
����������
�������

Citation: Santos, R.; Crespo, O.;

Medeiros-Leal, W.; Novoa-Pabon, A.;

Pinho, M. Error Distribution Model

to Standardize LPUE, CPUE and

Survey-Derived Catch Rates of Target

and Non-Target Species. Modelling

2022, 3, 1–13. https://doi.org/

10.3390/modelling3010001

Academic Editors: José Simão

Antunes Do Carmo and Conceição

Juana Espinosa Morais Fortes

Received: 12 November 2021

Accepted: 18 December 2021

Published: 22 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Error Distribution Model to Standardize LPUE, CPUE and
Survey-Derived Catch Rates of Target and Non-Target Species

Régis Santos 1,2,* , Osman Crespo 1,2, Wendell Medeiros-Leal 1,2 , Ana Novoa-Pabon 1 and Mário Pinho 1,2

1 Okeanos-UAc Instituto de Investigação em Ciências do Mar, Universidade dos Açores, Rua Prof. Dr.
Frederico Machado, 4, 9900-138 Horta, Faial, Portugal; osman.c.neto@uac.pt (O.C.);
wendell.mm.silva@uac.pt (W.M.-L.); ana.mn.pabon@uac.pt (A.N.-P.); mario.rr.pinho@uac.pt (M.P.)

2 IMAR Instituto do Mar, Departamento de Oceanografia e Pescas, Universidade dos Açores, Rua Prof. Dr.
Frederico Machado, 4, 9901-862 Horta, Faial, Portugal

* Correspondence: regisvinicius@gmail.com; Tel.: +351-292-200-400

Abstract: Indices of abundance are usually a key input parameter used for fitting a stock assessment
model, as they provide abundance estimates representative of the fraction of the stock that is vulnera-
ble to fishing. These indices can be estimated from catches derived from fishery-dependent sources,
such as catch per unit effort (CPUE) and landings per unit effort (LPUE), or from scientific survey
data (e.g., relative population number—RPN). However, fluctuations in many factors (e.g., vessel
size, period, area, gear) may affect the catch rates, bringing the need to evaluate the appropriateness
of the statistical models for the standardization process. In this research, we analyzed different gener-
alized linear models to select the best technique to standardize catch rates of target and non-target
species from fishery dependent (CPUE and LPUE) and independent (RPN) data. The examined
error distribution models were gamma, lognormal, tweedie, and hurdle models. For hurdle, positive
observations were analyzed assuming a lognormal (hurdle–lognormal) or gamma (hurdle–gamma)
error distribution. Based on deviance table analyses and diagnostic checks, the hurdle–lognormal
was the statistical model that best satisfied the underlying characteristics of the different data sets.
Finally, catch rates (CPUE, LPUE and RPN) of the thornback ray Raja clavata, blackbelly rosefish
Helicolenus dactylopterus, and common mora Mora moro from the NE Atlantic (Azores region) were
standardized. The analyses confirmed the spatial and temporal nature of their distribution.

Keywords: generalized linear models; catch and effort; thornback ray; blackbelly rosefish;
common mora; Azores

1. Introduction

Fisheries research is a subject of high interest with both economic and ecological
relevance, mainly focused on guaranteeing the sustainability of the resource and the
economic performance of the fishery. The integration of information on species’ life history,
fisheries monitoring, and resource surveys for assessing the stock size and harvest rate
relative to sustainable reference points is known as stock assessment [1]. Its results often
become scientific advice that is delivered to governmental agencies to be applied as law
enforcement and fishing directives [2].

The most common method for stock assessment is the use of mathematical models
that fit the available data to provide simplified representations of population and fishery
dynamics [3]. Models used for stock assessment are usually based on several parameters,
including mortality rates, reproductive aspects, size composition, and indices of relative
abundance, to estimate current population status [1]. The type of model and analysis to be
used for stock assessment relies on the species’ available information and the data quality [4,5].

Indices of relative abundance are usually a key input parameter used for fitting a stock
assessment model [1], and they can be estimated from catches derived from fishery-dependent
sources, such as catch per unit effort (CPUE) and landings per unit effort (LPUE), or from
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scientific survey data (e.g., relative population number—RPN; [6,7]). Acquiring fishery-
dependent data (CPUE or LPUE) is less expensive than survey-derived data and, in some
cases, preferred because of its greater availability, larger area coverage, and time scale [5,8,9].

However, fluctuations in many factors can affect fishery-dependent catch rates, such
as the targeted species, the vessel size, the fishing area, and the fishing gear. Similarly,
survey data can also be affected due to unexpected changes over time in the environmental
conditions, sampling periods, sampling areas, or gears used. Those factors influencing
the index of abundance can bias the values and consequently lead to wrong or inaccurate
advice [9–13]. Applying statistical methods is, therefore, essential to reduce the influence of
potential drivers on indices of abundance, and for this purpose, standardization is a regular
technique applied to improve abundance estimates considering such variations [1,14].
Standardizing catch rates promotes a great improvement in the estimates of the abundance
index and allows for truthful comparisons between periods and different databases [12,13].

Regression methods such as generalized linear models (GLMs; [15]) are the most often
used method for catch rate standardization [8]. A GLM analysis requires to (a) choose
the dependent variable, (b) select a statistical distribution for the dependent variable from
the exponential family (e.g., normal, gamma, Poisson, and binomial), (c) choose a link
function appropriate to the distribution, and (d) select a set of explanatory variables [16].
The choice of the statistical distribution for the dependent variable (also referred to as
the ‘error–model’) is an important aspect of the GLM model selection [8,16]. However,
depending on the nature of the data, various error–models can be applied, and there is no
official consensus among scientists on which one to employ for each data type.

For standardizing continuous CPUE data collected from commercial fisheries, for
example, tweedie [17,18] and the hurdle–method (also known as the delta-type two-step
method; [19,20]) have been widely used or recommended (e.g., [21–25]), whereas for
survey-derived data, this standardization process has been rarely performed (e.g., [20,26]).
Furthermore, these studies usually focus on non-target species as they are characterized by
left-skewed distributions with a high proportion of zeros.

In this context, the purpose of the present study is to explore different methods for
analyzing catch rates (CPUE, LPUE, and RPN) of target and non-target species and define
the best suitable statistical GLM technique to remove the influence of potential drivers.
This study updates and expands, therefore, the protocol for comparing alternative error
distributions for the standardization of CPUE for non-target species developed in the early
2000s by Ortiz and Arocha [21]. Because of the relatively long-time data series available
(approximately 25 years), from both scientific surveys [10] and commercial fisheries (Eu-
ropean Union’s Data Collection Framework—DCF; [27]), the Azores archipelago (ICES
Subdivision 10a2) was selected as a relevant case study area, even allowing a comparison
between databases from different sources in the same region.

2. Material and Methods
2.1. Datasets

Three types of data were analyzed in this study: landings per unit effort (LPUE;
kg landings−1 vessel−1), catch per unit effort (CPUE; kg days at sea−1 vessel−1), and
survey-derived relative population number (RPN; ind. 10−3 hooks).

The LPUE (kg per landing per vessel) series was compiled from daily landing reports
obtained from the auction service of the Azores—Lotaçor S.A. database during the period
1985–2017. Data recorded for each fishing operation included vessel identification, métier,
and catch in kg by species. The CPUE (catch per day at sea) data came from the database
of the Department of Oceanography and Fisheries, University of the Azores (DOP/UAz),
and was collected between 1990 and 2017 as part of the European Union’s Data Collection
Framework (DCF; [27]). Standardized fishing inquiries (n = 31,616) were performed by
clerks to the vessels’ captains during the landings. Each inquiry included the vessel identifi-
cation, the number of days at sea, and detailed information on the fishing operation, such as
the gear type, mean depth of fishing, and catch in kg by species. Survey-derived abundance
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indices (RPN; individuals per 1000 hooks) were calculated for the period 1996–2019 and
came from the Azorean spring bottom longline survey [10]. Surveys followed a stratified
random design and covered the main islands and major seamounts. Each set included the
area, moon phase, depth stratum, soak time, and catch number by species.

Factors considered in the analyses varied among the different data sets and are detailed
in Table 1.

Table 1. Explanatory variables (main factors) used in the model formulations for standardized
thornback ray Raja clavata, blackbelly rosefish Helicolenus dactylopterus (BRF), and common mora Mora
moro catch rates.

Landing Reports Fishing Inquiries Scientific Survey

Variable Type Observations Variable Type Observations Variable Type Observations

Year Categorical (33) Period: 1985–2017 Year Categorical (27) Period: 1990–2017 Year Categorical (19) Period: 1996–2019 (except 1998,
2006, 2009, 2014 and 2015)

Quarter Categorical (4)

1: January–March

Quarter Categorical (4)

1: January–March
2: April–June 2: April–June Month Categorical (5) March
3: July–September 3: July–September April
4: October–December 4: October–December May

Vessel length Categorical (5)

1: ≤10 m

Vessel length Categorical (5)

1: ≤10 m June
2: >10 and ≤12 m 2: >10 and ≤12 m July
3: >12 and ≤18 m 3: >12 and ≤18 m Moon Categorical (4) 1: New moon
4: >18 and ≤24 m 4: >18 and ≤24 m 2: First quarter
5: >24 and ≤40 m 5: >24 and ≤40 m 3: Full moon

Métier Categorical (12)

HDP: hand picking

Gear Categorical (5)

LL: Longlines 4: Last quarter
HUN: species removal
by hunting HL: Handlines Area Categorical (10) AÇO: Açores bank

FPO_CRU: pots and traps
for crustaceans NT: Nets PAL: Princess Alice bank

FPO_FIF: pots and traps
for fish TP: Traps and pots FPI: Faial and Pico

GNS_FIF: gillnets for
coastal demersal and
pelagic fish

MG: Multigear GRA: Graciosa

LHP_CEP: handlines for
cephalopods—squids

Depth (mean
depth of fishing
operation)

Categorical (3)
1: Shallow (<200 m) SJO: São Jorge

LHP_FIF: handlines for
demersal fish

2: Intermediate (200–600
m) TER: Terceira

LHP_MDP: handlines
locally called “corrico” for
pelagic fish

3: Deep (>600 m) SMA: Santa Maria

LHP_LPF (pole and lines
for pelagic fish) Target effect

(percentage of
species-specific
catch related to
the total catch)

Categorical (4)

1: 1st quartile (≤25%) SMI: São Miguel

LLD: drifting longlines for
pelagic and demersal fish

2: 2nd quartile (>25% and
≤50%) MPR: Mar da Prata bank

LLS_DEF: set longlines for
pelagic and demersal fish

3: 3rd quartile (>50% and
≤75%) FCO: Flores and Corvo

PS_SPF: purse seines for
small pelagic fish 4: 4th quartile (>75%) Depth Categorical (24) from 0 to 1200 m by 50 m

intervals (1: 0–50 m, 2: 50–100
m, . . . , 24: 1150–1200 m)

Target effect
(percentage of
species-specific
catch related to
the total catch)

Categorical (4)

1: 1st quartile (≤ 25%)
2: 2nd quartile (> 25% and
≤ 50%)

Soak time
(time during
which the
hooks were in
the water)

Categorical (8) Time expressed in hours from
2 to 8 by 1 h intervals (2: ≥1.5
and <2.5, 3: ≥2.5 and <3.5, . . . ,
8: ≥7.5 and <8.5)

3: 3rd quartile (> 50% and
≤ 75%)
4: 4th quartile (> 75%)

Thornback ray Raja clavata (RJC), blackbelly rosefish Helicolenus dactylopterus (BRF),
and common mora Mora moro (RIB) were the fish species selected as case studies. In addition
to being species that typify the depth-aligned demersal fish assemblage structure in the
Azores [28–31], both the thornback ray and common mora are usually caught as by-catch of
the Azorean hook-and-line fisheries targeting demersal fishes such as blackbelly rosefish H.
dactylopterus, blackspot seabream Pagellus bogaraveo, and alfonsinos Beryx spp. [29,30,32,33].

Records with structural zeros (see [34,35]) and missing effort data were excluded from
the analyses.

2.2. Statistical Models

Standardized abundances were estimated by a Generalized Linear Modeling (GLM)
approach. Several error distributions were examined, namely:

1. Gamma. A positive constant was added to the nominal catch rates (RPN, CPUE and
LPUE) in order to deal with zero catches. Two different values were tested: 1 and
c = 10% of the mean catch rate [9,36]. The logarithm was used as the link function.

2. Lognormal. This distribution assumed that the logarithm of the catch rate was
normally distributed, using the identity as the link function. This error distribution
also required the addition of a positive constant (1 or c) to deal with zero catches.

3. Tweedie. This distribution is part of the exponential family of distributions and is
defined by a mean (µ) and variance (ϕµp), in which ϕ is the dispersion parameter
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and p is an index parameter [22]. Given that this distribution can handle a certain
proportion of zeros, the nominal catches were used directly. The power parameter (p)
of the variance function was calculated by maximum likelihood estimation.

4. Hurdle models. The catch estimates involved fitting two sub-models to the data [19,35].
The first sub-model modeled the probability that a positive observation (non-zero
catch) occurred, assuming a binomial error distribution and logit link function. Pos-
itive observations were analyzed using a second sub-model assuming (1) a lognor-
mal (hurdle–lognormal) error distribution with an identity link function and log-
transformed catch rates, and (2) a gamma (hurdle–gamma) error distribution with a
log link function.

The general formulations used in the present study were expressed by the
following equations:

1. LPUE ~ Year + Quarter + Vessel + Métier + Target + Year × Quarter + Year × Vessel +
Year ×Métier + Year × Target

2. CPUE ~ Year + Quarter + Vessel + Gear + Depth + Target + Year × Quarter + Year ×
Vessel + Year × Gear + Year × Target

3. RPN ~ Year + Month + Moon + Area + Depth + Soak time + Year ×Month + Year ×
Moon + Year × Area + Year × Soak time

2.3. Error–Model Selection (Methodology)

Model-checking and fit diagnostics [16] were used to select the most appropriate
error–model as follows:

1. Pearson residuals were plotted against the fitted values as a check of the assumed
variance function;

2. Standardized deviance residuals were plotted against the estimated linear predictor
(η̂) to check for systematic deviations from the assumptions underlying the error
distribution; and

3. The dependent variable was plotted against the estimated linear predictor (η̂) as a
check of the assumed link function.

Plots were not examined for the model of positive observations’ probability (bino-
mial error distribution) because they do not provide particularly useful or interesting
information [16].

Any observation for which Cook’s distance was greater than 1 was considered highly
influential and therefore removed from the analysis.

2.4. Standardization Procedure

Deviance tables were used to select the explanatory factors and interactions that
explained most of the variability in the data [21]. The effect of each explanatory fac-
tor/interaction was evaluated according to (1) the percent of deviance explained by the
addition of a specific variable to the model, and (2) the significance of an additional variable
to the total deviance explained (Chi-squared test, α = 0.05). The factors and interactions
selected for the final model were chosen when their insertion accounted for equal or greater
than 5% of the total deviance, and the significance of their choice was confirmed by the
Chi-squared test.

After selecting the set of explanatory factors and interactions, all interactions that
included the year factor were treated as random [37]. This process converted the basic
models from GLM into generalized linear mixed models (GLMMs). The significance of
the random interactions was evaluated using the likelihood ratio test [38], the Akaike
Information Criteria (AIC), and Bayesian Information Criteria (BIC), where lower values
indicated better model fitting. Once a final model was identified, diagnostic plots were
revised to identify potential departures from the GLMM assumptions or observations with
a large influence on the model results.
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Standardized abundance indices were estimated as the least-squares means (LSmeans)
of the year factor for the selected model. In the case of the selected model being a hurdle
model, indices of abundance were estimated as the product of the LSmeans from each of the
two analyses, after back-transforming to the response scale. Then, the variance estimation
of the standardized index was calculated following Walter and Ortiz [39] for two-stage
variance estimates.

The standardization procedure was then repeated for each species using the alternative
error distributions considered at the beginning of the analysis. The standardized indices
were summarized by the percentage differences from those from the most appropriate
error–model.

2.5. Catch Trend Comparison between Datasets

To compare the general LPUE, CPUE, and RPN trends, linear trend models were
applied to the annual standardized catch rates by species to find the intercept (a) and slope
(b) that give the best average fit. Analysis of covariance was used to test all the regression
lines to see which ones have significantly different (p < 0.05) a and b values. Differences in a
were interpreted as differences in magnitude, while differences in b were interpreted as
differences in the rate of change [40,41].

All the analyses were conducted using the software R–4.0.3 [42] with the additional
packages MASS [43], lattice [44], lsmeans [45], lme4 [46], and tweedie [47].

3. Results and Discussion
3.1. Nominal Catch Data

Catch distributions were found to be highly skewed, with many zero or low catches,
mostly for non-target species, as expected (Figure 1). The LPUE data comprised 4952 landing
reports, and such a high proportion of zero catches was observed throughout the studied
years for R. clavata, H. dactylopterus, and M. moro at 0.68, 0.62, and 0.88, respectively. For
the CPUE database, a total of 31,616 inquiries were analyzed for the three species, with a
relative number of zero catches of 0.86 (R. clavata), 0.71 (H. dactylopterus), and 0.94 (M. moro).
The data analyzed from the scientific survey accounted for a total of 8618 fishing sets, with
a proportion of zeros of 0.92 (R. clavata), 0.59 (H. dactylopterus), and 0.80 (M. moro). The
survey database had no information for 1998, 2006, 2009, 2014, and 2015 since the cruise
was not executed due to operational issues in those specific years.
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Figure 1. Frequency distribution of nominal LPUE (kg landing−1 vessel−1), CPUE (kg days at
sea−1 vessel−1), and RPN (ind. 10−3 hooks) data for thornback ray Raja clavata (RJC), blackbelly
rosefish Helicolenus dactylopterus (BRF), and common mora Mora moro (RIB) in the Azorean region.

3.2. Error–Model Selection (Application)

The Pearson residuals were plotted against the fitted values (Figure S1) as a check of
the adequacy of the assumed variance function. The null (expected) pattern of this plot is
a distribution of residuals with no trend [16]. The positive–lognormal error distribution
was the best model where there was no trend for the residuals of the LPUE, CPUE, and
RPN data for all species (Figure S1). The lognormal (1 and c), gamma (1 and c), tweedie,
and positive–gamma models showed discrepancies with residuals concentrated at specific
plot regions or a few points far from the rest, which indicated the variance function was
not appropriate. A positive trend (slope > 0) implies that the assumed variance function is
rising too slowly concerning the mean, whereas a negative trend (slope < 0) implies the
opposite [16]. Therefore, these error distributions would either underestimate or overstate
catch rates for the observed CPUE, LPUE, and RPN.

Diagnostic plots of standardized deviance residuals against the estimated linear pre-
dictor are shown in Figure S2. The null pattern is the distribution of the residuals with a
mean of zero (dashed line) and a constant range [16]. For all three databases, the gamma (1
and c) and lognormal (1 and c) error distributions showed declining trends in the mean,
and the tweedie model showed a systematic change in range with the linear predictor.
Curvature can be caused by a variety of factors, including incorrect link function selection,
incorrect scale selection for one or more covariates, or the absence of a quadratic component
in a covariate [16]. The positive–gamma and positive–lognormal models were consistent
with the expected pattern of a mean close to zero.

The link function selected for each error distribution was checked through the plot of
the dependent variable (LPUE, CPUE, or RPN) against the linear predictor (Figure S3). The
null pattern is a straight line [16], which was observed for all species, databases, and error
distributions (Figure S3). This means that the link function was properly chosen for the
error distributions analyzed.

To summarize, the model diagnostic plots indicated that the positive–lognormal model
was the most appropriate error distribution for fitting the LPUE, CPUE, and RPN data for
R. clavata, H. dactylopterus, and M. moro. Consequently, the hurdle–lognormal model was
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selected as the most suitable error distribution for standardizing such fishery-dependent
and independent data for target and non-target species.

3.3. Standardization Procedure

Deviance tables produced from the models and used for selecting relevant explanatory
factors and interactions that better explained the data variability for LPUE, CPUE, and RPN
data are shown in Tables S1–S3, respectively. The interactions that included the year factor
were treated as random interactions, and the final best-fitted model was selected according
to the lowest log-likelihood, AIC, and BIC values of binomial and positive–lognormal
models of each species (Table S4).

Diagnostic plots of each final model selected from the positive–lognormal error dis-
tribution (Figure S4) displayed no strong indication of departure from the null pattern,
suggesting that the model selected was well fitted. Subsequently, the standardization
procedure was performed using the hurdle–lognormal method (Figure 2). Nominal and
standardized abundance indices estimated per year for each species and database are
shown in Table S5.

Modelling 2022, 2, FOR PEER REVIEW 7 
 

 

RPN data for all species (Figure S1). The lognormal (1 and c), gamma (1 and c), tweedie, 
and positive–gamma models showed discrepancies with residuals concentrated at 
specific plot regions or a few points far from the rest, which indicated the variance 
function was not appropriate. A positive trend (slope > 0) implies that the assumed 
variance function is rising too slowly concerning the mean, whereas a negative trend 
(slope < 0) implies the opposite [16]. Therefore, these error distributions would either 
underestimate or overstate catch rates for the observed CPUE, LPUE, and RPN. 

Diagnostic plots of standardized deviance residuals against the estimated linear 
predictor are shown in Figure S2. The null pattern is the distribution of the residuals with 
a mean of zero (dashed line) and a constant range [16]. For all three databases, the gamma 
(1 and c) and lognormal (1 and c) error distributions showed declining trends in the mean, 
and the tweedie model showed a systematic change in range with the linear predictor. 
Curvature can be caused by a variety of factors, including incorrect link function selection, 
incorrect scale selection for one or more covariates, or the absence of a quadratic 
component in a covariate [16]. The positive–gamma and positive–lognormal models were 
consistent with the expected pattern of a mean close to zero. 

The link function selected for each error distribution was checked through the plot 
of the dependent variable (LPUE, CPUE, or RPN) against the linear predictor (Figure S3). 
The null pattern is a straight line [16], which was observed for all species, databases, and 
error distributions (Figure S3). This means that the link function was properly chosen for 
the error distributions analyzed. 

To summarize, the model diagnostic plots indicated that the positive–lognormal 
model was the most appropriate error distribution for fitting the LPUE, CPUE, and RPN 
data for R. clavata, H. dactylopterus, and M. moro. Consequently, the hurdle–lognormal 
model was selected as the most suitable error distribution for standardizing such fishery-
dependent and independent data for target and non-target species. 

3.3. Standardization Procedure 
Deviance tables produced from the models and used for selecting relevant 

explanatory factors and interactions that better explained the data variability for LPUE, 
CPUE, and RPN data are shown in Tables S1–S3, respectively. The interactions that 
included the year factor were treated as random interactions, and the final best-fitted 
model was selected according to the lowest log-likelihood, AIC, and BIC values of 
binomial and positive–lognormal models of each species (Table S4). 

Diagnostic plots of each final model selected from the positive–lognormal error 
distribution (Figure S4) displayed no strong indication of departure from the null pattern, 
suggesting that the model selected was well fitted. Subsequently, the standardization 
procedure was performed using the hurdle–lognormal method (Figure 2). Nominal and 
standardized abundance indices estimated per year for each species and database are 
shown in Table S5. 

 
Figure 2. Standardized LPUE (in blue), CPUE (in red), and RPN (in black color) for thornback ray Raja clavata (RJC), 
blackbelly rosefish Helicolenus dactylopterus (BRF), and common mora Mora moro (RIB) in the Azorean region. The dashed 
lines represent the linear regressions (the equations are indicated in the graph). 

y = 0.0878x - 174.78

y = -0.0481x + 97.39

y = -0.019x + 39.185

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1985 1990 1995 2000 2005 2010 2015 2020

St
an

da
rd

iz
ed

 c
at

ch
 ra

te
 (s

ca
le

d 
to

 
m

ea
n)

RIB

y = -0.0415x + 84.011

y = -0.0273x + 55.721

y = -0.0349x + 71.12

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1985 1990 1995 2000 2005 2010 2015 2020

St
an

da
rd

iz
ed

 c
at

ch
 ra

te
 (s

ca
le

d 
to

 
m

ea
n)

BRF

y = 0.0355x - 70.024

y = -0.0045x + 10.098

y = 0.0112x - 21.47

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1985 1990 1995 2000 2005 2010 2015 2020

St
an

da
rd

iz
ed

 c
at

ch
 ra

te
 (s

ca
le

d 
to

 
m

ea
n)

RJC

Figure 2. Standardized LPUE (in blue), CPUE (in red), and RPN (in black color) for thornback ray
Raja clavata (RJC), blackbelly rosefish Helicolenus dactylopterus (BRF), and common mora Mora moro
(RIB) in the Azorean region. The dashed lines represent the linear regressions (the equations are
indicated in the graph).

3.4. Consequences of Choosing a Wrong Error–Model

When knowledge of the true status of each species is unknown, an alternative ap-
proach for assessing the implications of basing standardization on the incorrect error dis-
tribution, in terms of the magnitude of error in the standardized catch rates, is to assume
that the results from the selected model provide the most accurate representation of true
stock status [21]. Therefore, although the hurdle–lognormal was selected as the best model
for standardizing catch rates of all species and databases analyzed, the other explored er-
ror distributions were processed with the same method for the model selection, the best
model formulation (Table S6), and the diagnostic plots (Figure S5). Standardized catch rates
(Table S7) were then summarized as the percent difference from the hurdle–lognormal model.

For the LPUE database (Figure 3), the hurdle–gamma model showed lower percentage
differences from the chosen error distribution for the R. clavata and M. moro, with respective
average differences of 6% and −7%, while for the H. dactylopterus, the tweedie model showed
the lowest ones (−9% on average). The other error–models for R. clavata showed greater
discrepancies from the hurdle–lognormal, varying from 23% (tweedie) to 59% (gamma + 1)
on average. For H. dactylopterus, the average percentage differences from those from the
hurdle–lognormal model varied from −14% (hurdle–gamma) to 70% (lognormal + 1). In the
case of M. moro, these average differences in magnitude were greater than 130 times.
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Figure 3. Percent differences between annual standardized catch rates of thornback ray Raja clavata
(RJC), blackbelly rosefish Helicolenus dactylopterus (BRF), and common mora Mora moro (RIB) based on
various error distributions and those from the best one (zero line). (A) LPUE (kg landing−1 vessel−1);
(B) CPUE (kg days at sea−1 vessel−1); (C) RPN (ind. 10−3 hooks). The standardized CPUE indices
(Figure 3) for R. clavata from the gamma (c and 1), lognormal (c and 1), and hurdle–gamma models
were similar, with percentage differences ranging from−1% (hurdle–gamma) to 2% (gamma + c). The
estimates from the tweedie error distribution showed greater variations, with an average difference
of −6%. For H. dactylopterus, percentage differences from those estimates of standardized CPUE for
the hurdle–lognormal model were less than 4% on average. However, these differences could reach
about 127% in some years. For the M. moro, the hurdle–gamma model showed the lower percentage
difference from the hurdle–lognormal, with an average of 6%. The other error–models had greater
discrepancies, ranging from 32% (lognormal + c) to 35% (tweedie and gamma + c).

The results of the RPN estimates from the hurdle–gamma models were very similar
to those from the hurdle–lognormal for all species, with average differences ranging
from −1% (R. clavata and H. dactylopterus) to 0% (M. moro; Figure 3). The other error–
models for R. clavata showed percentage differences varying from −2% (lognormal + 1)
to 28% (gamma + 1) on average. For H. dactylopterus, the RPN estimates from the other
models were similar in trend among them but different in magnitude from those from the
hurdle–lognormal, with average percentage differences ranging from 22% (tweedie) to
47% (gamma + 1). For M. moro, these percentage differences were greater than 80%.

3.5. Catch Trend Comparison between Datasets

Standardized catch rates over the studied years showed varying trends according
to each species and across different databases (Figure 2). For R. clavata, both the LPUE
and RPN demonstrated an increasing trend (Figure 2), with no significant differences
between their intercepts and slopes (Table 2). These trends, in turn, were significantly
different from that of the CPUE (Table 2), which was greater in magnitude (intercept) but
showed a decreasing tendency (Figure 2). For H. dactylopterus, LPUE, CPUE and RPN were
decreasing in trend (Figure 2), with no significant difference between their intercepts and
slopes (Table 2). Trend analysis for M. moro indicated significant differences between the
intercepts and slopes from the CPUE and RPN compared to that from the LPUE (Table 2),
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which was lower in magnitude and showed a positive rate of change (i.e., an increasing
trend; Figure 2).

Table 2. Results of analysis of covariance (ANCOVA) for differences between regression lines from
annual standardized LPUE (kg landing−1 vessel−1), CPUE (kg days at sea−1 vessel−1), and RPN
(ind. 10−3 hooks) catch rates by species (RJC: thornback ray Raja clavata, BRF: blackbelly rosefish
Helicolenus dactylopterus, RIB: common mora Mora moro). Significant differences at the 0.05 significance
level are in bold.

RJC BRF RIB

Estimate Std.
Error t p Estimate Std.

Error t p Estimate Std.
Error t p

Intercept
LPUE −70.024 15.933 −4.395 <0.001 84.011 21.019 3.997 <0.001 −174.777 50.969 −3.429 0.001
CPUE 80.122 27.675 2.895 0.005 −28.290 35.019 −0.808 0.422 272.167 89.886 3.028 0.004

RPN 48.554 32.460 1.496 0.139 −12.891 42.821 −0.301 0.764 213.962 100.356 2.132 0.037
Slope

LPUE 0.035 0.008 4.458 <0.001 −0.041 0.011 −3.949 <0.001 0.088 0.025 3.449 0.001
CPUE −0.040 0.014 −2.898 0.005 0.014 0.017 0.811 0.420 −0.136 0.045 −3.029 0.004

RPN −0.024 0.016 −1.502 0.138 0.007 0.021 0.307 0.760 −0.107 0.050 −2.135 0.037

3.6. Final Considerations

This study updated and expanded the protocol developed by Ortiz and Arocha [21]
for comparing error distribution models to standardize catch rates, aiming to select the
best error–model and evaluate model assumptions given the data set characteristics. The
use of generalized linear mixed models, particularly the hurdle–lognormal model, resulted
in more agreement between model assumptions and observed catch rates. The results
confirmed the previously reported consistency of these models with zero-inflated data
sets [20,21,48], the importance of model checking and validation procedures for the stan-
dardization of nominal catch rates, and the implications of basing the standardization on
the incorrect error distribution model [21].

The analyses of catch rates from fishery-dependent and independent data indicated
that a few past or recent years could be responsible for the observed differences in the
species’ catch trends. For R. clavata, the standardized CPUE values observed in the last
three years (2015–2017) were the main responsible for pulling the trend down. This species
is primarily found in shallower waters (down to 250 m) around the islands [33,49] and
those lower CPUE values are assumed to be related to the observed reduction in both
the catches of the species [30] and the fishing effort (days at sea) of the Azorean fleet in
coastal areas during the last few years [50] due to the fishing area restrictions [30]. At
the same time, as catches declined, a rise in LPUE during the 2015–2017 period might
suggest that fewer vessels landed this species and that each of these landing occurrences
recorded large captures. This could be explained by the fact that the vessels that continue
to operate legally with hook-and-line fishing gear in areas where R. clavata is more likely to
be found are typically small (less than 12 m in length), with limited storage capacity and
autonomy. This was in part confirmed by this study as métier, gear, vessel size and area,
and the interaction between the last three factors and year were significant explanatory
variables when modeling catch rates.

For H. dactylopterus, the LPUE, CPUE and RPN were similar in trends. The Azorean
spring bottom longline survey is designed to target demersal species such as H. dactylopterus
by using a similar fishing strategy to that of the commercial fleet [10]. Consequently,
it was expected that after the standardization process, both the fishery-dependent and
independent catch rates of H. dactylopterus would show similar trends. This species is
usually caught by vessels operating with hook-and-line gears [29], and the harvested
population is mainly found in seamount areas at 350–800 m depth [31]. This was validated
by this study, which found that métier, gear, depth, and area were important explanatory
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factors. Finally, the observed declining trends in abundance indices, combined with the
sedentary nature of this species, confirmed the already reported vulnerability of this stock to
fishing activity [31,51]. As a result, further assessment analyses and effective management
strategies are required to establish a balance between stock exploitation and conservation.

In the case of the M. moro species, the observed variations in catch patterns were due
to lower LPUE values until the early 1990s and the greatest one in 2017. The first could be
associated with the under-exploited phase of its fishery. It is a deep-water species, mainly
found at depths ranging from 300 to 2500 m on the outer continental shelf and slope [50].
The exploitation phase of this resource began in the early 2000s; before that, it was captured
as a by-catch of the demersal fishery occurring in depths between 200 and 600 m [50]. With
the reorientation of the larger vessels to offshore deep waters due to the implementation
of fishing area restrictions, the M. moro came to dominate the bottom longline catches
in depths between 600 and 1200 m. This was consistent with the analysis of catch rates
in the present study because métier, vessel size, target effect, depth zone, and area were
significant explanatory factors. Finally, the highest LPUE value in 2017 can represent an
error in nominal data and needs to be further investigated.

The primary objective of standardizing catch rates is to generate a relative abundance
index. This index is thought to be proportional to population size (e.g., [1,4,5,13,14]). As
a result, the abundance index may be utilized as a basis for management measures (e.g.,
definition of total allowable catches—TACs) either directly, by analyzing the population
trend (i.e., rise, decrease, stability) over time, or indirectly, as an input into stock assessment
models (e.g., [1–9]). Therefore, the definition of the best suitable statistical GLM technique
to standardize catch rates made by the present study constitutes a useful outcome for
fisheries research and management. However, it is critical to understand the constraints
that current data can impose on model application and to plan for the future by selecting
what data should be gathered in the future. For example, one of the most important factors
in standardizing catch data from commercial fisheries is where the fish were caught. This
was evident in this study as area was a significant factor in modeling catch rates from
scientific surveys for the three studied species. Therefore, regardless of the method used
to standardize the catch rate, it will not perform well unless the appropriate explanatory
variables are available.

4. Conclusions

The use of the hurdle–lognormal model outperformed other methods in the different
data sources and, therefore, it is recommended as an effective method for standardizing
catch rates when it is not possible to perform a comparison with other error–models.
Further simulation-based analyses are advised to explore, for example, the effect of other
potential sources of bias in the estimation of abundance indices (e.g., fishing area; market
demand expressed as reference price, i.e., price per kg; oceanographic factors, e.g., oceanic
and atmospheric phenomena, etc.) or the use of clustering-based area stratification for
catch and effort data (e.g., [52]). Furthermore, while GLMs are the most commonly used
models in fisheries stock assessment and abundance standardization, there have also been
analyses that demonstrate the efficacy of using generalized additive models (GAMs; [53])
and, therefore, they should be explored in future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/modelling3010001/s1, Figure S1. Diagnostic plot to detect the
adequacy of the assumed variance function in generalized linear models: Pearson residuals plotted
versus fitted values for thornback ray Raja clavata (RJC), blackbelly rosefish Helicolenus dactylopterus
(BRF), and common mora Mora moro (RIB). The null pattern is a no trend in the residuals. The red
line is the loess smoother through the plotted values. A: LPUE (kg landing−1 vessel−1); B: CPUE (kg
days at sea−1 vessel−1); C: RPN (ind. 10−3 hooks). Figure S2. Diagnostic plot to check the assumed
error distribution in generalized linear models: standardized deviance residuals plotted versus the
estimated linear predictor (η̂) for thornback ray Raja clavata (RJC), blackbelly rosefish Helicolenus
dactylopterus (BRF), and common mora Mora moro (RIB). The null pattern is a distribution of residuals

https://www.mdpi.com/article/10.3390/modelling3010001/s1
https://www.mdpi.com/article/10.3390/modelling3010001/s1
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with mean zero and constant variance. The red line is the loess smoother through the plotted values.
A: LPUE (kg landing−1 vessel−1); B: CPUE (kg days at sea−1 vessel−1); C: RPN (ind. 10−3 hooks).
Figure S3. Diagnostic plot to check the link function selection in generalized linear models: depen-
dent variable plotted versus the estimated linear predictor (η̂) for thornback ray Raja clavata (RJC),
blackbelly rosefish Helicolenus dactylopterus (BRF), and common mora Mora moro (RIB). The null
pattern is a straight line. The red line is the loess smoother through the plotted values. A: LPUE
(kg landing−1 vessel−1); B: CPUE (kg days at sea−1 vessel−1); C: RPN (ind. 10−3 hooks). Figure S4.
Diagnostic plots for positive catch rates of thornback ray Raja clavata (RJC), blackbelly rosefish He-
licolenus dactylopterus (BRF), and common mora Mora moro (RIB) to check (I) the adequacy of the
assumed variance function, (II) the assumed error distribution, and (III) the link function selection in
the best selected models. The null pattern is a no trend in the residuals (I), a distribution of residuals
with mean zero and constant variance (II), and a straight line (III). The red line is the loess smoother
through the plotted values. A: LPUE (kg landing−1 vessel−1); B: CPUE (kg days at sea−1 vessel−1);
C: RPN (ind. 10−3 hooks). Figure S5. Diagnostic plots for positive catch rates of thornback ray Raja
clavata (RJC), blackbelly rosefish Helicolenus dactylopterus (BRF), and common mora Mora moro (RIB)
to check (I) the adequacy of the assumed variance function, (II) the assumed error distribution, and
(III) the link function selection in the best selected models. Results are shown for the other error
distributions evaluated. The null pattern is a no trend in the residuals (I), a distribution of residuals
with mean zero and constant variance (II), and a straight line (III). The red line is the loess smoother
through the plotted values. A: LPUE (kg landing−1 vessel−1); B: CPUE (kg days at sea−1 vessel−1);
C: RPN (ind. 10−3 hooks). Table S1. Deviance analysis table of explanatory variables for GLM
formulations for thornback ray Raja clavate (RJC), blackbelly rosefish Helicolenus dactylopterus (BRF),
and common mora Mora moro (RIB) catch rates (LPUE; kg landing−1 vessel−1) from the Azorean
commercial fishery. Significative (P < 0.05) factors and interaction that accounted for 5% or more
of the variability are in bold. Table S2. Deviance analysis table of explanatory variables for GLM
formulations for thornback ray Raja clavate (RJC), blackbelly rosefish Helicolenus dactylopterus (BRF),
and common mora Mora moro (RIB) catch rates (CPUE; kg days at sea−1 vessel−1) from the Azorean
commercial fishery. Significative (P < 0.05) factors and interaction that accounted for 5% or more
of the variability are in bold. Table S3. Deviance analysis table of explanatory variables for GLM
formulations for thornback ray Raja clavate (RJC), blackbelly rosefish Helicolenus dactylopterus (BRF),
and common mora Mora moro (RIB) catch rates (RPN; ind. 10−3 hooks) from the Azorean bottom
longline survey. Significative (P < 0.05) factors and interaction that accounted for 5% or more of the
variability are in bold. Table S4. Analyses of alternative hurdle–lognormal GLMM formulations for
thornback ray Raja clavata (RJC), blackbelly rosefish Helicolenus dactylopterus (BRF), and common
mora Mora moro (RIB) catch rates (LPUE, CPUE and RPN). Likelihood ratio tests the difference of –2
Restricted Maximum log likelihood (–2 REML) between two nested models. AIC: Akaike’s informa-
tion criterion; BIC: Bayesian information criterion; LRT: Likelihood ratio test. Table S5. Nominal and
standardized LPUE (kg landing−1 vessel−1), CPUE (kg days at sea−1 vessel−1) and RPN (ind. 10−3

hooks) estimates for thornback ray Raja clavata (RJC), blackbelly rosefish Helicolenus dactylopterus
(BRF), and common mora Mora moro (RIB) in the Azorean region. LCI and UCI indicate estimated
95% confidence limits. Standardization process was based on the best error distribution. The values
are scaled to mean. Table S6. Analyses of alternative GLMM formulations (A: gamma, B: lognormal,
C: tweedie, and D: hurdle–gamma) for thornback ray Raja clavata (RJC), blackbelly rosefish Helicolenus
dactylopterus (BRF), and common mora Mora moro (RIB). Likelihood ratio tests the difference of –2
REM log likelihood between two nested models. Results are shown for the other error distributions
evaluated. AIC: Akaike’s information criterion; BIC: Bayesian information criterion; LRT: Likelihood
ratio test. Table S7. Nominal and standardized LPUE (kg landing−1 vessel−1), CPUE (kg days at
sea−1 vessel−1), and RPN (ind. 10−3 hooks) estimates for thornback ray Raja clavata (RJC), blackbelly
rosefish Helicolenus dactylopterus (BRF) and common mora Mora moro (RIB) in the Azorean region.
Results are shown for the others error distributions evaluated (A: gamma, B: lognormal, C: tweedie,
and D: hurdle–gamma). The values are scaled to mean.

Author Contributions: R.S. wrote the manuscript with support from O.C., A.N.-P., W.M.-L. and M.P.,
R.S. and O.C. designed and performed the analysis and interpretation of data. A.N.-P., W.M.-L. and
M.P. helped conceive the manuscript. R.S. conceived the original idea and supervised the project. All
authors have read and agreed to the published version of the manuscript.



Modelling 2022, 3 12

Funding: This work is part of the PESCAz project (ref. MAR-01.03.02-FEAMP-0039) financed by the
European Maritime and Fisheries Fund (EMFF) through the Regional Government of the Azores
under the MAR2020 operational program. Surveys were funded by the Regional Government of
the Azores under the DEMERSAIS project. A.N.-P. was funded by an FCT Ph.D. fellowship (ref.
SFRH/BD/124720/2016).

Institutional Review Board Statement: No ethical approval was required from the Portuguese
official veterinary department, and this study was performed in accordance with relevant institutional
and national guidelines and regulations.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data underlying this article will be shared upon reasonable request
to the corresponding author.

Acknowledgments: The authors thank all who participated in field surveys and sample processing
onboard the R/V “Arquipélago”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hilborn, R.; Walters, C.J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2013; ISBN 9781461535980.
2. ICES Guide to ICES advisory framework and principles. Rep. ICES Advis. Comm. 2020, 1–8. [CrossRef]
3. Cadrin, S.X.; Dickey-Collas, M. Stock assessment methods for sustainable fisheries. ICES J. Mar. Sci. 2015, 72, 1–6. [CrossRef]
4. Cadima, E.L. Fish Stock Assessment Manual; FAO Fisher; FAO: Rome, Italy, 2003; ISBN 9251045054.
5. Sparre, P.; Venema, S.C. Introduction to Tropical Fish Stock Assessment. Part 1 Manual. Part 2 Exercises; FAO: Rome, Italy, 1998; pp.

1–423.
6. Gulland, J.A. Fish population analysis. In Manual of Methods for Fish Stock Assessment; FAO: Rome, Italy, 1969; Volume 4.
7. Quinn, T.J., II; Hoag, S.H.; Southward, G.M. Comparison of two methods of combining catch-per-unit-effort data from geographic

regions. Can. J. Fish. Aquat. Sci. 1982, 39, 837–846. [CrossRef]
8. Maunder, M.N.; Punt, A.E. Standardizing catch and effort data: A review of recent approaches. Fish. Res. 2004, 70, 141–159.

[CrossRef]
9. Campbell, R.A. CPUE standardisation and the construction of indices of stock abundance in a spatially varying fishery using

general linear models. Fish. Res. 2004, 70, 209–227. [CrossRef]
10. Pinho, M.; Medeiros-Leal, W.; Sigler, M.; Santos, R.; Novoa-Pabon, A.; Menezes, G.; Silva, H. Azorean demersal longline survey

abundance estimates: Procedures and variability. Reg. Stud. Mar. Sci. 2020, 39, 101443. [CrossRef]
11. Garrod, D.J. Effective fishing effort and the catchability coefficient q. Rapport et process verbaux des réunions du Conseil International

pour l’Exploration de la Mer 1964, 155, 66–70.
12. Bishop, J. Standardizing fishery-dependent catch and effort data in complex fisheries with technology change. Rev. Fish Biol. Fish.

2006, 16, 21–38. [CrossRef]
13. Ye, Y.; Dennis, D. How reliable are the abundance indices derived from commercial catch—Effort standardization? Can. J. Fish.

Aquat. Sci. 2009, 66, 1169–1178. [CrossRef]
14. Maunder, M.N. A general framework for integrating the standardization of catch per unit of effort into stock assessment models.

Can. J. Fish. Aquat. Sci. 2001, 58, 795–803. [CrossRef]
15. Nelder, J.A.; Wedderburn, R.W.M. Generalized linear models. J. R. Stat. Soc. Ser. A 1972, 135, 370–384. [CrossRef]
16. McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman and Hall: London, UK, 1989.
17. Jorgensen, B. The Theory of Dispersion Models; CRC Press: Boca Rato, FL, USA, 1997.
18. Jorgensen, B. Exponential Dispersion Models. J. R. Stat. Soc. Ser. B 1987, 49, 127–162. [CrossRef]
19. Lo, N.C.; Jacobson, L.D.; Squire, J.L. Indices of Relative Abundance from Fish Spotter Data based on Delta-Lognornial Models.

Can. J. Fish. Aquat. Sci. 1992, 49, 2515–2526. [CrossRef]
20. Stefánsson, G. Analysis of groundfish survey abundance data: Combining the GLM and delta approaches. ICES J. Mar. Sci. 1996,

53, 577–588. [CrossRef]
21. Ortiz, M.; Arocha, F. Alternative error distribution models for standardization of catch rates of non-target species from a pelagic

longline fishery: Billfish species in the Venezuelan tuna longline fishery. Fish. Res. 2004, 70, 275–297. [CrossRef]
22. Shono, H. Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fish. Res. 2008, 93, 154–162. [CrossRef]
23. Carvalho, F.C.; Murie, D.J.; Hazin, H.G.; Leite-Mourato, B.; Travassos, P.; Burgess, G.H. Catch rates and size composition of blue

sharks (Prionace glauca) caught by the Brazilian pelagic longline fleet in the southwestern Atlantic Ocean. Aquat. Living Resour.
2010, 23, 373–385. [CrossRef]

24. Pons, M.; Domingo, A.; Sales, G.; Fiedler, F.N.; Miller, P.; Giffoni, B.; Ortiz, M. Standardization of CPUE of loggerhead sea turtle
(Caretta caretta) caught by pelagic longliners in the Southwestern Atlantic Ocean. Aquat. Living Resour. 2010, 23, 65–75. [CrossRef]

http://doi.org/10.17895/ices.advice.7648
http://doi.org/10.1093/icesjms/fsu228
http://doi.org/10.1139/f82-114
http://doi.org/10.1016/j.fishres.2004.08.002
http://doi.org/10.1016/j.fishres.2004.08.026
http://doi.org/10.1016/j.rsma.2020.101443
http://doi.org/10.1007/s11160-006-0004-9
http://doi.org/10.1139/F09-070
http://doi.org/10.1139/f01-029
http://doi.org/10.2307/2344614
http://doi.org/10.1111/j.2517-6161.1987.tb01685.x
http://doi.org/10.1139/f92-278
http://doi.org/10.1006/jmsc.1996.0079
http://doi.org/10.1016/j.fishres.2004.08.028
http://doi.org/10.1016/j.fishres.2008.03.006
http://doi.org/10.1051/alr/2011005
http://doi.org/10.1051/alr/2010001


Modelling 2022, 3 13

25. Thorson, J.T.; Cunningham, C.J.; Jorgensen, E.; Havron, A.; Hulson, P.J.F.; Monnahan, C.C.; von Szalay, P. The surprising sensitivity
of index scale to delta-model assumptions: Recommendations for model-based index standardization. Fish. Res. 2021, 233, 105745.
[CrossRef]

26. Simpfendorfer, C.A.; Hueter, R.E.; Bergman, U.; Connett, S.M.H. Results of a fishery-independent survey for pelagic sharks in the
western North Atlantic, 1977–1994. Fish. Res. 2002, 55, 175–192. [CrossRef]

27. EU Council Regulation (EC) No 199/2008 of 25 February 2008 concerning the establishment of a Community framework for the
collection, management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries
Policy. Off. J. Eur. Union L 2008, 60, 1–12.

28. Menezes, G.M.; Sigler, M.F.; Silva, H.M.; Pinho, M.R. Structure and zonation of demersal fish assemblages off the Azores
Archipelago (mid-Atlantic). Mar. Ecol. Prog. Ser. 2006, 324, 241–260. [CrossRef]

29. Santos, R.V.S.; Silva, W.M.M.L.; Novoa-Pabon, A.M.; Silva, H.M.; Pinho, M.R. Long-term changes in the diversity, abundance and
size composition of deep sea demersal teleosts from the Azores assessed through surveys and commercial landings. Aquat. Living
Resour. 2019, 32, 25. [CrossRef]

30. Santos, R.; Novoa-Pabon, A.; Silva, H.; Pinho, M. Elasmobranch species richness, fisheries, abundance and size composition in
the Azores archipelago (NE Atlantic). Mar. Biol. Res. 2020, 16, 103–116. [CrossRef]

31. Santos, R.; Pabon, A.; Silva, W.; Silva, H.; Pinho, M. Population structure and movement patterns of blackbelly rosefish in the NE
Atlantic Ocean (Azores archipelago). Fish. Oceanogr. 2020, 29, 227–237. [CrossRef]

32. Santos, R.; Medeiros-Leal, W.; Pinho, M. Stock assessment prioritization in the Azores: Procedures, current challenges and
recommendations. Arquipelago Life Mar. Sci. 2020, 37, 45–64.

33. Santos, R.; Medeiros-Leal, W.; Pinho, M. Synopsis of biological, ecological and fisheries-related information on priority marine
species in the Azores region. Arquipelag. Life Mar. Sci. 2020, 1, 1–138.

34. Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer Science
& Business Media: New York, NY, USA, 2009; ISBN 978-0-387-98957-0.

35. Zuur, A.F.; Ieno, E.N. Beginner′s Guide to Zero-Inflated Models with R; Highland Statistics Ltd.: Newburgh, UK, 2016; ISBN
978-0-9571741-8-4.

36. Ortiz, M.; Legault, C.M.; Ehrhardt, N.M. An alternative method for estimating bycatch from the U.S. shrimp trawl fi shery in the
Gulf of Mexico, 1972–1995. Fish. Bull. 2000, 98, 583–599.

37. Cooke, J.G. A procedure for using catch-effort indices in bluefin tuna assessments. Collect. Vol. Sci. Pap. ICCAT 1997, 46, 228–232.
38. Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000; ISBN 978-0-387-98957-0.
39. Walter, J.; Ortiz, M. Derivation of the delta-lognormal variance estimator and recommendation for approximating variances for

two-stage cpue standardization models. Collect. Vol. Sci. Pap. ICCAT 2012, 68, 365–369.
40. Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice-Hall/Pearson: Teaneck, NJ, USA, 2010.
41. McDonald, J.H. Handbook of Biological Statistics—Paired t-test. Sparky House Publ. 2014, 180–185.
42. R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2020.
43. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002.
44. Sarkar, D. Lattice: Multivariate Data Visualization with R; Springer: New York, NY, USA, 2008.
45. Lenth, R. V Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [CrossRef]
46. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48.

[CrossRef]
47. Dunn, P.K. Tweedie: Evaluation of Tweedie Exponential Family Models, R package version 2.3; 2017.
48. Pennington, M. Estimating the mean and variance from highly skewed marine data. Fish. Bull. 1996, 94, 498–505.
49. Santos, R.; Medeiros-Leal, W.; Novoa-Pabon, A.; Crespo, O.; Pinho, M. Biological Knowledge of Thornback Ray (Raja clavata)

from the Azores: Improving Scientific Information for the Effectiveness of Species-Specific Management Measures. Biology 2021,
10, 676. [CrossRef]

50. Santos, R.; Medeiros-Leal, W.; Crespo, O.; Novoa-Pabon, A.; Pinho, M. Contributions to Management Strategies in the NE Atlantic
Regarding the Life History and Population Structure of a Key Deep-Sea Fish (Mora moro). Biology 2021, 10, 522. [CrossRef]

51. Santos, R.; Medeiros-Leal, W.; Novoa-Pabon, A.; Silva, H.; Pinho, M. Demersal fish assemblages on seamounts exploited by
fishing in the Azores (NE Atlantic). J. Appl. Ichthyol. 2021, 37, 198–215. [CrossRef]

52. Ono, K.; Punt, A.E.; Hilborn, R. Think outside the grids: An objective approach to define spatial strata for catch and effort analysis.
Fish. Res. 2015, 170, 89–101. [CrossRef]

53. Potts, S.E.; Rose, K.A. Evaluation of GLM and GAM for estimating population indices from fishery independent surveys. Fish.
Res. 2018, 208, 167–178. [CrossRef]

http://doi.org/10.1016/j.fishres.2020.105745
http://doi.org/10.1016/S0165-7836(01)00288-0
http://doi.org/10.3354/meps324241
http://doi.org/10.1051/alr/2019022
http://doi.org/10.1080/17451000.2020.1718713
http://doi.org/10.1111/fog.12466
http://doi.org/10.18637/jss.v069.i01
http://doi.org/10.18637/jss.v067.i01
http://doi.org/10.3390/biology10070676
http://doi.org/10.3390/biology10060522
http://doi.org/10.1111/jai.14165
http://doi.org/10.1016/j.fishres.2015.05.021
http://doi.org/10.1016/j.fishres.2018.07.016

	Introduction 
	Material and Methods 
	Datasets 
	Statistical Models 
	Error–Model Selection (Methodology) 
	Standardization Procedure 
	Catch Trend Comparison between Datasets 

	Results and Discussion 
	Nominal Catch Data 
	Error–Model Selection (Application) 
	Standardization Procedure 
	Consequences of Choosing a Wrong Error–Model 
	Catch Trend Comparison between Datasets 
	Final Considerations 

	Conclusions 
	References

