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Abstract: With the advancement of China’s wind power industry, research into full-scale structural
testing of wind turbine blades, including static testing and fatigue testing, has shown increasing
significance. Static testing measures the deflection at fixed points, using pull-wire sensors in industrial
practice. However, the demerits of this method involve single dimension, excessive deviation, costly
experiment, and complex installment. Given the advantages that lidar provides, correspondingly,
high data density, precision, and convenience, we proposed a simple and efficient spatial large
deflection measurement system for wind turbine blades with multi lidars. For point clouds collected
from lidar scanners, registration based on point primitives and geometric primitives, dynamic
radius DBSCAN clustering, spatial line clustering, and line integrals are applied to calculate the
3D coordinates of measured points on the blade. Experimentally validated, the proposed method
demonstrates its effectiveness in serving as a viable alternative to the traditional pull-wire sensor
measurement approach. In the minimum oscillation direction test, the measurement error is controlled
within 3% compared to the theoretical value. Simultaneously, in the maximum swing direction test, the
3D coordinates of the measured point remain consistent with the changing trend observed under small
deformation. These results confirm the feasibility of the system and its potentials to be generalized.

Keywords: wind turbine blades; three-dimensional deflection measurement; LiDAR distance measurement
technology; point cloud registration; DBSCAN clustering; spatial line clustering

1. Introduction

In the context of rapid growth in global energy demand, an increasing priority is
given to issues such as environmental pollution, energy supply and demand, and energy
structure [1], which affect not only the efficient use of energy but also its sustainable
development. With the international community’s net zero emissions protocol, China has
proposed the Double Carbon goal to peak carbon emissions and reach carbon neutrality [2].
Wind energy, as a natural resource, is currently one of the most promising and non-polluting
renewable energy sources [3]. The core of wind power generation is the wind turbine,
consisting of blades, towers, transmission structures, and power generation systems [4].
The blades play a crucial role, in that the power generated by wind energy is directly
proportional to the contact area of the blades; in other words, longer blades result in
greater capture of input power. To better adapt to modern energy demands, blades are
required to develop towards larger and lighter structures, having progressed from 30 m
in the mid-1990s to over 100 m at present [5]. However, as the blades lengthen, their
structural properties change, leading to a decrease in bending stiffness [6] and a heightened
susceptibility to deformations [7]. Furthermore, wind farms are primarily located in
regions abundant with wind resources, the downside of which could be extremely harsh
environmental conditions. This means that these turbines must afford powerful wind
loads, ultraviolet erosion, and corrosion from rain and snow throughout the year, prone to
abrasion, iced-over surface, cracks, and fractures [8]. They thus contribute to diminished
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power efficiency, elevated maintenance costs, and, in severe cases, pose potential safety
risks [9]. Hence, to ensure that the design and production of blades meet the expected
strength and lifespan [10], it is crucial to conduct full-scale structural testing on large wind
turbine blades, including static and fatigue testing. Static testing, namely, a method that
validates blade design and safety under static loads [11], employs deflection as a main
source of assessment.

Present day research divides methods for the full-scale static testing of wind turbine
blades into two types. The first one is contact-based, such as measuring tapes [12], pull-wire
sensors, and strain sensors [13]. In 2014, Wang Chao et al. [12] determined the deflection of
the blade with tapes fixed to the measurement points. However, both the tape and pull-wire
sensor measure a single dimension of deflection, resulting in significant errors during severe
blade deformations. In 2017, Kyunghyun Lee [13] introduced a strain-based displacement
estimation method and an objective function for optimal sensor placement. Across diverse
testing scenarios, the outcomes of estimation matched the measured values. Moreover, the
strain method is able to estimate loading conditions and identify abnormalities like cracks
through signal processing, though it is typically suited for microscopic deformations at
critical points of the blade; in other words, it has a restricted range of measurement. As the
number of measurement points increases, the layout of the sensors becomes highly complex,
not to mention that all contact sensor measurements are prone to failure under cyclic
loading. The second type is non-contact, such as multi-group vision [14], Ultra-Wideband
wireless ranging (UWB) [15], total stations [6], etc. In 2012, Jinshui Yang [14] introduced
visual measurement, which involves attaching grid points to the blade, using multiple
cameras to capture images of these points from various angles, and triangulating their three-
dimensional coordinates. However, this method relies heavily on the quality of the original
image and its processing, meaning that lighting and texture greatly influence the results.
In 2021, Xiao Liang [15] constructed the UWB measurement system that communicates
with three base stations by transmitting tag signals, then applied the spherical intersection
method to compute the three-dimensional coordinates of the tag points on the blade. Total
station measurement ensures high accuracy, yet it is labor-intensive, inefficient, and cannot
measure at high frequencies. Defects in the above-mentioned methods have blocked their
ways towards practical applications.

In the present day, lidar is probably the synonym for high data density, precision,
and measurement frequency. Being both flexible and lightweight, it is not constrained
by steep angles or shadows. Its outstanding performance stretches to the fields of un-
manned driving [16] and forest monitoring [17], and it has applications in modeling and
mapping, such as bridge deformation monitoring [18–20], tunnel safety monitoring [21],
and wind turbine monitoring [22–24]. High-resolution lidar is often chosen for monitor-
ing bridge deformation [18–20], that is, the three-dimensional laser scanner is capable of
acquiring point cloud data of high-density objects, though the cost of it is high. In 2017,
Ivan Nikolov et al. [22] employed RPLIDAR and a 9-DOF Inertial Measurement Unit
(IMU) for positioning and mapping. They geometrically simplified the two-dimensional
cross-section of the wind turbine blade into an elliptical model for distance and shape
correction. Limitations of this research include focusing solely on static blades, lacking
analysis of dynamic scenes. Also, the research collected position information via lidar
but had yet to take into consideration the overall shape information of the blade. In 2020,
Luo Wei et al. [23] designed a cost-effective version of lidar to test on a blade 75 cm long.
They acquired depth images of the blade model under various bending deformations and
calculated the deflection deformation. However, they only built a small test bench and
lacked research on modifications according to the actual test scene.

We proposed an effective and simple cost-effective multi-lidar deflection measurement
method based on the actual blade in full-scale measurement scenarios. It involves using
lidar [25,26] as the main equipment, incorporating novel point cloud data processing
techniques such as point cloud registration on a point and geometric primitive basis, spatial
clustering with dynamic radius, and spatial line clustering. Experimentally validated, the
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proposed method is easy to use without physical contact and demonstrates its effectiveness
in serving as a viable alternative to the traditional pull-wire sensor measurement approach.
In the minimum oscillation direction test, the measurement error is controlled within
3% compared to the theoretical value. Simultaneously, in the maximum swing direction
test, the 3D coordinates of the measured point remain consistent with the variation trend
observed under small deformation. These results confirm the feasibility of the system and
its potential to be generalized.

2. Point Cloud Data Processing

The entire process is divided into four steps: experimental setup, process of exper-
imentation, data post-processing, and analysis and summary, respectively, as shown in
Figure 1.
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tion. 

Figure 1. Flow chart.

The test scene is an open outdoor area and the total length of the blade is 110 m.
Two sets of tests are included: the minimum oscillation direction test and the maximum
swing direction test, as shown in Figure 2a,b and Figure 3a,b. The world coordinate system
identifies the test bench as its original point and conforms to the right-hand rule: the x-axis
represents the horizontal direction, the y-axis represents the direction perpendicular to the
ground, and the z-axis represents the direction of the blade axis, as shown in Figure 4.
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Theoretically, the pull-wire sensor could be installed at any position on the blade, but
in static tests, we paid more attention to the areas where variations in blade deflections
are relatively larger. Therefore, we chose three target points: 84 m, 100 m, and 110 m
away from the blade root. Similarly, four lidars are arranged at a certain distance on the
ground, starting from the blade tip. We placed the lidars vertically at 90◦ to obtain denser
point cloud data from the blade. The scanning line on the blade is shown in the framed
area in Figure 4. Upon completion of data acquisition, the point clouds undergo various
techniques of post-processing; thus, the 3D coordinates of the three target measured points
are calculated. In the end, the measurement data from the lidar and pull-wire sensor are
respectively compared with theoretical simulation values.

2.1. Multi-Lidar Point Cloud Registration

The lidar-based deflection measurement system contains multiple lidar devices. Each
lidar’s point cloud data is built on its own internal coordinate system. Point cloud regis-
tration, necessary for establishing correlations among data from multiple lidars, is about
discovering the rigid transformation matrix across multiple lidar coordinate systems. The in-
put is two frames of point cloud data from different spatial locations at the same time,
marked as source point cloud Xs = {x s

i
}

and target point cloud Xt = {x t
i

}
, respectively.

A rotation matrix R and a translation vector T are obtained from point cloud registration;
thus, coordinates of the source point cloud and the target point cloud are combined and
corresponded, as shown in Formula (1):

xs′
i = R × xs

i + T (1)

Point cloud registration can be divided into three major categories: point primitive,
geometric primitive, and voxel primitive. Due to the specificity of blade deflection measure-
ment scenarios and the relatively small number of lidar hardware channels, we proposed a
registration method of hybrid primitives, which combines geometric primitives and point
primitives to achieve the purpose of registration.

The host computer collects data, and the point cloud image of the test scene in Figure 2a
is shown in Figure 5.
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We used point primitives to calculate the translation vector and geometric primitives
to calculate the rotation matrix. Point primitives set up pairs of points between the source
point clouds and target point clouds to complete the transformation. As for achieving
translational registration, we referred to the average distance between the vertices of each
support frame, measured multiple times under experiment scene settings.

Straight lines or planes with stronger semantics serve as the basis for the registration
method based on geometric primitives, such as the ground and walls in the blade test scene.
Geometric primitives exhibit better robustness under special test scenarios of blades.

As shown in Figure 5, the ground point cloud is not parallel to any coordinate plane
and has a significant slope. Applying the x-, y-, and z-axes for direct segmentation may
easily mix in point cloud data from other objects. Therefore, the distance between the point
cloud and the center point of the lidar was determined as a yardstick for segmentation.
The effect is shown in Figure 6 below:
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After the segmentation, it is necessary to detect the point cloud in the feature plane and
then complete extraction. The collection of ground point cloud data is
{p1(x1, y1, z1), p2(x2, y2, z2), . . . , pn(xn, yn, zn)}. The fitted Equation (2) for ground S is
as follows, with coefficients a, b, and c constituting the normal vector of the plane:

ax + by + cz + d = 0,
→
n = [a b c]T (2)

The point set centers P0 of n point clouds can be obtained from Formula (3).
Assume that plane S passes through P0. Then, the vector formed by P0 and other points is
orthogonal to the normal vector of plane S, as shown in Equation (4):

P0 = (x0, y0, z0) =

(
1
n

n
∑

i=1
xi, 1

n

n
∑

i=1
yi, 1

n

n
∑

i=1
zi

)
(3)

A·→n = 0, ∀i ∈ {1, 2, . . . n}, A =
→

P0Pi (4)

We used the singular value decomposition (svd) method to solve statically determinate
equations; in other words, to decompose matrix A into three matrices, where both U and V
are unitary matrices, and Σ is an m × n matrix with all elements outside the main diagonal
being zero. Thus, the optimal solution of the plane normal vector

→
n could be achieved, as

shown in Formulas (5) and (6). The fitting plane S is shown in Figure 7:

A = UΣVT , V = [v1, v2, v3] (5)

→
n = v3 (6)
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We unified the ground point cloud parallel to the yoz plane. Formulas (7) and (8) show
that the rotation matrix can be constructed using normal vector

→
n and axis vector

→
x :

[→
v
]
×
=

 0 −v3 v2
v3 0 −v1
−v2 v1 0

,
[→

v
]
×
=

[→
n ×→

x
]
×

(7)

R = I +
[→

v
]
×
+

[→
v
]2

×
1−→

n ·→x∥∥∥→v ∥∥∥ (8)

We spliced the point cloud data of four lidars, which were translated and rotated
together, as shown in Figure 8.
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reduced with satisfying efficiency. The results are shown in Figure 9. 
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2.2. Spatial Clustering Algorithms for Dynamic Radius

After completing multi-radar registration, we located the blade’s range of motion
based on the magnitude of applied force. Subsequently, we applied direct-pass filtering [27]
to the point cloud data that did not meet the requirements in the specified dimension
direction. Background point clouds were removed and the level of data processing was
reduced with satisfying efficiency. The results are shown in Figure 9.
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Figure 9. Multi-lidar pass-through filter point cloud map. (a): Minimum oscillation direction,
(b): maximum swing direction.

The point cloud processed by the aforementioned method is formed into a new sample
space, M1. The M1 point cloud data basically cover the edge appearance of the blade,
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but due to static loading cables and the occlusion of blade clamps, discrete point clouds
remain, as shown in Figure 10. We can aggregate the point clouds that exhibit a certain
pattern on the blade surface into a distinct category for subsequent processing. To process
point cloud data, clustering algorithms such as k-means and DBSCAN are commonly used
methods [28,29]. K-means is a distance-based algorithm that assigns a certain level of
significance to all points, while DBSCAN is a density-based spatial clustering algorithm,
where points in less denser regions are assigned lower weights (importance or influence)
due to lower density in the perimeter. In the case of blades, we aimed for the discrete data
of these specific points to have minor impact on the whole figure. Therefore, the DBSCAN
algorithm proves more suitable for filtering out “the outliers”.
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Figure 10. Schematic diagram of DBSCAN algorithm. (a) Explanation of DBSCAN principle using
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The DBSCAN algorithm divides regions with sufficiently high density into clusters of
arbitrary shapes. Without knowing the number of clusters in advance, we can still identify the
noise points sensitively. The algorithm mainly consists of two parameters, the neighborhood
radius Eps and the minimum number of points Minpts, both of which help classify spatial
points into core points, boundary points, and outlier points. For further explanation, let
us select a random line of lidar data at a certain moment: we set Minpts to 4, and used
Formula (9) to calculate the Euclidean distance Dist(pi, pj) between each point pi

(
xpi , ypi , zpi

)
and other points pj

(
xpj , ypj , zpj

)
in the area. When the number of points inside that point’s

corresponding radius Eps is greater than Minpts (the minimum number of points), this specific
point is defined as a core point. Two core points with distances smaller than the neighborhood
radius are density-connected. All density-connected core points and points within their
neighborhood form a cluster. The results are shown in Figure 10.

Dist
(

pi, pj
)
=

√(
xpi − xpj

)2
+

(
ypi − ypj

)2
+

(
zpi − zpj

)2
(9)

In the traditional DBSCAN clustering algorithm, the output strongly depends on
the parameter thresholds. When the threshold is too strictly selected, the same blade
surface may easily be classified into multiple categories. Otherwise, discrete points may be
regarded as part of the blade surface. Therefore, we proposed to update the neighborhood
radius threshold dynamically based on the distance between the lidar and the blade surface.

At each moment, we calculated the mean of the point cloud M1 of the blade and
recorded its distance to the lidar as d. We defined the maximum value during the en-
tire static loading process as dmax, the minimum value as dmin, and used them to di-
vide d into k intervals ( dmin, dmin + (d max − dmin)/k,dmin + 2((d max − dmin)/k),...,dmax).
Each interval corresponds to a distinct value of Eps (Eps1, Eps2,...,Epsn). Minpts is set to a
fixed value. The value of Eps is determined by the lidar resolution α, the right boundary of



Optics 2024, 5 158

its corresponding interval, the minimum number of points Minpts, the constant β, and the
coefficient µ, where µ is greater than 1, as shown in Formula (10):

Epsi = µ× tan(α)× Minpts × d + β (10)

The filtering results are shown in Figure 11.
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2.3. Spatial Line Clustering Algorithm

The extreme value of each lidar line is extracted to form a new sample space M2,
as shown in Figure 12. In order to redress the errors generated during registration and
recompense possible hardware problems related to the lidar, such as packet loss based
on the UDP transmission protocol, which results in incomplete profile data of the blade
surface, we suggested the spatial line clustering algorithm.
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The main idea of this algorithm is integration after classification. By taking a contour
line in Figure 10a and applying the DBSCAN clustering algorithm to divide it into k
clusters, as shown in Figure 13, the noise points are removed directly. The coordinates
of the cluster’s center point are used to represent its location. The point cloud set of any
cluster is Q = {ai|i = 1, ..., m}, where the coordinates of ai are (ai,x, ai,y, ai,z). Then, for the
center point coordinates Pk(p k,x,pk,y, pk,z) of Q, the calculation Formula (11) is as follows:

pk,u = 1
m

m
∑

i=1
ai,u(u = x, y, z) (11)
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In sequence, we performed curve fitting on the various clusters and defined Lj as the
fitting line of each cluster. Formulas (12) and (13) then calculate the distance DisP2L

(
Pk, Lj

)
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from the center point Pk of other clusters to the curve and use it as an element of the
adjacency matrix [30] Collections that are closer together are then recorded.

Dkj =

{
DisP2L

(
pk, Lj

)
, k ̸= j||

0, k = j
(12)

nj =
{

Pk
∣∣k = 1, 2, . . . , m&DisP2L

(
Pk, Lj

)
< D

}
(13)

We found the combination with the most elements in nj, max(|ni|, i = 1, . . . , m), and
recorded it as nk. We retained the elements in nk and deleted the remaining abnormal
clusters that are not in the line clustering results, as shown in Figure 14.
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2.4. Space Line Integral

By observing the shape of the blade outline in Figure 3b, when static loading is performed
in the oscillation direction, the yoz plane contour of the world coordinate system can be fitted
to a linear Equation (14), and the xoz plane can be fitted to a quadratic Equation (14), as shown
in Figures 15 and 16: 

x = x
(
t2, t

)
y = y(t)

z = t
(14)
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Figure 16. Maximum swing direction. (a): Exhibition plane, (b): xoz plane.

Generally, fitted space curves are less likely to be intersected. To “construct” this point
of intersection, we selected a plane as a replacement, formed by the two axes with the
largest deformation, onto which the intersection point is projected. This provides us with
two of the coordinates. The remaining coordinates are determined by the mean of the
projected point upon the two fitted lines. During the process of static loading, the loading
force is perpendicular to the blade axis, while deformation along that axis direction can
be ignored, as shown in the dotted area in Figure 17. Therefore, the line integral value
along the contour of the exhibition plane between the blade tip and the measured can be
regarded as fixed.
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In the curve integrals of the first type, when the integrated function equals 1, the
physical quantity it represents is the curve’s length, as shown in Formula (15). Under initial
stress-free conditions, we calculated and recorded the line integral of the blade’s contour
from the measured point to the blade tip. 3D coordinates of the measured point are then
calculated by combining the position of the blade tip at each moment, utilizing the fixed
value of the line integral in this situation:

L =
∫
τ

1ds =
β∫
α

√
[x ′(t)]

2
+ [y ′(t)]

2
+ [z ′(t)]

2
dt (15)

3. Measurement and Analysis
3.1. Measurement System Composition

A lidar-based spatial large deflection measurement system is easy to install and
has high accuracy. The hardware system comprises several key components, including:
(1) multiple lidars, (2) lidar mounting bracket, (3) power supply module, (4) POE converter,
(5) switch, (6) host computer, and several network cables, as shown in Figure 18.
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Figure 18. Wind turbine blade lidar large deflection measurement system.

3.2. Analysis of Measurement Results

Through the above steps, we obtained the 3D coordinates of the measured points
at each time. Taking the blade tip as an example, the results are shown in Figure 19.
The abscissa corresponds to time, while the ordinate illustrates the variations along the x-,
y-, and z-axes of the blade in the world coordinate system.
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Minimum oscillation direction test:
Table 1 displays the 3D coordinate changes of three measured points at the initial and

100% loading moments in the minimum oscillation direction experiment.

Table 1. Changes in 3D coordinates of different sections in the minimum oscillation direction.

z (m) x-Axis Variation (m) y-Axis Variation (m) Total Variation of 3D Coordinates (m)

84 3.28 0.52 3.318
100 4.989 0.72 5.04

Leaf-tip 110 6.07 0.71 6.112

Using the theoretical value T as a reference, we calculated the error of the measured
value M obtained from the pull-wire sensor and the lidar at 84 m, 100 m, and 110 m of the
blade, respectively, as shown in Table 2. Formula (16) shows the error calculation method:

Error = M−T
T × 100% (16)

Table 2. Comparison of cross-section errors of different methods in the minimum oscillation direction.

z (m) Deformation—Wire
Sensor (mm)

Deformation—
Theoretical Calculation

(mm)

Deformation—
Lidar (mm)

Error—Wire Sensor and
Theoretical

Value

Error—Lidar and
Theoretical Value

84 3094 3273 3318 −5.47% 1.37%
100 4731 4921 5040 −3.86% 2.42%

Blade tip 110 5561 6002 6112 −7.35% 1.83%

Results’ analysis: The test results in the minimum oscillation direction are shown in
Figure 20. The trends of the pull-wire sensor measurement values, theoretical calculation
values, and lidar measurement values are consistent. Compared to the theoretical value,
the measurement errors of the pull-wire sensor are −5.47%, −3.86%, −7.35%, and the
lidar measurement errors are 1.37%, 2.42%, and 1.83% respectively. Clearly, the lidar
measurement errors are all within 3%, outperforming the pull-wire sensor.

Maximum swing direction test:
In the maximum swing direction test, the lidar was placed in the loading stroke.

When the blade moved directly above the lidar, the scanned point cloud formed the xoz
plane. We removed this part from the calculation results. Since the static loading motion of
the blade is consistent, we adopted interpolation fitting to supplement it. Results at the
blade tip are shown in Figure 21. The abscissa corresponds to time, while the ordinate
illustrates the variations along the x-, y-, and z-axes of the blade in the world coordinate
system. Table 3 shows the 3D coordinate changes of three measured points at the initial
and 100% loading moments in the maximum swing direction experiment.
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Figure 21. 3D coordinates of the blade at 110 m in the maximum swing direction. (a): x-axis,
(b): y-axis, (c): z-axis.

Table 3. Changes in 3D coordinates of different cross-sections in the maximum swing direction.

z (m) x-Axis Variation (m) y-Axis Variation (m) z-Axis Variation (m) Total Variation of 3D
Coordinates (m)

84 17.77 1.39 2.70 18.03
100 28.96 1.88 6.49 29.74

Leaf-tip 110 35.29 2.21 8.32 36.32

In the maximum swing direction test, the 3D coordinate changes of the measured
points in Figure 21 have a similar trend with the results of the minimum oscillation direction
test in Figure 19. This proves that the lidar measurement system is effective and can be
extended to other testing processes.

4. Conclusions and Outlook

In light of the challenges posed by the commonly used pull-wire sensor measure-
ment method in blade testing, including single dimensionality, significant errors, and
high installation complexity, we proposed a simple, cost-effective spatial large deflection
measurement system for wind turbine blades with multiple lidars. It can obtain the 3D
information of any fixed point at any time and in any position without physical contact.
Experimentally validated, in the minimum oscillation direction test, the measurement error
is controlled within 3% compared to the theoretical value. Simultaneously, in the maximum
swing direction test, the 3D coordinates of the measured point remain consistent with the
changing trend observed under small deformation. These results confirm the feasibility of
the system and its potential to be generalized.

The proposed system can be easily applied to the deformation measurement of other
large structures (such as bridges, aircraft wings, etc.) and also used for amplitude mea-
surements in fatigue testing of wind turbine blades. The system has wide practical value.
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However, the system still has room for improvement. On the one hand, we are studying the
integration of the system to enhance its real-time capability. On the other hand, in response
to the limitations of the multi-lidar point cloud registration method and the imperfect ex-
perimental settings, we are conducting in-depth research and making improvements. These
efforts aim to further enhance measurement precision and enable the 3D reconstruction of
blades using the lidar measurement system.

Author Contributions: Methodology, Y.H. and Y.Z.; Software, Y.H.; Resources, A.Z. and P.L.; Writing—
original draft, Y.H.; Writing—review & editing, Y.H. and Y.Z.; Funding acquisition, Aiguo Zhou.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: Author Penghui Liu was employed by the company Zhuzhou Times New Material
Technology Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Meng, Z.; Hu, J.; Huang, B.; Feng, K. Control of mechanical energy storage device for wind power generation considering new

energy consumption. Autom. Instrum. 2023, 38, 6–10.
2. Ma, Q.; Wang, W.; Bai, J.; Lu, Z. Research progress of carbon fiber composites for wind turbine blade. Hi-Tech Fiber Appl. 2023, 48,

13–19.
3. Tang, X.; Gu, W.; Huang, X.; Peng, R. Progress on short term wind power forecasting technology. J. Mech. Eng. 2022, 58, 213–236.
4. Chen, X.; Guo, Y.; Xu, C.; Shang, H. Review of fault diagnosis and health monitoring for wind power equipment. China Mech.

Eng. 2020, 31, 175–189.
5. Li, X.; Yu, Z. Developments of offshore wind power. J. Sol. Energy 2004, 78–84. [CrossRef]
6. Li, C.; Zhang, J.; Zhang, D.; Li, Z. Accuracy research on full-scale test of large wind turbine blade. Compos. Sci. Eng. 2021, 4, 83–88.
7. Liao, M.; Li, Y.; Wang, Q.; Lv, P. Study on fluid-structure interaction characteristic for large scaled wind turbine blade. Mech. Sci.

Technol. Aerosp. Eng. 2018, 37, 493–500.
8. Li, Y.; Zhu, C.; Tao, Y.; Song, C.; Tan, J. Research status and development tendency of wind turbine reliability. China Mech. Eng.

2017, 28, 1125–1133.
9. Sun, S.; Wang, T.; Chu, F. Review of structural health monitoring of wind turbine blades based on vibration and acoustic

measurement. J. Mech. Eng. 2024, 1–14. Available online: http://kns.cnki.net/kcms/detail/11.2187.TH.20240118.0938.032.html
(accessed on 1 March 2024).

10. Heijdra, J.J.; Borst, M.S.; Van Delft, D.R.V. 14—Wind turbine blade structural performance testing. In Advances in Wind Turbine
Blade Design and Materials; Woodhead Publishing Series in Energy; Brøndsted, P., Nijssen, R.P.L., Eds.; Woodhead Publishing:
Sawston, UK, 2013; pp. 463–474.

11. Lu, X.; Zhang, Y.; Meng, D.; Su, C. Application and research of Ansys beam model in full-scale blade static test. Compos. Sci. Eng.
2022, 71–74. [CrossRef]

12. Wang, C.; Li, J.; Zhang, S.; Ding, S. Full-scale static test analysis of large wind turbine robot blade. Compos. Sci. Eng. 2014, 23–26.
[CrossRef]

13. Lee, K.; Aihara, A.; Puntsagdash, G.; Kawaguchi, T.; Sakamoto, H.; Okuma, M. Feasibility study on a strain based deflection
monitoring system for wind turbine blades. Mech. Syst. Signal Process. 2017, 82, 117–129. [CrossRef]

14. Yang, J.; Peng, C.; Xiao, J.; Zeng, J.; Yuan, Y. Application of videometric technique to deformation measurement for large-scale
composite wind turbine blade. Appl. Energy 2012, 98, 292–300. [CrossRef]

15. Xiao, L.; Zhang, L.; Chen, R.; Huang, X.; Fan, Z. Research of 3D deflection measurement in full-scale structural testing for wind
turbine blade. Mach. Tool Hydraul. 2021, 49, 99–103.

16. Zamanakos, G.; Tsochatzidis, L.; Amanatiadis, A.; Pratikakis, I. A comprehensive survey of LIDAR-based 3D object detection
methods with deep learning for autonomous driving. Comput. Graph. 2021, 99, 153–181. [CrossRef]

17. Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR System with Application to Forest Inventory.
Remote Sens. 2012, 4, 1519–1543. [CrossRef]

18. Xu, J.; Guo, X.; Hua, L.; Zhang, H. The test on bridge deflection deformation monitoring by terrestrial laser scanning. J. Geod.
Geodyn. 2017, 37, 609–613.

19. Zhao, L.; Xiang, Z.; Zhou, Y.; Ma, X.; Zhao, S.; Si, M.; Chen, M.; Hu, C.; Pan, J. Analysis of bridge deflection deformation based on
ground three-dimensional laser scanning. Bull. Surv. Mapp. 2022, 95–100. [CrossRef]

https://doi.org/10.3321/j.issn:0254-0096.2004.01.016
http://kns.cnki.net/kcms/detail/11.2187.TH.20240118.0938.032.html
https://doi.org/10.19936/j.cnki.2096-8000.20220728.011
https://doi.org/10.3969/j.issn.1003-0999.2014.02.005
https://doi.org/10.1016/j.ymssp.2016.05.011
https://doi.org/10.1016/j.apenergy.2012.03.040
https://doi.org/10.1016/j.cag.2021.07.003
https://doi.org/10.3390/rs4061519
https://doi.org/10.13474/j.cnki.11-2246.2022.0148


Optics 2024, 5 164

20. Han, Y.; Feng, D.; Wu, W.; Yu, X.; Wu, G.; Liu, J. Geometric shape measurement and its application in bridge construction based
on UAV and terrestrial laser scanner. Autom. Constr. 2023, 151, 104880. [CrossRef]

21. Du, L.; Zhong, R.; Sun, H.; Zhu, Q.; Zhang, Z. Tunnel cross section extraction and deformation analysis based on mobile laser
scanning technology. Bull. Surv. Mapp. 2018, 61–67. [CrossRef]

22. Nikolov, I.; Madsen, C. LiDAR-based 2D localization and mapping system using elliptical distance correction models for UAV
wind turbine blade inspection. Int. Conf. Comput. Vis. Theory Appl. 2017, 7, 418–425.

23. Luo, W.; Li, J.; Ma, X.; Wei, W. A novel static deformation measurement and visualization method for wind turbine blades using
home-made LiDAR and processing program. Opt. Lasers Eng. 2020, 134, 106206. [CrossRef]

24. Chen, Y.; Griffith, D.T. Experimental and numerical full-field displacement and strain characterization of wind turbine blade
using a 3D Scanning Laser Doppler Vibrometer. Opt. Laser Technol. 2023, 158, 108869. [CrossRef]

25. Díaz-Medina, M.; Fuertes, J.M.; Segura-Sánchez, R.J.; Lucena, M.; Ogayar-Anguita, C.J. Lidar attribute based point cloud labeling
using CNNs with 3D convolution layers. Comput. Geosci. 2023, 180, 105453. [CrossRef]

26. Bo, L.; Yang, Y.; Shuo, J. Review of advances in LiDAR detection and 3D imaging. Opto-Electron. Eng. 2019, 46, 190167.
27. Zhao, D.; Wang, L.; Li, Y.; Du, M. Extraction of preview elevation of road based on 3D sensor. Measurement 2018, 127, 104–114.

[CrossRef]
28. Ma, B.; Yang, C.; Li, A.; Chi, Y.; Chen, L. A Faster DBSCAN Algorithm Based on Self-Adaptive Determination of Parameters.

Procedia Comput. Sci. 2023, 221, 113–120. [CrossRef]
29. Civera, M.; Sibille, L.; Fragonara, L.Z.; Ceravolo, R. A DBSCAN-based automated operational modal analysis algorithm for

bridge monitoring. Measurement 2023, 208, 112451. [CrossRef]
30. Wang, S.; Li, A. Multi-adjacent-vertexes and Multi-shortest-paths Problem of Dijkstra Algorithm. Comput. Sci. 2014, 41, 217–224.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.autcon.2023.104880
https://doi.org/10.13474/j.cnki.11-2246.2018.0177
https://doi.org/10.1016/j.optlaseng.2020.106206
https://doi.org/10.1016/j.optlastec.2022.108869
https://doi.org/10.1016/j.cageo.2023.105453
https://doi.org/10.1016/j.measurement.2018.05.062
https://doi.org/10.1016/j.procs.2023.07.017
https://doi.org/10.1016/j.measurement.2023.112451

	Introduction 
	Point Cloud Data Processing 
	Multi-Lidar Point Cloud Registration 
	Spatial Clustering Algorithms for Dynamic Radius 
	Spatial Line Clustering Algorithm 
	Space Line Integral 

	Measurement and Analysis 
	Measurement System Composition 
	Analysis of Measurement Results 

	Conclusions and Outlook 
	References

