(OH)2D (see the section on vitamin D).

3. Conclusions

As described in this review, several pathways are involved in the stimulation of Leydig
cell steroidogenesis. Recent advances in technology and molecular biology tools (gene
editing to easily generate animal models, more efficient genetic screening of patients, de-
velopment of high throughput functional assays to study receptors/kinases/transcription
factors) have led to significant progress in our understanding of the mechanisms and
signaling pathways involved. However, further research is needed to fully comprehend the
complex interplay between signaling pathways in Leydig cell steroidogenesis. Leydig cell-
specific knockout models are a promising tool that will help better understand the roles of
specific receptors, signaling cascade proteins, and kinases in the regulation of steroidogene-
sis. The development and use of new drugs that target these signaling pathways also hold
significant potential for the treatment of disorders related to steroid hormone production.
Overall, the field of reproductive endocrinology is constantly evolving, and new tools and
technologies are leading to a better understanding of the regulation of steroidogenesis.
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