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Abstract: Inside an optical Fourier processor, we inserted a varifocal system to continuously magnify
the frequency of a master grating. The proposed system does not involve any mechanical compensa-
tion for scaling the Fourier spectrum. As the magnification, M, varies, the Fourier spectrum remains
at the same initial location. We identified a previously unknown quadratic phase factor for generating,
in the fixed output plane, Talbot images of any fractional order. We applied this result to setting a
structured illumination beam, which does not have occluding regions. This illuminating beam can be
useful for Talbot interferometry.
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order; array illuminators; no-occluding structured illumination; Talbot–Lau interferometry; Moiré
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1. Introduction

At different ranges of the electromagnetic spectrum, as well as for matter waves,
Talbot–Lau interferometers have found a myriad of useful applications. As a selected set of
examples, we mention the following: X-ray nondestructive testing [1]; X-ray interferome-
try [2]; multi-contrast imaging [3]; neutron interference [4]; the space-time Talbot effect [5];
and the non-linear Talbot effect [6]. For an interesting review, see [7].

In the visible range, Talbot–Lau interferometers commonly employ a master grating
that acts as a probe pattern. Then, in a Talbot image, one places a second grating for
visualizing any local displacements, such as Moiré fringes [8].

For generating Moiré patterns with a tunable spatial frequency, it is desirable to scale
the frequency of a master grating. To this end, several decades ago, Luxemoore proposed a
simple technique for tuning the spatial frequency of the master grating [9]. In this technique,
one illuminates the grating with a divergent beam, and one moves the grating along the
optical axis.

Due to the finite, angular spread of the illuminating beam, this technique intro-
duces variable vignetting. And, of course, the technique requires a mechanical device
for implementing the desired axial displacements. In a heuristic description, Patorski
proposed an extension of the Luxmoore technique for generating gratings with a tunable
opening ratio [10].

Here, we note that in the latter two references, the descriptions ignore the presence of
a quadratic phase factor, which is generated by the axial displacement. In what follows, we
provide an analytical description that uses scalar diffraction in the paraxial regime. We show
that, at a fixed plane, the quadratic phase factor is responsible for generating Talbot images
of any fractional order. Next, we present the results of using a varifocal system to tune the
frequency of the master grating without carrying out any mechanical interventions.

To achieve our aims, we exploited the remarkable advances in implementing varifocal
lenses, providing methods free of any mechanical intervention. Some of these techniques
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include electrowetting [11–14], optofluidic variations [15–19], and the use of artificial mus-
cles [20]. Here, the varifocal lenses continuously scale the frequency of the master grating.
We recognize that the proposed device does not alter the location of the source [21,22].

Hence, in this study, our achievement is threefold. First, we present analytical formulas
for describing controllable changes in scale of the virtual Fourier spectrum. Second, from
our analytical formulations, we identified an unknown quadratic phase factor, which is
responsible for generating Talbot images of arbitrary fractional orders. Third, we applied
our formulations to designing a beam, which can illuminate a sample without occluding
regions. This type of illumination beam is useful for Talbot interferometry.

In Section 2, we employ the concept of the virtual Fourier spectrum for identifying a
scalable operation. In Section 3, we discuss the use of a varifocal system to continuously
magnify, without any mechanical interventions, the spatial frequency of the master grat-
ing. In Section 4, we present the results of applying the frequency-scaling technique for
scanning a sample, which was free of occluding regions. These results are useful for Talbot
interferometry [23]. In Section 5, we summarize our contributions.

Here, we claim novelty with regard to three achievements: (a) we offer analytical
descriptions of two techniques that control the spatial frequency of a master grating; (b) we
unveil the use of two varifocal lenses for implementing a motionless method, which tunes
the spatial frequency of a master grating; and (c) we propose a technique for generating a
structural beam, which can illuminate a sample without occluding regions. This type of
illumination can be useful for Talbot interferometry.

2. Tunable Spatial Frequency: Axial Displacements

In Figure 1, we depict the optical setup under discussion. The master grating has a
period equal to d. We denote the separation between the master grating and the illuminating
point source as z0. The separation z0 was set as a negative number to facilitate our discussion
in terms of geometrical optics.

One can observe, in Figure 1a, that the separation z0 is variable for scaling the Fourier
spectrum. To evade this motion, in Figure 1b, the separation z0 is fixed. In our proposed
apparatus, the axial motion of the master grating is substituted with the use of two varifocal
lenses. These lenses magnify the Fourier spectrum without changing its axial position. In
both cases, the position of the point source defines the input plane. In both setups, we
employ a lens with a fixed optical power of K3 = 1/f.

For our following discussion, the master grating is represented by its amplitude
transmittance, which is expressed in terms of the Fourier series:

g
(
x′
)
=

∞

∑
m=−∞

Cm exp
(

i 2 π
m
d

x′
)

(1)

In Equation (1) the letter Cm denotes the Fourier coefficient of order m-th fold. The period of
the grating is denoted as d. And trivially, the letter “m” stands for an integer number. Next,
we identify the complex amplitude distribution of the spherical wave that comes from a
point source, and it impinges on the master grating. Since z0 < 0, the complex amplitude
distribution is as follows:

ψ
(
x′; z0

)
= exp

(
i π

x′2

λ z0

)
g
(
x′
)

(2)

To obtain the complex amplitude distribution of the virtual Fourier spectrum, which is
associated with Equation (2), we evaluate the following integral backwards with respect to the
complex amplitude distribution at the source plane, the complex amplitude distribution is:

ψ(x0; z0) =

∞∫
−∞
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If we substitute Equation (2) into Equation (3), we obtain

ψ(x0; z0) =
∞

∑
m=−∞

Cm exp
(
−i 2 π

(
z0

ZT

)
m2
)

δ

(
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d
m
)

(4)
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Figure 1. Schematics of the optical setups for varying the spatial frequency of a master grating. (a) 
The arrangement described by Luxmoore. In this arrangement, the master grating moves along the 
optical axis to scale its Fourier spectrum, and a fixed optical power lens implements a Fourier trans-
form of the scaled Fourier spectrum. (b) Our proposed apparatus. Instead of moving the master 
grating, two varifocal lenses magnify the Fourier spectrum, which remains in a fixed axial position. 

In Equation (4), we employ the Talbot distance, which is 
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Figure 1. Schematics of the optical setups for varying the spatial frequency of a master grating. (a)
The arrangement described by Luxmoore. In this arrangement, the master grating moves along
the optical axis to scale its Fourier spectrum, and a fixed optical power lens implements a Fourier
transform of the scaled Fourier spectrum. (b) Our proposed apparatus. Instead of moving the master
grating, two varifocal lenses magnify the Fourier spectrum, which remains in a fixed axial position.

In Equation (4), we employ the Talbot distance, which is

ZT = 2
d2

λ
(5)

In Equation (5) the Greek letter lambda stands for the wavelength of the monochromatic
wave. As depicted in Figure 1a, the lens with fixed optical power optically implements the
following Fourier transform:

q(x; z0) =

∞∫
−∞

ψ(x0; z0) exp
(
−i 2 π

x
λ f

x0

)
dx0 (6)
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In Equation (6) the lower-case letter “f ” denotes the focal length of the middle lens. If we
substitute Equation (4) into Equation (5), we obtain the amplitude impulse response of the
optical system:

q(x; z0) =
∞

∑
m=−∞

Cm exp
(
−i 2 π

(
z0

ZT

)
m2
)

exp
(

i 2 π m
(

z0

f d

)
x
)

(7)

In Equation (7), once again the upper-cas letter ZT denotes the Talbot length. According
to Equation (7), we can claim that the amplitude point spread function contains a non-
previously identified quadratic phase factor, which is relevant for implementing a fractional
Talbot image, by selecting the ratio z0/ZT. As expected, from Equation (7), it is apparent
that the spatial frequency of the generated grating variation is

1
d′

=

(
z0

f

)
1
d

(8)

To the best of our knowledge, the above formulation is novel. Hence, it is a contribution
to the field of Talbot interferometry. In our previous discussion, we did not intend to argue
in favor of the Luxmoore technique but rather to provide the necessary background for the
following motionless method. However, before this, some practical considerations may be
in order. The master grating can be a Ronchi ruling with an area of 50 (mm) × 50 (mm) and
with 40 lines per millimeter. Then, the grating will have a total number of lines equal to two
thousand. If the distance between the point source and the master grating is z0 = −1 (m),
the diffraction orders will be very slender areas. To fully illuminate this type of grating, the
angular spread of the wave was set to about 3.2 degrees.

Next, we describe a novel, motionless method for controlling the spatial frequency,
and for generating Talbot images of fractional order, in the same detection plane.

3. Tunable Frequency: Non-Mechanical Intervention

Here, we describe the use of a pair of varifocal lenses to obtain a motionless version
of the previous result. Our discussion closely follows our previous results on geometrical
optics [21,22]. In Figure 2, we show that the master grating is now fixed at the distance z0.
We place the first varifocal lens just after the master grating. Its optical power is equal to

K1 =

(
1
s

)(
1 − s

z0

)(
1 − 1

M

)
(9)

In Equation (9), the lowercase letter “s” denotes the interlens separation between
the first varifocal lens and a second element that is also varifocal. The uppercase letter
“M” represents the tunable magnification. The second varifocal lens has the following
optical power:

K2 = −
(

M − 1
s

)(
1

1 − s
z0

)
(10)

In Appendix A, we discuss the steps that we followed to obtain the optical powers in
Equations (9) and (10).

By using the above varifocal lenses, one can reduce the exit angle by factor M; that is,
u2 = u0/M. Consequently, one can laterally magnify the scale of the Fourier spectrum. In
mathematical terms,

ψ(x0; z0) =
∞

∑
m=−∞

Cm exp
(
−i 2 π M2

(
z0

ZT

)
m2
)

δ

(
x0 + M

λ z0

d
m
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(11)
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Figure 2. Schematics of the ray optics description of the optical system. (a) For comparison, the
optical setup proposed by Luxmoore. (b) The optical setup that incorporates two varifocal lenses.

Again, the third lens, with a fixed optical power, implements a Fourier transformation
of Equation (11); in this way, we obtain the new complex amplitude response:

q(x; z0) =
∞

∑
m=−∞

Cm exp
(
−i 2 π M2

(
z0

ZT

)
m2
)

exp
(
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)
x
)

(12)

As we defined previously, the upper-case letter M denotes the variable magnification. The
lower-case letter “f ” stands for the focal length of the central lens. And the lower-case
letter “d” is the period of the master grating. It is apparent from Equation (12) that for
a fixed value of z0, the proposed optical system can modify the quadratic phase factor,
which is responsible for obtaining fractional Talbot images. In other words, let us assume
that z0 = ZT/L, where L is a positive integer number. Then, Equation (12) assumes the
following form:

q(x; z0) =
∞

∑
m=−∞

Cm exp
(
−i 2 π

(
M2

L

)
m2
)

exp
(

i 2 π
(m

d′
)

x
)

(13)

In Equation (13), we are employing our previous notation for the variables in play. And we
note that the generated grating has a tunable spatial frequency:

1
d′

=

(
2M
L

)(
d

λ f

)
(14)

Once the value of L has been chosen, in the same detection plane, one can attain a
fractional Talbot image of any order between 1/L and unity by setting the magnification in
the interval as follows:

1 ≤ M ≤
√

L (15)
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Based on these results, we can claim that in the same detection plane, one can generate
tunable gratings that are fractional Talbot images. To the best of our knowledge, the above
formulation is novel. Hence, it is a contribution to the field of Talbot interferometry. Next,
we apply these results.

4. Talbot Illuminator of Variable Fractional Orders

For the following application, it is convenient to discuss the generation of fractional
Talbot images, serving as a linear combination of laterally displaced versions of the initial
grating. Since this approach is not very well known, in Appendix B, we discuss the details
of this description. Here, it suffices to note that the amplitude impulse response, shown in
Equation (7), can be written as follows:

q(x; z0) =
N−1

∑
n= 0

Wn(z0) g
(

x − n
N

d
)

(16)

In Equation (16) we denote as Wn (z0) the weighting factors (or if you will the coefficients) of
the linear expansion. The coefficients in the linear combination were obtained by evaluating
the following discrete Fourier transform:

Wn(z0) =
1
N

N−1

∑
m= 0

exp
(
−i 2 π

(
z0

ZT

)
m2
)

exp
(

i 2 π
n m
N

)
(17)

To illustrate the use of this approach, next, we evaluate the simple case of N = 2. Other
cases are beyond our current scope. Let us assume that the master grating is a binary
grating with a duty cycle equal to one half. Then, its amplitude transmittance is

g(x) = rect
(

2 x
d

)
∗

∞

∑
m=−∞

δ(x − m d) (18)

In Equation (18) the starisk denoted the convolution operation. And the Greek letter delta
represents a Dirac’s delta. Futhermore, in Equation (18), we use the common notation of a
rectangular function to represent the amplitude transmittance of the unit cell. According
to our current description, the Fresnel diffraction patterns can be described as a linear
superposition of the initial grating g(x) and the complementary transmittance g(x − d/2). It
is clear from the definition in Equation (12) that the complex amplitude factors for g(x) and
g(x − d/2) are

W0(z0) = exp
(
−i π

(
z0

ZT

)
m2
)

cos
(

π

(
z0

ZT

))
. (19)

W1(z0) = i exp
(
−i π

(
z0

ZT

)
m2
)

sin
(

π
z0

ZT

)
. (20)

Hence, the complex amplitude point spread function can be written as follows:

q(x; z0) = exp
(
−i π

(
z0

ZT

)
m2
) [

cos
(

π

(
z0

ZT

))
g(x) + i sin

(
π

(
z0

ZT

))
g
(

x − d
2

)]
(21)

To the best of our knowledge, Equations (19)–(21) have not been presented before.
Hence, they are contributions to the field of Talbot interferometry. In Figure 3, we represent
the sinusoidal variations of these coefficients at planes located at multiple values of one
quarter of the Talbot length. In blue, the sinusoidal variations depict the coefficient in
Equation (12). And, in red, the curve describes the variations in Equation (13).
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Figure 3. Complex amplitude distribution, at various fractions of the Talbot length, associated with
an initial binary grating with a duty cycle (fill factor) equal to one half of the period. The complex
amplitude variations of the unit cell are shown in blue. The complex amplitude variations of the
complementary cell are shown in red.

And, consequently, the irradiance distribution is as follows:

I(x, z) = |g(x)|2 cos2
(

π

(
z0

ZT

))
+

∣∣∣∣g(x − d
2

)∣∣∣∣2 sin2
(

π

(
z0

ZT

))
(22)

In Equation (22) we are employing the common notation of the square modulus, of the
master grating. By setting z0 = ZT/4, the initial coefficients W0 and W1 assume the same
values. Therefore, in these planes, the fractional Talbot images generate a uniform irradiance
distribution. However, as expressed in Equation (14), the complex amplitude distribution
is not uniform. In fact, the complex amplitude distribution is that of a phase grating,
which resembles a structured illumination with non-occluding regions. Then, we claim
that the periodic complex amplitude distribution can be used for coding a sample, without
incurring occluding regions.

In Figure 4, we depict the proposed technique.
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grating. We assume that the sample is illuminated with the complex amplitude in Equation (14). For
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In Figure 4, the amplitude transmittance of the generated grating is that expressed
in Equation (18). As is indicated in Equation (22), at one quarter of the generated grating
there lies a transparent structure. A pair of phase samples are located in this plane. The
samples modify the illuminating structure. At the Talbot distance, a second grating is used
to visualize, as Moiré patterns, the modified grating.

5. Conclusions

To continuously change the spatial frequency of a master grating, we have revisited
the Luxmoore technique. Herein, we have presented the first analytical description of this
technique. To achieve this first goal, we used the concept of the virtual Fourier spectrum.
Based on our analytical description, we identified an unknown quadratic phase factor. We
have indicated that this quadratic phase is useful for obtaining, at a fixed plane, an arbitrary
fractional-order Talbot image.

As a second contribution, we presented a motionless technique for continuously
varying the spatial frequency of a master grating. To achieve this, we used a pair of varifocal
lenses that magnify the Fourier spectrum of the master grating. As the magnification
changes, the Fourier spectrum remains in its initial fixed position. We have unveiled an
analytical formula for obtaining the variable spatial frequency.

As a third contribution, we noted that by using our motionless technique, one can use
the controllable magnification to set a fractional Talbot image in a fixed plane. This novel
property was used to generate a structured beam in order to illuminate a sample without
occluding regions. This type of illumination can be useful for Talbot interferometry.
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and agreed to the published version of the manuscript.
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Appendix A

For the sake of the completeness of our discussion, we present the ray optics descrip-
tion for identifying the required optical powers for magnifying the spatial frequency of
the master grating. As a first step in our derivation, we recognize upfront the following
requirement for variable magnification M:

M =
u0

u2
(A1)

In Equation (A1), the angle from a paraxial ray that is departing from the virtual
Fourier plane is u0. And u2 is the angle after the same ray refracts at the first element, and
then at the second element of the varifocal system in Figure 2b. Then, by defining the local
positions at the varifocal lenses as x1 and x2, we can express Equation (A1) as follows

x2

z0 − s
=

x1

M z0
(A2)
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In Equation (A2) we are employing the same notation, as in the main yext, for s, M, and z0.
Now, it is convenient to define the compression ratio, between the local positions, x1 and
x2, as follows:

M∗ ≜
x2

x1
(A3)

By using this definition of the compression ratio, we can rewrite Equation (A2)
as follows:

M M∗ = 1 − s
z0

(A4)

As a second step in our derivation, we note that the angle u1 satisfies the two following
conditions:

u1 =
x2 − x1

s
(A5)

u1 = u0 − x1 K1 (A6)

In Equation (A5), we use the same notation as in the main text. The lower-case letter “s”
denotes the interlens separation of the varifocal lenses. And in Equation (A6), as noted
in the main text, letter K1 represnts the optical power of the first element. By using the
compression ratio, we can equate Equations (A5) and (A6), allowing us to obtain

K1 =
1 − M∗

s
− 1

z0
(A7)

As a third step in our derivation, we note that the angle u2 also satifies two conditions:

u2 =
M∗

s − z0
x1 (A8)

u2 = u1 − M∗x1K2 (A9)

In Equation (A9), as in the main text, K2 denotes the optical power of the second varifocal
lens. Again, by using the compression ratio, we can equate Equations (A8) and (A9); thus,
we obtain

K2 = −
(

1
s

)(
z0

s − z0
+

1
M∗

)
(A10)

Finally, if one employs Equation (A4) in Equations (A7) and (A10), the optical powers can
be written as

K1 =

(
1
s

)(
1 − s

z0

)(
1 − 1

M

)
(A11)

K2 = −
(

M − 1
s

)(
1

1 − s
z0

)
(A12)

The last two equations are used in the main text, namely, as Equations (9) and (10).

Appendix B

When describing the complex amplitude distribution of fractional Talbot images, it
is convenient to employ a superposition model. Since this model is not very well known,
here, we discuss the main features of this model. The impulse response of the fractional
Talbot images is written as a linear superposition of the initial grating:

q(x; z0) =
N−1

∑
n= 0

Wn(z0) g
(

x − n
N

d
)

(A13)

All the symbols used in Equation (A13) are defined in the main text. If into Equation (A13)
we substitute the function g(x) using its Fourier series, then we can obtain
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N−1

∑
n= 0

Wn(z0)g
(

x − n
N

d
)
=

∞

∑
m=−∞

[
N−1

∑
n= 0

Wn(z0) exp
(
− i 2 π

m n
N

)]
Cm exp

(
i 2 π

m
p

x
)

(A14)

However, based on Equation (7) in the main text, we know that

q(x; z0) =
∞

∑
m=−∞

Cm exp
(
−i 2 π

(
z0

ZT

)
m2
)

exp
(

i 2 π m
(

z0

f d

)
x
)

(A15)

After a simple comparison between Equations (A14) and (A15), we have the following:

N−1

∑
n= 0

Wn(z0) exp
(
− i 2 π

m n
N

)
= exp

(
−i 2 π

(
z0

ZT

)
m2
)

(A16)

Now, the left-hand side of Equation (A16) is a discrete Fourier transform, so its inverse is

Wn(z0) =
1
N

N−1

∑
m= 0

exp
(
−i 2 π

(
z0

ZT

)
m2
)

exp
(

i 2 π
n m
N

)
(A17)

The latter result is used in the main text to determine the coefficients W0(z0) and W1(z0)
if N = 2.
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