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Abstract: This study examines the characteristics of the electromagnetic waves that propagate through
an unbounded space filled with a homogeneous isotropic chiral medium. The resulting characters
are compared to those of the electromagnetic waves propagating through an achiral free space. To
this goal, we form energy conservation laws for key bilinear parameters in a chiral case. Due to
a nonzero medium chirality, conservation laws turn out to contain extra terms that are linked to
the spin–orbit coupling, which is absent for an achiral case. In this way, we identified where the
neat hierarchy exhibited by the achiral case among the key bilinear parameters is destroyed by a
medium chirality. As an example, we took a plane wave for the chiral case to evaluate those bilinear
parameters. Resultantly, the conservation laws for a chiral case are found to reveal inconsistencies
among several bilinear parameters that constitute the conservation laws, thereby prompting us to
establish partial remedies for formulating proper wave-propagation problems. Therefore, adequate
applications of boundary conditions are found to be necessary after examining typical problems
available from the literature.

Keywords: electromagnetic wave; medium chirality; bilinear parameter; conservation law; spin–orbit
coupling; plane wave; inconsistency; wave-propagation problem; light-matter interaction; circular
vector; bi-characteristics

1. Introduction

Chiral molecules have received increasing attention recently because of their im-
portance in biology and chemistry. Suppose that chiral molecules or nano-scale chiral
objects are dispersed in a base dielectric, say, a liquid or air [1]. From the viewpoint of
effective-medium theories, a base dielectric uniformly dispersed with an ensemble of chi-
ral objects can be considered a chiral medium. For instance, various solution-like chiral
(gyrational) media are considered by [2]. It is assumed that those chiral nano-objects are
sufficiently small in comparison to the wavelength of the electromagnetic (EM) waves
under consideration [3,4].

EM waves propagating through chiral media carry distinct characteristics in com-
parison to those exhibited by EM waves propagating through achiral media. One is an
optical rotatory dispersion [1,4], where two different values of effective refractive indices
are manifested. The other is circular dichroism, where the chirality parameter of a chiral
medium contains a dissipative component [5].

A sphere immersed in a chiral medium could be considered a prototypical config-
uration of a sensor probing the chiral content of a chiral medium. For instance, the Mie
scattering of a dielectric sphere placed within a chiral medium requires careful analysis of
a pertinent boundary–value problem [2,3,6,7]. The resulting analytical results are normally
obtained for the field variables and energy fluxes. For instance, the scattering coefficients
obtained for the Mie scattering essentially represent the Poynting vector.

Additional aspects of chiral media are discussed by us in [8] with extensive refer-
ences, where we have examined two obliquely colliding waves propagating through a
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chiral medium. While examining several bilinear parameters, we ran into the necessity of
examining the conservation laws in a more systematic fashion.

Although chiral metamaterials often refer to chiral metasurfaces [5,9,10], their relevant
physics is largely common to that exhibited by the chiral media under this study. In the case
of EM waves propagating across a planar interface between an achiral dielectric and a chiral
dielectric, both reflection and transmission coefficients are sought in [11], as is conducted
with generic interface problems [5]. Although this interface problem is similar to a standard
textbook matter, the attendant algebraic manipulations are excessively complicated, mainly
because of the two distinct characteristic speeds for a simple pair of constitutive relations
for a chiral medium. Even with spatially homogeneous chiral media, relevant EM problems
are harder to solve for multiple spatial domains.

Based on the variables of the electric and magnetic fields of a certain EM wave, several
key bilinear (‘quadratic’ inclusive) parameters can be formed for further analysis. Such
a bilinear parameter can be formed either for an electric field or for a magnetic field. To
be fair, an average parameter can be further constructed based on an electric–magnetic
duality [12–15]. In this regard, the conventional, well-known parameters are here called
active parameters. For instance, we recall an active field intensity, an active Poynting
vector (or a linear momentum), an active spin linear momentum, an active orbital linear
momentum, etc.

Of course, these active parameters are interrelated among them in a relatively straight-
forward manner for the EM waves through an achiral medium (often called here an ‘achiral
case’). Notwithstanding, those interrelations become unbearably complicated for the EM
waves propagating through a chiral medium (often called here a ‘chiral case’). A rough
sketch of this distinction is presented in Figure 1.
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Figure 1. Relationships among key bilinear parameters of active nature constructed from the field
variables {E, H} of electromagnetic waves propagating through (a) an achiral medium with κ = 0
and (b) a chiral medium with κ 6= 0.
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A distinguishing feature of a chiral case is that the key bilinear parameters are inter-
woven by various forms of either spin–orbit coupling (SOC), spin–orbit conversion (SOC),
or spin–orbit interaction (SOI) [10,16]. Figure 1b marks where SOCs might take place. The
other aspect of the chiral case is that a well-organized hierarchy found for the achiral case
is destroyed; namely, the key bilinear parameters are mixed up among them. This issue
will be clarified later by comparing both Figure 1a,b.

Still, another aspect of the chiral case is that conservation laws become fuzzier because
of the difficulty in finding suitable flux vectors that are operated on by the divergence
operator ∇•. In this regard, the question mark (?) in Figure 1 signifies something that we
could not find so far. In other words, the symbol ∇× (?) with a downward arrow attached
denotes a vector potential (?), such that ∇•[∇× (?)] = 0.

Figure 1a illustrates that an achiral medium gives rise to an orderly hierarchy, whereas
Figure 1b depicts that a nonzero medium chirality renders key bilinear parameters inter-
related among them. The presented key bilinear parameters include the energy density
I→avg, the Poynting vector P→, the linear momenta

{
O→avg, S→avg

}
(orbital and spin portions),

and the spin angular momentum density M→avg. These parameters are time-averaged ones
for time-oscillatory fields in an unbounded space. In Figure 1b for a chiral medium, extra
terms characterize spin–orbit couplings (SOCs), whereas there is a clear separation between{

O→avg, S→avg

}
in Figure 1a for an achiral medium due to the absence of a SOC.

To each of these active bilinear parameters, we can associate a reactive bilinear pa-
rameter such as a reactive field intensity, a reactive Poynting vector, a reactive spin linear
momentum, a reactive orbital linear momentum, etc. This set of reactive bilinear param-
eters has received less attention than the set of active bilinear parameters. See [15] for
a recent review of reactive bilinear parameters from the viewpoint of conservation laws.
There are other parameters that do not distinguish between active and reactive properties,
for instance, the Stokes parameters. It is well-known that reactive bilinear parameters are
more significant in the near field than in the far field [5,7]. In comparison, active bilinear
parameters are dominant in the far field.

The basics of the conservation laws involving both active and reactive properties have
been presented in our recent study [8] on the EM waves in chiral media. We have thus
recognized several unconventional terms that arise from nonzero medium chirality while
investigating obliquely propagating two-plane waves. Notwithstanding, we have missed
in [8] properly recognizing the various interrelationships among those chirality-associated
terms arising from nonzero medium chirality.

Therefore, this study focuses on the EM waves established in chiral dielectric media in
a spatially unbounded domain. For simplicity, the chiral media are assumed to be loss-free
so that the circular dichroism is not under consideration. Both active and reactive bilinear
parameters are examined for their conservation laws while assuming temporally oscillatory
EM fields. We will test the validity of our conservation laws with a plane wave of circular
polarizations. In this way, we have identified in this study the implications of those extra
chirality-associated terms in view of the interchange between the aforementioned spin and
orbital linear momenta (viz., SOC). Such an SOC is known to take place across the interface
between two different media if it ever took place [13]. In comparison, we discovered in this
study that an SOC can take place in an unbounded chiral medium as well.

Our chiral case is one example of light–matter interactions. If a material’s response to
illuminated light exhibits sign changes for certain parameters, we can then suspect that
something similar to our medium chirality is involved, either in the constitutive relations of
an average material or in the structure of constituent molecules. For instance, a material’s
response could be different depending on the sign of the circular polarizations (clockwise
versus counterclockwise) of the incident light. Such handedness-dependent responses often
lead to diverse forms of Hall effects [10,16].
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This paper is structured as follows. Section 2 presents the basic formulation. Section 3
handles the conservation laws focusing on a chiral case. Section 4 deals with the Poynting
vector and the spin angular momentum for a chiral case, thus illustrating spin–orbit
coupling. Section 5 summarizes the various formulas for the achiral case. Section 6 provides
an example of a plane wave for the achiral case, thus pointing out several inconsistencies
in the conservation laws for a chiral case. Section 7 considers what is necessary for well-
posed electromagnetic problems. Section 8 offers discussions on various topics, including
SOCs and quantum information. After a short epilogue in Section 9, Section 10 concludes
our findings. We intended to make this paper self-contained; thus, we placed some
details in Appendices.

2. Problem Formulation

The way of achieving dimensionless variables and parameters has already been pre-
sented in [8]. One exception is to make the temporal frequency explicit in this study [1]. We
employ the overbar ¯ to denote the dimensional parameters and variables. Let

{
ε0, µ0

}
be

the dimensional electric permittivity and magnetic permeability in a vacuum. Furthermore,{
ωre f , tre f ≡ 1/ωre f

}
are the reference frequency and the reference time. In addition, we

define the reference magnitude Ere f for the electric field. We stress that only
{

ωre f , Ere f

}
are the arbitrary reference parameters at our disposal. Let us summarize the following set
of reference parameters.

tre f ≡ 1
ωre f

, c0 ≡ 1√
ε0µ0

, Z0 ≡
√

µ0
ε0

, Ere f , Hre f =
Ere f

Z0

Lre f ≡ c0tre f ≡ c0
ωre f
≡ 1

k0
, k0 ≡

ωre f
c0

. (1)

Here,
{

c0, Z0
}

are the light speed and impedance in a vacuum. In addition,
{

Lre f , k0

}
are the reference length and reference wave number in a vacuum. Employing the above
set of reference parameters in Equation (1), the relevant dimensionless parameters and
variables are defined below.

ω ≡ ω
ωre f

, t ≡ t
tre f

,∇ ≡ ∇
k0

, ε ≡ ε
ε0

, µ ≡ µ
µ0

, , κ ≡ c0κ

E ≡ E
Ere f

, H ≡ H
Hre f

, D ≡ D
ε0Ere f

, B ≡ c0B
Ere f

. (2)

Therefore, the temporal oscillation factor exp
(
−iωt

)
for all of the field variables

becomes exp(−iωt), after the dimensional frequency and time
{

ω, t
}

become, respectively,
the dimensionless ones {ω, t}. The spatial gradient is analogously made dimensionless
from ∇ to ∇. In addition, {ε, µ} are the dimensionless or relative electric permittivity and
magnetic permeability, respectively. For the base dielectric,

√
εµ ≡ c−1

D hence denotes a
refractive index. The dimensional chirality parameter κ is made dimensionless to what is
called a ‘chirality parameter’ κ.

The bold letters denote vectors. The dimensionless variables {E, H} denote the electric
and magnetic fields, respectively. Likewise, {D, B} are dimensionless vectors for the
electric displacement field and the magnetic induction field, respectively. Consequently,
the Maxwell equations are cast into the following dimensionless forms.{

∇× E = iωB

∇×H = −iωD
,

{
∇•D = 0

∇•B = 0
,

{
D = εE + iκH

B = µH− iκE
. (3)
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Here, the first pair consists of the Faraday law ∇× E = iωB and the Ampère law
∇×H = −iωD. The second pair consists of two divergence-free conditions. The third
pair consists of constitutive relations [2,9,11]. By an achiral medium, we mean κ = 0
in Equation (3), so that {D = εE, B = µH} is obtained. We assume in this study a chiral
dielectric to be loss-free, such that ε, µ > 0 and κ ∈ R so that a Pasteur medium is assumed.

Meanwhile, there is another pair of constitutive relations by the name of
Drude–Born–Fedorov, which consists of D = ε(E + β∇× E) and B = µ(H + β∇×H)
with β being another kind of chirality parameter [2]. This pair of constitutive relations has
been exclusively employed in [6] (pp. 181–194). Notwithstanding, our recent analysis of
both types of constitutive relations in [8] confirms that both sets of constitutive relations
lead to almost identical results when both {κ, β} are much smaller in magnitudes than
unity. For this reason, we handle in this study only the constitutive relations provided
in Equation (3).

The way the dimensionless governing equations are achieved in Equation (3) by use
of the reference parameters listed in Equations (1) and (2) is almost identical to what
was presented in [8]. In comparison to [8], the sole addition in Equation (3) is the di-
mensionless frequency ω such that the frequency effects can be explicitly accounted for
throughout this study.

To solve the Maxwell equations in Equation (3), we introduce a pair Q± of circular
vectors. The present pair of subscripts {+,−} replaces the conventional pair of {L, R},
where a ‘left’ and a ‘right’ waves are, respectively, implied [3,6]. Let us introduce the
following set of intermediaries.

cD ≡ 1√
εµ , c± ≡ 1√

εµ±κ ≡
cD

1±cDκ , εµ− κ2 ≡ 1
c+c−

c−+avg ≡ 1
2 (c− + c+) = 1

cD
1

εµ−κ2 = c+c−
cD

, ∆−+ ≡ 1
2 (c− − c+) = κ

εµ−κ2

kD ≡ ω
cD
≡ ω
√

εµ, k± ≡ ω
c± ≡ ω

(√
εµ± κ

)
,
{

c± > 0
k± > 0

⇔
{
|cDκ| < 1
|κ| < √εµ

. (4)

Here, the subscript ‘D’ signifies a base dielectric medium where chiral molecules
might be homogeneously dispersed [2]. This pair {+,−} of notations greatly facilitates our
ensuing formulations.

It is well-established that the circular vectors Q± satisfy three conditions: (i) the
divergence-free condition ∇•Q± = 0, (ii) the curl condition ∇ ×Q± = ±k±Q±, and
(iii) the Helmholtz equations ∇2Q± + k2

±Q± = 0. See [3] and the Supplementary Material
of [8] for details. In this regard, it is often overlooked that {Q+, Q−} are in general neither
parallel (co-polarized) nor perpendicular (cross-polarized) to each other [10,16]. In brief,

∇•Q± = 0,∇×Q± = ±k±Q±,∇2Q± + k2
±Q± = 0. (5)

We assume in this study that the chirality parameter is sufficiently small such that
c± > 0 as stated in the last item of the third line of Equation (4). Therefore, both of k± are
assumed positive even if κ is allowed to take any sign.

Under such a boundedness property |κ| < √εµ, k± > 0 implies from∇×Q± = ±k±Q±
the physical circumstance that {Q+, Q−} are accompanied, respectively, by a positive
vortex and a negative one. Such a pair of counter-rotating vortices is a hallmark of the EM
waves prevailing through a chiral medium. Because of k± ≡ ω

(√
εµ± κ

)
in Equation (4),

the vortex strength is linearly proportional to |κ|, while being directly proportional to ω.
Therefore, an optically denser medium with a larger refractive index of

√
εµ is associated

with a larger vortex strength for a given ω.
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Once Q± are obtained, the EM fields are constructed by E = Q+ − iZDQ− and
H = −iZ−1

D Q+ + Q− [3,6]. Here, ZD ≡
√

µ/ε is the impedance that represents the base
dielectric as cD ≡ (εµ)−1/2, defined in Equation (4). In summary,

ZD ≡
√

µ

ε
,

{
E = Q+ − iZDQ−

H = −iZ−1
D Q+ + Q−

. (6)

3. Conservation Laws for Chiral Cases

With the help of an arbitrary pair of once-differentiable vectors A, B ∈ C3, let us collect
several vector identities that are essential to further developments. ∇•(A× B) = (∇×A)•B− (∇× B)•A = B•(∇×A)−A•(∇× B)

A× (∇× B) = A•(∇)B− (A•∇)B

∇× (A× B) = (B•∇)A− (A•∇)B ⇐ ∇•A = ∇•B = 0

A = ∇× B ⇔ ∇•A = 0

. (7)

Both the first and the second vector identities do not demand the divergence-free con-
straints, whereas the third identity holds true under the additional constraints

∇•A = ∇•B = 0. Let
{

xi,
^
ei

}
denote a generic pair of the Cartesian coordinate and

its unit vector. By the Einstein summation notation for repeated indices, the convec-

tive derivative reads (A•∇)B ≡ Aj
(
∂Bi/∂xj

)^
ei, whereas the orbital derivative reads

A•(∇)B ≡ Aj
(
∂Bj/∂xi

)^
ei. From physical perspectives, (B•∇)A reads vector A being

transported or convected by B, whereas (A•∇)B reads vector B being transported by A.
In addition, the last identity of Equation (7) states that a solenoidal (divergence-free,

incompressible) field A is expressible as a vortex of a potential vector B. The converse also
holds true as indicated by the double-head arrow ‘⇔’. This fundamental identity will be
employed a couple of times in this study [2].

On the other hand, we can prove the following identity.

Re[A∗•(∇)A] =
1
2

Re

(
A∗j

∂Aj

∂xi
+ Aj

∂A∗j
∂xj

)
^
ei = Re

1
2

∂
(

A∗j Aj

)
∂xi

^
ei ≡ ∇

(
1
2
|A|2

)
. (8)

Therefore, Re[A∗•(∇)A] = ∇
(

1
2 A∗•A

)
means that the orbital-like parameter is pro-

portional to the spatial gradient of half the intensity. In contrast, Im[A∗•(∇)A] does
not lend itself to such a neat formula. In fact, Im[A∗•(∇)A] is linked spins, as will
be shortly discussed.

Let us introduce below the pair
{

I→avg, I⇐avg

}
of the active and reactive energy densities

together with the pair
{

M⇒avg, M⇐avg

}
of the active and reactive spin angular momentum

(AM) densities [8,15].{
IE ≡ εE∗•E
IH ≡ µH∗•H ,

{
M→E ≡ εIm(E∗ × E)

M→H ≡ µIm(H∗ ×H) I→avg ≡ 1
2 (εE∗•E + µH∗•H)

J→avg ≡ 1
2 (εE∗•E− µH∗•H)

,

{
M→avg ≡ 1

2 Im(εE∗ × E + µH∗ ×H)

M⇐avg ≡ 1
2 Re(εE∗ × E + µH∗ ×H)

. (9)
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Henceforth, we omit the factor of half that arises from time averaging. Operationally
speaking, the cancellation exp(−iωt) exp(iωt) = 1 applies to all bilinear (‘quadratic’ in-
clusive) parameters in Equation (9). In addition, these parameters are now real-valued
since ε, µ > 0 are assumed for a base dielectric medium throughout this study. Resultantly,
I→avg > 0. In addition,

{
I→avg, J→avg

}
are the active energy-sum (‘energy’, simply) density and

the active energy-difference density, respectively. Both reactive energy densities
{

I⇐avg, J⇐avg

}
do not exist at all.

The subscripts {→,⇐} in Equation (9) stand for ‘active’ and ‘reactive’, respectively.
This pair {→,⇐} is better readable than the symmetric pair {⇒,⇐}, which we have
worked with in [12]. Instead of ‘active’, we have employed ‘electromagnetic (EM)’ in our
recent paper [8]. Ordinary readers might have been familiar with

{
I→avg, M→avg

}
in terms of

conventional notation {I, M}, whereas
{

J→avg, M⇐avg

}
are less discussed.

The subscripts {E, H} in Equation (9) denote, respectively, the electric and magnetic
portions, while the subscript ‘avg’ implies an average of the two. The three parameters{

I→avg, M→avg, M⇐avg

}
in Equation (9) are placed in the forms of the electric–magnetic dual-

ity [13,14]. In addition, most of the key bilinear parameters are expressed in terms of the
modified pair

{√
εE,
√

µH
}

instead of the pair {E, H}. Notice that M→avg signifies the states
of polarization [5,10,12].

We further define the pair {P→, P⇐} of the active and reactive Poynting vectors (also
known as energy flow) and the pair {C→, C⇐} of the active and reactive helicities [5,15]. P→ ≡ ω−1Re(E×H∗)

P⇐ ≡ ω−1Im(E×H∗)
,

 C
→ ≡ Im(E•H∗)
C⇐ ≡ Re(E•H∗) P→avg ≡ P→

P⇐avg ≡ P⇐
,

{
C→avg ≡ C→

C⇐avg ≡ C⇐

. (10)

Instead of P→ ≡ Re(E×H∗), as previously defined in [8], we now have an explicit
frequency dependence by P→ ≡ ω−1Re(E×H∗) in conformance to the formulas in [14].
Both pairs {P→, P⇐} and {C→, C⇐} are already placed in the electric–magnetic dual forms.
Consequently, we have

{
P→avg, P⇐avg

}
≡ {P→, P⇐} and

{
C→avg, C⇐avg

}
≡ {C→, C⇐}.

Notice in Equation (9) that
{

I→avg, J→avg

}
are complementary in one sense that

I→avg + J→avg = εE∗•E and I→avg− J→avg = µH∗•H. In comparison, we define below the complex

parameters
{

MC
avg, PC, CC

}
based on Equations (9) and (10),

ICavg ≡ I→avg + i J→avg

MC
avg ≡M⇐avg + iM→avg, PC ≡ P→ + iP⇐, CC ≡ C⇐ + iC→

. (11)

We thus learn that the pair {→,⇐} implies the real and imaginary parts (or vice versa)
of a pertinent complex property.

Let us form the dot products (∇× E = iωB)•H∗ and (∇×H = −iωD)•E∗, respec-
tively, for the Faraday and Ampère laws in Equation (3). Taking the difference and the sum
of the resulting two relations, we obtain the following pair of energy conservation laws [8].
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 I→avg + i∇•P→avg + i 1
2 g+ = −κC→avg

J→avg +∇•P⇐avg − i 1
2 g− = −iκC⇐avg

⇒

ICavg + i∇•PC + i 1
2 (g+ + ig−) = −κ

(
C→avg + C⇐avg

)
g± ≡ 1

ω

[
E•(∇×H∗)∓H•(∇× E)∗

]
. (12)

Here, we have utilized the suitable vector identities in Equation (7). In the last line
of Equation (12), we encounter another complex parameter g+ + ig−, while the combined
helicity C→avg + C⇐avg fits neither the expected complex helicity C→avg + iC⇐avg nor CC ≡ C⇐+ iC→
in Equation (11).

Reactive properties are discussed in detail by [12,15]. We could find ample applications
in connection, especially with antenna theory [5,8,12]. These reactive properties play
significant roles, normally in the near field of a certain nanostructure immersed in either
an achiral or chiral medium. Mathematically speaking, a certain active property and its
reactive property make a pair of complex conjugates so that their analytical handling
becomes easier than dealing only with an active property, as seen in Equations (11) and (12).
In addition, much deeper issues lie in the Lagrangian formulations of dynamical systems.

We can easily separate the two leading lines of Equation (12) into the following two
pairs after some shuffling [15].{ 1

2 Re(g+) +∇•P→ = 0

J→avg +
1
2 Im(g−) +∇•P⇐ = 0

,

{
I→avg + κC→ = 1

2 Im(g+)
1
2 Re(g−) = κC⇐

. (13)

The most distinguishing feature in this set of conservation laws obtained for a chiral
medium is the interactions among the two active energy densities

{
I→avg, J→avg

}
, the Poynting

vectors {P→, P⇐}, and the helicities {C→, C⇐} [15]. In addition, Equation (13) shows that
the two members

{
κC→avg, κC⇐avg

}
carry the respective multiplier κ, which means, in turn,

that
{
C→avg, C⇐avg

}
are, respectively, odd in κ. This is the reason why both (active and

reactive) helicities
{
C→avg, C⇐avg

}
are sometimes called the (active and reactive) field chirality

parameters [8].

4. Spins and Breakdown of Energy Flows

With both electric and magnetic portions {M→E , M→H } defined in Equation (9), let us
take the divergence of the spin AM M→avg ≡ 1

2 (M
→
E + M→H ). ∇•M

→
E = −2ωεµC⇐

∇•M→H = 2ωεµC⇐ ⇒ ∇•M→avg = 0. (14)

Here, we have made use of the Maxwell equations in Equation (3) along with the
vector identities in Equation (7). See Appendix A for the derivation of Equation (14). From a
physical point of view, ∇•M→avg = 0 signifies the conservation of M→avg, for which we could
find its potential according to the last vector identity in Equation (7). The self-cancelling
feature ∇•M→avg = 0 between {∇•M→E ,∇•M→H } has been fully discussed with a proper
example, with the EM fields induced by electric point dipoles [12]. Notice hence that
Equation (14) holds true not only to an achiral case but also to a chiral case. This fact
∇•M→avg = 0 means that we need to examine {∇•M→E ,∇•M→H } separately for a chiral case.
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Setting A = B∗ in the first vector identity of Equation (7) and taking the imaginary
parts leads to Im

[
∇× 1

2 (B
∗ × B)

]
= −Im[(B∗•∇)B]. This vector identity is then applied

to form the curl ∇×M→avg of the average spin AM M→avg ≡ 1
2 (M

→
E + M→H ) in the following

manner by consulting {M→E , M→H }, as defined in Equation (9).
∇×

(
1
2 M→E

)
= −εIm[(E∗•∇)E] ≡ S→E

∇×
(

1
2 M→H

)
= −µIm[(H∗•∇)H] ≡ S→H

,

{
S⇐E ≡ −εIm[(E∗•∇)E]
S⇐H ≡ −µIm[(H∗•∇)H]

⇒

 S→avg ≡ − 1
2 Im[ε(E∗•∇)E + µ(H∗•∇)H] ≡ ∇×

(
1
2 M→avg

)
S⇐avg ≡ − 1

2 Re[ε(E∗•∇)E + µ(H∗•∇)H]

. (15)

In this way, the average spin linear momentum S→avg is defined as half the curl of Mavg.

The idea behind this definition∇×
(

1
2 M→avg

)
= S→avg is that S→avg is divergence-free, namely,

∇•S→avg = 0. In other words, 1
2 M→avg serves as a vector potential for S→avg.

As a counterpart of
{

S→avg, S⇐avg

}
, the average orbital linear momenta

{
O→avg, O⇐avg

}
are defined below.{

O→E ≡ εIm[E∗•(∇)E]
O→H ≡ µIm[H∗•(∇)H]

,

{
O⇐E ≡ εRe[E∗•(∇)E]
O⇐H ≡ µRe[H∗•(∇)H]

⇒

{
O→avg ≡ 1

2 Im[εE∗•(∇)E + µH∗•(∇)H]

O⇐avg ≡ 1
2 Re[εE∗•(∇)E + µH∗•(∇)H]

. (16)

Therefore, we can exploit Equation (8) in defining the following pair of average reactive
orbital linear momenta

{
O⇐avg, V⇐avg

}
.

O⇐avg ≡ 1
2 Re[εE∗•(∇)E + µH∗•(∇)H] = 1

2∇
(

1
2 ε|E|2 + 1

2 µ|H|2
)
≡ 1

2∇I→avg

V⇐avg ≡ 1
2 Re[εE∗•(∇)E− µH∗•(∇)H] = 1

2∇
(

1
2 ε|E|2 − 1

2 µ|H|2
)
≡ 1

2∇J→avg

. (17)

In this way, we invert the constitutive relations in Equation (3) to express {E, H} in
terms of their curls {∇× E,∇×H} in the following fashion.{

E
H

}
=

1
ω

i
εµ− κ2

(
iκ µ
−ε iκ

){
∇× E
∇×H

}
. (18)

Furthermore, we introduce the following pair of intermediaries.

T± ≡ H∗•(∇)E− (H∗•∇)E± [(E∗•∇)H− E∗•(∇)H]. (19)

Recall the complex Poynting vector PC ≡ P→ + iP⇐ ≡ ω−1E×H∗ defined previously
in Equation (11).

Because both {E, H} show up in PC, there are two ways of treating P→ by use of
Equation (18). One way is to replace H with its pair of curls in P→ ≡ ω−1Re(E×H∗),
whereas the other way is to replace E with its pair of curls in P→ ≡ ω−1Re(E×H∗). We
then take the real and imaginary parts of PC to find both {P→, P⇐} as follows.
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ω2P→ = c+c−

(
O→avg + S→avg

)
+ 1

2 ∆−+Re(T+)

ω2P⇐ = c+c−
(

O→avg + S→avg

)
+ 1

2 ∆−+Im(T−)
. (20)

Here, we made use of Equations (16), (17), and (19). In addition, {c+, c−} and the mean
speed difference ∆−+ were defined before in Equation (4) [1]. This finding in Equation (20)
makes a key contribution to this study. It is noteworthy that our SOCs take place in-
side a single uniform chiral medium. The two terms

{
1
2 ∆−+Re(T+), 1

2 ∆−+Im(T−)
}

in
Equation (20) signify the spin–orbit couplings (SOCs) (or conversions), respectively, in the
active and reactive EM fields. In comparison, an SOC taking place across an interface
between two dissimilar media is discussed in [13].

Consider next the active spin AM density M→avg by averaging its constituents {M→E , M→H }
defined in Equation (9) while by expressing {E, H} in terms of their curls {∇× E,∇×H}
according to Equation (18). Resultantly, we obtain the following set.

ωM→avg = −∆−+
(

O→avg + S→avg

)
− c+c−

c2
D

1
2 Re(T+) ⇒

ωM→avg = −∆−+
[
O→avg +∇×

(
1
2 M→avg

)]
− c+c−

c2
D

1
2 Re(T+)

. (21)

Consequently, a medium chirality gives rise to another kind of SOC, which is the term
c−2

D c+c− 1
2 Re(T+) in Equation (21).

Meanwhile, we have shown in Equation (15) that S→avg = ∇×
(

1
2 M→avg

)
holds true

regardless of the medium chirality. We can think of the relation S→avg = ∇×
(

1
2 M→avg

)
as sort of a hierarchy since S→avg serving as a child (a derivative) is a spatial derivative of
M→avg serving as a parent (an integral or a potential). The second relation in Equation (21)
indicates essentially a recursive relation in M→avg since M→avg appears both as a child and as
a parent. Such a mixed or confused hierarchy has already appeared in Equation (20). The
last relation of Equation (21) tells that the member of the triplet

{
M→avg, O→avg, S→avg

}
now

occupy the same hierarchy or level. This hierarchy issue has been discussed in our recent
paper [12] for an achiral medium. We have thus extended this hierarchy structure to the
chiral case in this study, thereby constituting another key contribution to it.

5. Reduction to the Achiral Case

It is helpful to separately consider an achiral case by setting κ = 0 in all of the formulas
presented so far. Let us now evaluate g± in Equation (12) for an achiral medium, for which
∇× E = iωµH and ∇×H = −iωεE. Resultantly, we obtain {g+, g−} = 2i

{
I→avg, J→avg

}
for

κ = 0. Accordingly, Equation (13) is reduced to the following simpler set.

κ = 0 :

 ∇•P
→ = 0

2J→avg +∇•P⇐ = 0 ,

{
I→avg = I→avg

0 = 0
. (22)

In the first pair of Equation (22), ∇•P→ = 0 is the familiar energy conservation law.
In comparison, 2J→avg +∇•P⇐ = 0 has been explicitly derived in [8] for the first time,
although its variants have been presented elsewhere [15]. Meanwhile, the second pair
of Equation (22) is trivially satisfied. The extra terms in Equation (13) in comparison to
Equation (22) also been identified by [2].
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Conservations laws for time-oscillatory field variables can be symbolically put into
a generic form (⊕) +∇•(⊗) = 0 for time-oscillatory fields. Here, the leaning term (⊕)
refers to something to be conserved, whereas the second term ∇•(⊗) means the spatial
divergence of a flux (⊗). As an example, the relation ∇•P→ = 0 in Equation (22) is an
extreme case where (⊕) = 0. On the other hand, the other relation 2J→avg +∇•P⇐ = 0 in
Equation (22) fits perfectly into (⊕) +∇•(⊗) = 0. This is another reason why the pair{

2J→avg, P⇐
}

of the active energy-difference density and the reactive Poynting vector is
endowed with a legitimate physical importance [15].

Consider Equation (13) for a chiral medium with κ 6= 0. The two relations
1
2 Re(A+) +∇•P = 0 and J→avg +

1
2 Im(g−) +∇•R = 0 in Equation (13) still fit into the

generic form (⊕) +∇•(⊗) = 0. In comparison, the two relations I→avg = 1
2 Im(g+)− κC→

and 1
2 Re(g−) = κK in the second pair of Equation (13) do not fit into (⊕) +∇•(⊗) = 0.

Instead, these two relations offer couplings between the conserved parameters in the first
pair of Equation (13) to the two helicity parameters {C→, C⇐}.

It is well-known for an achiral medium that the active helicity C→ serves as the
conserved parameter (⊕), whereas the average spin angular momentum (AM) density M→avg

defined in Equation (9) served as the flux (⊗) [15]. In other words, the pair
{
C→, M→avg

}
constitutes what is called the ‘chirality (or helicity) conservation law’. The four relations in
Equation (13) obtained for a chiral medium show complicated interrelationships among
the set of various participating bilinear parameters

{
I→avg, J→avg, P→, P⇐, C→, C⇐, g±

}
. This

delicate picture leads us to looking into the spin AM Mavg in depth.
It is useful to examine Equation (20) for an achiral medium with κ = 0.

κ = 0 :

{
ω2εµP→ ≡ k2

DP→ = O→avg + S→avg

ω2εµP⇐ ≡ k2
DP⇐ = O⇐avg + S⇐avg

. (23)

Therefore, both active and reactive Poynting vectors are completely separable into their
respective spin and orbital portions. Such an achiral case has already been investigated for
the free-space EM fields induced by electric point dipoles in [12]. Meanwhile, Equation (21)
is reduced to ωM→avg = −c−2

D c+c− 1
2 Re(T+) for the achiral medium with c+c− ∝ κ = 0,

thereby being not linked to O→avg + S→avg in connection with Equation (23).
When comparing the reduced formulas presented in this section for the achiral case to

those presented in both Sections 3 and 4 for the chiral case, the additional terms arising
from the medium chirality are linked to SOCs. This mixed-up situation for the chiral case
is illustrated in Figure 1b in comparison to a relatively neat situation for the achiral case
illustrated in Figure 1a.

We have already examined in [7,12] several features of both active and reactive bilinear
parameters for the achiral cases. However, these two problems simultaneously share
common features and distinctive differences. In [12], the EM fields induced by an electric
point dipole are investigated mostly using analytical ways. Many of those analytical
formulas indeed show that the reactive bilinear parameters are non-negligible only in
the near field (not far field) of a singularity (i.e., an EM source) immersed in an achiral
medium. Consequently, there are no SOCs in this dipole-induced EM field. In general, the
reactive bilinear parameters play a greater role than active bilinear parameters in assessing
light–matter interactions that are necessary for the proper designs of nano-antennas or
optical nano-probes [4,5,12].
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Meanwhile, we have examined in [7] the EM fields scattered off a dielectric (achiral)
sphere that is immersed in another dielectric embedding medium. This Mie scattering
problem is a standard subject handled in textbooks, such as [6]. We have examined in [7]
its near-field behaviors, which have seldom been considered. Our findings in [7] show not
only the importance of the reactive bilinear parameters but also the existence of SOCs.

How could such an achiral case in [7] exhibit SOCs, unlike the achiral case considered
in [12]? The answer to this all-dielectric system in [7] for the Mie scattering lies in the
existence of the interference effects arising from the interaction between the incident plane
wave (this alone being examined in the next section) and the scattered field. From another
perspective, we find both a transverse-magnetic (TM) mode and a transverse-electric (TE)
mode in the solution to the Mie scattering. In other words, all six components of {E, H} are
nonzero generically for the Mie scatterings [6]. The Mie scattering off a dielectric sphere
immersed in a chiral media considered by [3] belongs to a genuine chiral case according to
the classification of this study. Therefore, we find in [3] not only the coexistence of both TM
and TE modes but also nonzero SOCs. Resultantly, the Mie scatterings provide a possibility
of magneto–electric coupling [15].

6. Example by a Plane Wave

For the achiral case with κ = 0, consider a plane wave of a linear polarization being
denoted by the subscript ‘lin’.

kD ≡
ω

cD
≡ ω
√

εµ, ΠD ≡ exp(ikDz),

 Elin = Qlin
^
xΠD

iZDHlin = Qlini
^
yΠD

. (24)

Here, {x, y, z} and
{

^
x,

^
y,

^
z
}

denote the Cartesian coordinates and the corresponding

unit vectors. Recall from Equation (4) that kD ≡ ω/cD ≡ ω
√

εµ, which represents the base

dielectric with κ = 0. Although the magnetic field is given by Hlin = Z−1
D QD

^
yΠD, it is

written as iZDHlin = Qlini
^
yΠD in Equation (24) for easier comparison with others in the

following. The complex magnitude parameter Qlin is completely at our disposal.
Along the same line of reasoning, consider a single plane wave of circular polar-

ization being denoted by the subscript ‘cir’. For instance, one of its solutions is given
by the following. 

√
2Ecir = Qcir

(
^
x + i

^
y
)

ΠD

√
2iZDHcir = Qcir

(
^
x + i

^
y
)

ΠD

. (25)

Once again, we are left with the single complex magnitude parameter of Qcir as the
sole undetermined coefficient.

Both solutions in Equations (24) and (25) should satisfy the Faraday law∇×E = iωµH
and the Ampère law ∇×H = −iωεE reduced from Equation (3) for κ = 0. Although we
have conducted such proofs, they are not presented here for simplicity. Meanwhile, both
divergence-free conditions ∇•E = ∇•H = 0 are almost trivial to prove. Likewise, both
Helmholtz equations∇2E + k2

DE = ∇2H + k2
DH = 0 are satisfied by looking into the phase

factor ΠD ≡ exp(ikDz) that is common to both Equations (24) and (25).
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From physical perspectives, the comparison of the solutions presented in
Equations (24) and (25) is rewarding. Firstly, the fields {Elin, Hlin} from Equation (24)
are perpendicular to each other, while the fields {Ecir, Hcir} from Equation (25) are parallel
to each other. Secondly, the fields {Elin, Hlin} are in-phase with each other, while the fields
{Ecir, Hcir} are out-of-phase (or in quadrature) to each other. Thirdly, both {Elin, Hlin} and
{Ecir, Hcir} are transverse to the wave-propagation z-direction. Fourthly, both {Elin, Hlin}
and {Ecir, Hcir} admit a single specifiable complex magnitude, namely, Qlin or Qcir.

With the above backgrounds obtained for the achiral case, we turn now to the chiral
case with κ 6= 0. Consider a plane wave of circular polarization inherent in the representa-
tion by the circular vector Q±, as follows [2,3,6].

Q± = Q±
1√
2

(
^
x± i

^
y
)

exp(ik±z). (26)

In addition, the two distinct parameters {Q+, Q−} are complex scalars, i.e., Q± ∈ C.
Unlike Equation (24), it is stressed that no linearly polarized EM fields are meaningful for
this chiral case. The circular vectors in Equation (26) satisfy all three constraints presented
in Equation (5). Especially, the curl condition ∇×Q± = ±k±Q± requires a bit more care,
whence its proof is provided in Appendix B. In view of Equation (25), our circular vector is
endowed with distinct wave numbers {k+, k−}. We take k+, k− > 0 for simplicity, which
translates from k± ≡ ω

(√
εµ± κ

)
in Equation (4) to the constraint on the not-quite-large

chirality parameter, namely, |κ| < √εµ.
The fields for this chiral case are correspondingly evaluated by use of Equation (6),

as follows.

{
Π± ≡ exp(ik±z)

ZD ≡
√

µ/ε
,


√

2E = (Q+Π+ − iZDQ−Π−)
^
x + i(Q+Π+ + iZDQ−Π−)

^
y

√
2iZDH = (Q+Π+ + iZDQ−Π−)

^
x + i(Q+Π+ − iZDQ−Π−)

^
y

. (27)

Both field components are transverse to the wave-propagation z-direction in considera-
tion of the full phase factor exp[i(k±z−ωt)]. We find that only a basis pair
Q+Π+ ± iZDQ−Π− underlies all components in Equation (27), which will be fully ex-
ploited for various evaluations performed in Appendix C. In addition, notice that {E, H} in
Equation (27) are neither parallel nor perpendicular to each other, which stands in sharp
contrast to those in Equations (24) and (25).

Recall that the sole pair of undetermined parameters employed for making things
dimensionless is

{
ωre f , Ere f

}
as regards Equations (1) and (2). Since the dimensional

frequency ωre f is specifiable for our time-oscillatory fields, we are left with a single scalar
Ere f at our disposal. In terms of the dimensionless field variables, we are thus left with a
single complex variable at our disposal. Because both field variables {E, H} are expressed
in terms of the pair {Q+, Q−} of complex variables, we need to specify an additional
complex constraint or two real constraints. In brief,

fconst(Q+, Q−) = 0 ⇔
{

Re[ fconst(Q+, Q−)] = 0

Im[ fconst(Q+, Q−)] = 0
. (28)

One additional complex constraint has been easily implemented in the case with
the Mie scattering off of a single dielectric sphere immersed in a uniform surrounding
achiral dielectric in the process of determining two scattering coefficients [7]. Closer to our
situation in Equation (28) is the case with the Mie scattering off of a single dielectric sphere
immersed in a uniform surrounding chiral dielectric, where one complex ratio between
{Q+, Q−} is fixed in the process of determining four scattering coefficients [3,6]. This
identification of an additional constraint in Equation (28) for the chiral case has seldom
been explicitly stated.
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We now put the predictions made in Sections 3 and 4 to the test. To this goal, we
evaluate the key bilinear parameters introduced so far according to Appendix C. Let us list
them below.  I→avg = ε|Q+|2 + µ|Q−|2

J→avg = 0
,


M→avg =

(
ε|Q+|2 − µ|Q−|2

)^
z

M⇐avg = 0
P→ = − ε|Q+ |2+µ|Q− |2

kD

^
z

P⇐ = 0
,


C→ = − ε|Q+ |2−µ|Q− |2√

εµ

C⇐ = 0 O→avg =
(

εk+|Q+|2 + µk−|Q−|2
)^

z

O⇐avg = 0
,

{
S→avg = 0

S⇐avg = 0

. (29)

We see that the active Poynting vector is directed in the negative propagating direction
of an EM wave, whereas the reactive Poynting vector vanishes. A feature common to all pa-
rameters in Equation (29) is that only magnitudes {|Q+|, |Q−|} are involved in the absence
of any interference parameters {Q∗+Q−, Q∗−Q+}. See [7,16] for a relevant issue of symme-
try and anti-symmetry. This feature is sort of disappointing in view of the utility of the
interference effects [1,15]. In fact, it is found that C→ ∝ Re(Ex H∗x ) according to Appendix C.
However, the relationship between in {Q+, Q−} and {E, H} given by Equation (27) made
the effect of the apparent interference Ex H∗x to be replaced by {|Q+|, |Q−|}.

As we have discussed in the paragraph immediately following Equation (13), both{
C→avg, C⇐avg

}
carry κ so that both {∇•M→E ,∇•M→H } are also odd in κ according to the

leading pair in Equation (14). That is why we have mentioned that {∇•M→E ,∇•M→H }
are linked to the states of polarization, respectively, for the electric and magnetic fields.
Nevertheless, the electric–magnetic dual parameter∇•M→avg is κ-independent thanks to the
perfect cancellation. We expect that both {M→E , M→H } are, respectively, even in κ, according
to the generic evaluation in Equation (14).

In this respect, the actual evaluation of M→avg =
(

ε|Q+|2 − µ|Q−|2
)^

z given in
Equation (29) shows that M→avg is indeed κ-independent. Meanwhile, its constituents
{M→E , M→H } are found from Equation (A10) in Appendix C to be, respectively, half of M→avg.
In other words, both {M→E , M→H } are κ-independent as well. Therefore, our plane wave is
rather special in the sense that the spin AM densities are not properly representative of the
states of polarization.

Based on Equation (29), we can thus establish the following relationships for one pair{
I→avg, P→

}
and for another pair

{
M→avg, C→

}
.

P→

I→avg
= − 1

kD

^
z, M→avg = −√εµC→^

z = −C
→

cD

^
z. (30)

The first relation stands for the energy conservation law, whereas the second relation
stands for the chirality conservation law [15]. The first relation indicates the role of the
phase speed cD ≡ ω/kD in the base embedding dielectric. In other words, the active
Poynting vector is transported by the speed cD ≡ ω/kD evaluated for the base embedding
dielectric, although two phase speeds c± ≡ ω/k± in Equation (4) are underlying the
circular vectors. Therefore, the average active Poynting vector plays a role of a mixer
between the left and right waves. The second relation also corroborates the importance of
the role played by the phase speed cD ≡ ω/kD, which prevails in an averaged sense for
the helicity propagation.
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As seen from Equation (29), a crucial difference between
{

P→, M→avg

}
lies in that P→

remains invariant to the sign of the difference ε|Q+|2 − µ|Q−|2, whereas M→avg depends

on ε|Q+|2 − µ|Q−|2. In this respect, the direction for a part of photocurrents induced
within a chiral Weyl semimetal depends on the handedness of an incident circularly
polarized light [16]. In some sense, the EM-energy current P→ of photons acts simi-
larly to bosons, while the chirality current M→avg acts similarly to fermions, as do the
fermions of photocurrents.

The additional parameters of T± in Equation (19) and of g± in Equation (12) are
evaluated in Appendix C as follows.

Re(T+) = Im(T−) = 0, g+ = 0, g− =
2i
kD

(
εk+|Q+|2 + µk−|Q−|2

)
. (31)

In view of
{

I→avg, J→avg, M→avg, M⇐avg

}
, {P→, P⇐, C→, C⇐}, and

{
O→avg, O⇐avg, S→avg, S⇐avg

}
listed in Equation (29) together with {g+, g−} listed in the above Equation (31), let us see
how the four conservation laws in Equation (13) read.

1
2 Re(g+) +∇•P→ = 0

J→avg +
1
2 Im(g−) +∇•P⇐ = 0

⇒


0 + 0 = 0

0 + εk+ |Q+ |2+µk− |Q− |2
kD

+ 0 6= 0 I→avg + κC→ = 1
2 Im(g+)

1
2 Re(g−) = κC⇐

⇒

 ε|Q+|2 + µ|Q−|2 − κ
ε|Q+ |2−µ|Q− |2√

εµ 6= 0

0 = 0

. (32)

Here, k± ≡ ω
(√

εµ± κ
)

is from Equation (4). Therefore, the two conservation laws
J→avg +

1
2 Im(g−) +∇•P⇐ = 0 and I→avg + κC→ = 1

2 Im(g+) are not generally satisfied by
the plane wave of the circular vectors described by Equations (26) and (27). Furthermore,
J→avg +

1
2 Im(g−) +∇•P⇐ = 0 is never satisfied from a simple observation.

In comparison, let us check I→avg + κC→ = 1
2 Im(g+) in more detail, whence we obtain

the following constraint.

ε|Q+|2 + µ|Q−|2 = κ
ε|Q+|2 − µ|Q−|2√

εµ
⇒ |Q+|2

|Q−|2
= −µ

ε

1 + cDκ

1− cDκ
. (33)

Recall that we have taken k+, k− > 0 for simplicity in our analysis, which translates
from k± ≡ ω

(√
εµ± κ

)
in Equation (4) to 1± |cDκ| > 0 with cD ≡ (εµ)−1/2. Consequently,

the requirement cD|κ| > 1 in Equation (33) is hard to be satisfied in view of a usually small
chirality parameter. Under such a rarely satisfiable constraint cD|κ| > 1, the magnitude ratio
between {|Q+|, |Q−|} is then determined. For instance, the boundary-value problems for
the Mie scattering offer such constraints that lead to determining the Mie coefficients [3,6,7].
By the way, we will present elsewhere our analysis in case that cD|κ| > 1.

Since the sum O→avg +S→avg appears in both of the leading terms of Equations (20) and (21),
it can be eliminated to produce the following formula.

ω
(

κωP→ + M→avg

)
+

1
2

Re(T+) = 0. (34)

Therefore, it is interesting that the active Poynting vector P→ is related to the average
spin AM density of M→avg, but with an additional interference term of 1

2 Re(T+). This
relation represents the destruction of a well-organized hierarchy that holds true only for an
achiral case.
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Figure 2 illustrates how
{

κωP→, M→avg

}
is directedly interrelated with each other in the

chiral case in Figure 2b, while both are apparently decoupled in the achiral case in Figure 2a.
In other words, we obtain a reduced form, M→avg +

1
2 Re(T+) = 0, from Equation (34) for

the achiral case, whereby the SOC-like term 1
2 Re(T+) only influences M→avg. In contrast, the

SOC term 1
2 Re(T+) in Equation (34) is shared between

{
κωP→, M→avg

}
for the chiral case,

thus rendering fuzzy a demarcation between
{

κωP→, M→avg

}
. Such a fuzzy demarcation

between two of the key bilinear parameters is an example of what we call a destroyed
hierarchy in our study. The vertical double-head arrow in blue color shown in Figure 2b
indicates how the hierarchy in Figure 2a is destroyed by the medium chirality.
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Figure 2. (a) A decoupled relation M→avg + 1
2 Re(T+) = 0. (b) A coupled relation

ω
(

κωP→ + M→avg

)
+ 1

2 Re(T+) = 0. The big blue double-headed arrows indicate interactions. The

big downward arrow in red boundary indicates the integral-differential relation S→avg ≡ ∇×
(

1
2 M→avg

)
.

The integrand M→avg is considered higher than the derivative S→avg by one step in the hierarchy.

From Equation (29) and Re(T+) = 0 in Equation (31), the constraint in Equation (34)
can be described with the following.

κωP→ + M→avg = 0 ⇒ |Q+|2

|Q−|2
=

µ

ε

1 + cDκ

1− cDκ
(35)

This condition in Equation (35) is the negative of that in Equation (33). Otherwise put,
both Equations (33) and (35) are incompatible to each other.
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7. Well-Posed Problems for Electromagnetic Waves through Chiral Media

The reflection transmission across a single planar interface between an achiral dielectric
and a chiral dielectric is also handled in an analogous way [11]. Both across an achiral–
chiral interface in [11] and across an achiral–achiral interface in [5] with induced surface
polarizations, we find that the TM mode is coupled with the TE mode [9]. In comparison,
the coupling between {E, H}, as seen from Equation (27), stems from the coupling between
{Q+, Q−}, thereby being of a different nature since only two field components appear on
the xy-plane. Such a TM-TE coupling leads invariably to a spin–orbit coupling (SOC), as
seen in Equations (13) and (20). See ‘SOC’ in the bottom of Figure 1b.

The formulas presented in Sections 3 and 4 are largely generic to the EM waves
propagating through a chiral medium. In comparison, the plane-wave EM fields in
Equations (26) and (27) constitute just one possible set of solutions to the Maxwell equa-
tions summarized in Equation (3). We have not searched for all possible solutions to
Equation (3). In this respect, one analytic solution has been presented in [8], where a TM–
TE coupling and a SOC arise from two obliquely colliding waves. However, it turns out
that the plane-wave EM fields in Equations (26) and (27) do not satisfy several conservation
laws involving the bilinear parameters formed from the field variables, for instance, as seen
in Equations (32), (33), and (35).

To see what kind of difficulties might occur if bilinear parameters are handled instead
of the original linear parameters, consider the following series of equations.

0 = (a− b)(a∗ + b∗) = a∗a− b∗b− a∗b + b∗a

= |a|2 − |b|2 + b∗a− a∗b = |a|2 − |b|2 + 2iIm(b∗a) ⇒
{
|a|2 = |b|2

Im(b∗a) = 0
. (36)

Here, a, b ∈ C, namely, complex scalars and |a|2 ≡ a∗a are the magnitude squared or
intensity. The solutions to Equation (36) can be alternatively expressed as below.{

a = b
a∗ = −b∗

⇔
{

a = b
a = −b

. (37)

Of course, the bilinear equation (a− b)(a∗ + b∗) = 0 admits two solutions a = ±b.
Suppose that a = b is the sole physically meaningful solution, whereas a = −b is physically
meaningless. Notice that a = ±b is a pair of special solutions to |a|2 = |b|2, where
a = b exp(iϕ) with ϕ ∈ R. Only a special pair ϕ = ±π corresponds to a = ±b, respectively.
Therefore, selecting ϕ = ±π from the continuous set with ϕ ∈ R causes one difficulty.
In addition, choosing ϕ = +π between ϕ = ±π causes another difficulty, as we have
encountered between Equations (33) and (35).

With the discussions on Equations (36) and (37) at hand, let us revisit
Equations (26) and (27). We then take an achiral limit κ → 0 for the chiral case, thereby
obtaining Π± ≡ exp(ik±z)→ ΠD ≡ exp(ikDz) since k± → kD , according to Equation (4).
Correspondingly, Equations (26) and (27) approach the following.

κ → 0 ⇒ k± → kD ⇒ Π± ≡ exp(ik±z)→ ΠD ≡ exp(ikDz)
√

2E→
[
(Q+ − iZDQ−)

^
x + i(Q+ + iZDQ−)

^
y
]

ΠD

√
2iZDH→

[
(Q+ + iZDQ−)

^
x + i(Q+ − iZDQ−)

^
y
]

ΠD

. (38)
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However, we do not recover either of Equations (24) and (25), where we have only a
single magnitude parameter out of {Qcir, Qcir}. Let us take a pair of further special cases
{Q+ = Q−, Q+ = −Q−} in the following manner.

κ → 0 ⇒ ΠD ≡ exp(ikDz)

Q+ = +Q− :


√

2E→ Q+

[
(1− iZD)

^
x + i(1 + iZD)

^
y
]

ΠD

√
2iZDH→ Q+

[
(1 + iZD)

^
x + i(1− iZD)

^
y
]

ΠD

Q+ = −Q− :


√

2E→ Q+

[
(1 + iZD)

^
x + i(1− iZD)

^
y
]

ΠD

√
2iZDH→ Q+

[
(1− iZD)

^
x + i(1 + iZD)

^
y
]

ΠD

. (39)

Hence, either of these special forms cannot be reconciled with either of
Equations (24) and (25). Both Equations (38) and (39) confirm once again that the so-
lutions in Equations (26) and (27) for the chiral case are specially constructed such that
they are not reduceable to any for the achiral case. In this respect, the reductions made in
Section 5 for the achiral case from the chiral case should be understood carefully.

Instead, respectively, taking Q− = 0 and Q+ = 0 in Equation (38) gives rise to the
following co-propagating waves [8,17].

κ → 0 ⇒ ΠD ≡ exp(ikDz)

Q− = 0 :


√

2E→ Q+

(
^
x + i

^
y
)

ΠD

√
2iZDH→ Q+

(
^
x + i

^
y
)

ΠD

⇒
{

C→ = −Z−1
D |Q+|2

C⇐ = 0

Q+ = 0 :


√

2E→ −iZDQ−

(
^
x− i

^
y
)

ΠD

√
2iZDH→ iZDQ−

(
^
x− i

^
y
)

ΠD

⇒
{

C→ = −Z−1
D |Q−|

2

C⇐ = 0

. (40)

It is interesting enough that we essentially recover the circular vector in Equation (25)
solely with this very special choice of either Q− = 0 or Q+ = 0. The choices in Equation (40)
denote either clockwise or counterclockwise rotation. Moreover, {E, H} in Equation (40) are
parallel to each other [17,18]. In addition, there exists a nonzero active helicity in both cases,
as written above. Nonetheless, notice that {E, H} are out of phase with each other.

One significant difference lies in that the EM waves in Equation (40) are valid for
propagating waves in an unbounded domain, whereas the EM waves under consider-
ation by [17,18] handle standing waves in an enclosed region, for instance, in a cavity
resonator. Hence, boundary conditions are incorporated by [17,18]. In connection with
Equations (36) and (37), we have shown the necessity of contriving an additional condition
so that only a single complex magnitude parameter is left undetermined.

Recall that linear partial differential equations of second order are classified into three
types: parabolic, elliptic, and hyperbolic [19,20]. According to such a classification, our
system of the Maxwell equations is hyperbolic if and only if the medium properties {ε, µ, κ}
for both metal and chiral media are real-valued or loss-free. When those medium properties
are taken to be complex-valued or lossy, the Maxwell equations become parabolic. In an
analogous way, the fluid dynamics of viscous fluids is parabolic [20], whereas that of
inviscid (non-viscous) fluids is hyperbolic. Hyperbolic partial differential equations are
accompanied by characteristic curves along which certain information is carried with
distinct speeds [19].
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In our study, Equation (4) shows two characteristics (also known as the bi-characteristic
curves)

√
εµ± κ ≡ cD ± κ for κ 6= 0. The bi-characteristics in this study are transverse in the

realm of the Maxwell equations, whereas the bi-characteristics in [21] are longitudinal in the
realm of the Euler equations. Recall in this respect that compressible inviscid fluids support
only longitudinal waves. Our chiral case considered in the preceding section involves plane
waves, while the detonation waves examined in [21] involve spatially structured waves.
We find structured lights either in the surface plasmon waves or in propagating beams of
finite-sized cross-sectional areas.

It Is well-founded that compressible inviscid fluid flows admit bi-characteristics that
consist of the reference sound speed plus and minus the fluid speed [8,19,20]. In this respect,
it is illustrative to draw an analogy between our chiral case and our earlier work on fluid me-
chanics [21]. For the detonation flow in [21], one characteristic out of the bi-characteristics
refers to the downstream propagation of signals, whereas another characteristic refers to
the upstream propagation of signals. By applying a causality requirement [16,21], we were
able in [21] to eliminate the unphysical upstream (or backward) signals.

In comparison, the way causality is heeded is different in our study. In other words,
we kept both left and right waves {Q+, Q−} in Equations (26) and (27). Let us call upon
a relevant concrete example by supposing that the surface plasmon waves are supported
along a planar interface between a metal and a chiral medium. On the resonances for
time-periodic EM fields, the wave number along the interfacial plane and the temporal
frequency satisfies a certain dispersion relation [22]. A key observation is that one kind
of those dispersion curves has been eliminated since the corresponding phase speed is
superluminal. From a physical viewpoint, an acceptable phase speed should be lower
than the phase speed of the corresponding achiral embedding medium. In the symbols,
min
+,−
|c± ≡ ω/k±| < cD ≡ ω/kD should be satisfied in consultation of Equation (4). For the

choice of κ > 0, we arrive thus at c+ ≡ ω/k+ < cD ≡ ω/kD < c− ≡ ω/k−.
It is worthwhile stressing that the elimination of the backward signals in [21] was

performed only in the far downstream location, i.e., at one of the boundaries of the semi-
infinite problem domain. When interpreted for our chiral case, boundary conditions
would play a key role in determining one of the complex magnitude parameters in con-
nection with Equations (36) and (37). There have been no proper boundary conditions for
our plane waves considered in the preceding section, so we encountered difficulties in
Equations (32), (33), and (35).

Finding a meaningful solution to EM waves for a given problem domain and/or a
specified set of boundary conditions depends on a particular wave configuration. A
general theory is not yet available. With the arguments made so far in this and the
preceding sections taken together, the validity of the plane-wave EM fields provided by
Equations (26) and (27) is questionable.

These difficulties with the conservation laws discussed in this study are corroborated
by an analogous difficulty in finding suitable reference papers related to the conservation
laws dedicated to the electromagnetic fields propagating through chiral media. Instead,
various point-like particles with magneto-electric polarizabilities have been extensively
examined in the settings of conservation laws for both active and reactive parameters
through achiral media [15].

8. Discussions

Concerning Equations (14) and (29), we have discussed either evenness or oddness
of
{
C→avg, C⇐avg

}
and/or {M→E , M→H } with respect to the chirality parameter κ. In sum-

mary, the κ-dependence of any bilinear parameter, as predicted by the generic theory in
Sections 3 and 4, cannot be ascertained until a specific example is thoroughly examined, as
in Section 6 [15]. That is why we have examined

{
C→avg, C⇐avg

}
and/or {M→E , M→H } for an-

other chiral case with counter-propagating waves in [8]. It is noteworthy that
{
C→avg, C⇐avg

}
and/or {M→E , M→H } are generally nonzero even for achiral cases, as we have recently exam-
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ined in [7,12]. Consequently, each wave configuration needs to be closely investigated for
the behaviors of

{
C→avg, C⇐avg

}
and/or {M→E , M→H }.

In addition, we have come to some questions. Both the active parameters of the Poynt-
ing vector and the average spin AM density are solenoidal, namely, ∇•P→ = ∇•M→avg = 0.
Then, what are their respective vector potentials? We need to be careful in this respect
since ∇•P→ = 0 is solely in the achiral case, as seen Equations (13) and (22), whereas
∇•M→avg = 0 is in both achiral and chiral cases, as discussed in Equation (14). Consequently,
we suppose that the vector potential to M→avg for the chiral case will be much harder to find
than that for the achiral case [2]. In both Figure 1a,b, the symbol∇× (?), with a downward
arrow attached, denotes such a vector potential (?), whence ∇•[∇× (?)] = 0. It will be
especially challenging to find a potential, marked by (?) in Figure 1a, for the Poynting
vector in the achiral case such that P→ = ∇× (?) based on ∇•P→ = 0.

The energy conservation of chiral media has also been examined by [23], where they
employed not time-periodic but time-transient field variables. It is interesting that their
energy density contains ‘source or sink terms’, which are SOC terms in our language.
Instead of seriously discussing the SOCs as interactions or interferences, as in this study,
they examined those SOC terms from the viewpoint of the zilch structure.

Spin–orbit coupling (SOC) plays crucial roles in diverse phenomena involving not
only electrons [16] but also photons [10,24]. The pair {S, O}, and its variants introduced by
Equations (15) and (16), refer to the spin and orbital linear momenta, respectively. Their
angular momenta are obtained to be {r× S, r×O} by choosing a suitable position vector r.
Therefore, the spin angular momentum (SAM) r× S and the orbital angular momentum
(OAM) r×O are obtained. The characters of SAM and OAM go, roughly speaking, hand
in hand with their respective linear momenta. SAM is associated with its internal content
of circular polarization through S→avg ≡ ∇×

(
1
2 M→avg

)
in Equation (15).

In comparison, OAM represents the beam property along its propagation direction
(with some subtleties) [24]. The suitable employment of SAM and OAM for desired
functionalities is key to quantum information [25]. Regarding practical optical setups,
structured beams of finite sizes are normally accompanied by various SOCs [24], for which
q-plates with various azimuthal patterns were employed. Interconversions between SAM
and OAM can be accomplished in many ways, for instance, by altering the handedness of
the q-plates [25].

SOCs have been investigated for a tightly focused right-handed circularly focused beam
in [26]. Although only the electric portion M→E ≡ εIm(E∗ × E) in Equation (9) has been on
the agenda for the spin AM density, its two components transverse to the main propagation
direction exhibit clear transitions along the longitudinal direction. In addition, the evolution
of the phase angle between those two transverse components is clearly illustrated to exhibit
helical structures [26]. Moreover, the spin AM density has been investigated in [27] for
focused beams, where all six components of {M→E , M→H } in Equation (9) are discussed in
more generality and rigor in view of the electric–magnetic duality.

The light spin contains the phase information because of the interference effects, as
can be seen from the Stokes’ parameters. In this perspective, polarization and/or phase
encoding are/is a relevant realization [28]. Recall in this respect that our study has only
been concerned with the linear Maxwell equations modified in a linear fashion by the
medium chirality. Notwithstanding, the spin–orbit coupling (SOC) arises from considering
bilinear parameters, for instance, such as E∗ × E in Equation (9). In this sense, the analytical
results obtained from our study on linear problems can be exploited for linear optical
elements that are known to entail many interesting quantum advantages [27].
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Further, consider quantum information. Quantum information consists of a multitude
of complex-valued parameters (qudits) [25]. Suppose that we are to transmit such quantum
information from one place to another over a certain time duration [27,28]. A single
complex-valued parameter can be represented by an amplitude and a phase. Hence,
multiple parameters encompass a variety of phase relationships among their constituent
complex parameters. Both amplitudes and phases undergo attenuations and dephasing,
respectively, over time and distance during transports. Oftentimes, coherent phase relations
are more valuable than amplitudes that undergo attenuations. Longer, faster, and more
secure transports of quantum information can be facilitated by photons [25]. Especially,
structured light such as beams of finite cross-sectional areas [26,29] offers various quantum
advantages in comparison to the simplest plane wave considered in Section 6.

Let us take examples at the device level. For instance, chiral Weyl semimetals exhibit
both longitudinal conductivity and Hall (sidewise) conductivity because of their fermionic
nature that is sensitive to electron spins. As another example, the photonic spin Hall
effect (PSHE) considered in [10] is suitable for quantum weak measurements, whereby tiny
angular rotations of chiral molecules could be measured as in [30].

As another example, spin-momentum locking is accompanied by SOCs [31], which
are often manifested by the appearance of a cut-off frequency below which solutions to a
certain pertinent problem are disallowed. In the case of spoof surface-plasmon polaritons,
we encounter such a low-frequency cut-off that arises from the sort of energy coupling
(energy redistribution). In addition, we recognize in [31] the importance of the near-field
parameters for understanding an SOC taking place along material interfaces [10,13]. In an
analogous line of reasoning, a low-frequency cut-off also takes place in the case of surface
plasmon polaritons at a chiral–metal interface [22], which certainly involves SOCs.

Meanwhile, a Sagnac interferometer is based on the interference effects arising from
two waves with distinct phase speeds. These effects may involve matter, electrons, or
photons [27,32]. Interference effects arising from the differential rotations employed by a
Sagnac loop [31] bear a resemblance to the counter-rotating pair of a left wave and right
wave on a circular basis, as examined in this study and [8]. By suitable Sagnac-loop-like
configurations, SOCs can thus be manipulated to improve interference visibility [27]. In
addition, we are interested in how an SOC, if any, enhances the lifetime of phase correlations
and/or the total channel transmittance [27]. In an analogous concern, how an SOC affects
phase locking will be of interest to quantum information [28].

We have seen in the preceding section that both the left and right waves in our chiral
case are kept alive while forming a certain eigenvalue problem. However, the resulting
dispersion behaviors are examined by selecting only one branch of solutions while deleting
the other branch based on such a causality requirement on subluminal phase speeds. Stated
from another perspective, the number of multiple solutions is greater than the number of
independent information entities by one [19].

Having tasted the importance of the interactions in the preceding section and the
spin–orbit coupling (SOC) in this section, let us generalize the coupling dynamics a little
further. Figure 3 illustrates a mass–spring system with a coupling spring. For the sake
of simplicity, we take an identical mass m = ma = mb and an identical spring constant
K = Ka = Kb. An inter-mass coupling is achieved by a coupling spring constant κ. When
setting κ = 0, we obtain an uncoupled system. Both masses are assumed to move only in
the horizontal direction with the respective displacements {xa, xb}. With the linear springs
assumed, the coupled system is described by the following pair ω± of frequencies in the
case of time-periodic motions with {xa, xb} ∝ exp(iωt) [33].

ωκ=0 ≡
√

K
m
⇒ (ω±)

2 = (ωκ=0)
2 ± 2κ

m
≡ K± 2κ

m
. (41)
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Figure 3. (a) A mass-spring system for an identical mass m and an identical spring constant K. The
coupling spring constant is given by κ. (b) An uncoupled system with κ = 0. (c) A coupled system
with κ 6= 0. (d) A coupled system with κ 6= 0 along with other constraints.

Here, it is assumed that K > 2κ ≥ 0 to ensure (ω±)
2 > 0 for a loss-free

system for which all frequencies are treated as positive. We encounter another pair
ω± ≡

√
m−1(K± 2κ) of a bi-characteristics-like feature. In Figure 3, the horizontal dotted

line passing through Figure 3b–d denotes the frequency label of ωκ=0 ≡
√

K/m for the
uncoupled system as a reference. In comparison to this reference value, the coupled system
shown in Figure 3c carries two distinct frequencies ω±, one being ω+ > ωκ=0 and the other
being ω− < ωκ=0.

For comparison, we learn from the Zeeman splitting that SOCs lead to a multitude
of distinct energy levels (or frequencies) [32,34]. The selection rule considered in [34] is
executed by eliminating one term from a two-term Hamiltonian. Resultantly, selection rules
based on quantum mechanics render realizable only some portion of a mathematically
available spectrum. Figure 3d shows that only the higher frequency ω+ is selected for the
purpose of illustration. In the case of the surface-plasmon waves on resonance as discussed
in the preceding section [22], the corresponding selection rule was that a physically real-
izable wave should be subluminal. A low-frequency portion of the spectrum is normally
eliminated in favor of a high-frequency portion such that this low-frequency cut-off reflects
the enhanced energy level associated with the coupling effects.

From another perspective, the selection rule for the Zeeman splitting depends, among
others, on the system configuration, such as Faraday or Voigt, which determines how
a system interacts with its environment [34]. In this sense, the subluminal constraint
imposed in [22] is interpretable as the condition of the underlying dielectric embedding
medium imposed on the chiral system. The causality restriction discussed for the det-
onation wave in the preceding section reflects the boundary condition far downstream
as a constraint arising from its environment. Quantum dephasing takes place from envi-
ronmental effects as well [25]. In this sense, Figure 3d schematically illustrates that the
lower-frequency ω− has been eliminated for some reasons, one of which is more-than-one-
dimensional effects, as considered in [22].
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9. Epilog

As a sidestep, the Berry phase and relevant topological concepts offer far-reaching
implications over many areas of human understanding of both nature and the universe.
The interests of Michael Berry spanned both fluid mechanics and optics. This study has
been inspired by his papers on singularities, vortices, energy flows [35], electric–magnetic
duality, curvature, geometry, bent waveguides, and even oceanographical fluid currents,
among others. In this regard, the decomposition rule ω2εµP→ = O→avg + S→avg presented
in Equation (23) for the achiral case has been discussed in [35] with the assistance of
fluid-like streamlines.

Following the spirit of M. Berry, the author tried to present in this study a coherent
view of several fields: fluid mechanics, optics, solid-state physics, and quantum information.
By the way, the ‘coherence’ is one of the key assumptions underlying the turbulence study
by W. Heisenberg for his Ph.D. degree [36]. It happens that one of the impediments to the
better realization of free-space quantum communication is the turbulence-induced modal
cross-talk when resorting to spatial multi-modes to enhance quantum dimensionality [25].
Those cross-talks would lead to both decays in quantum entanglements and the decoupling
of SOCs (if any). Such a turbulence effect is one of the environmental effects in view of
Figure 3d and its associated discussion in the preceding section.

We know the importance of ‘coherence’ in quantum information. In this aspect,
ordinary researchers do not appreciate how hard it is to maintain a common ‘coherent phase
factor’ exp(−iωt) for all of the participating multiple variables in a system of sub-problems.
The proper maintenance of coherence lies at the heart of any information transports. In this
connection, many Heisenbergs will be sought after either as fluid-dynamics scientists or as
quantum scientists. Th theory of statistical turbulence fostered by Heisenberg will certainly
be of help to guard against the detrimental turbulence effects.

From another perspective, the optical science of Mie scattering has been inspired by the
need to measure how turbid a fluid solution is by dispersed small particles [6]. The optical
tools (both analytical and experimental) available for Mie scatterings are also instrumental
in unfolding the nature of fuel combustion, which is necessary for developing efficient
transportation vehicles. We come across the concept of the orbital cannon among many
ideas perceived and advanced by I. Newton. Probably, I. Newton preceded W. Heisenberg,
who then preceded M. Berry, as scientists undertaking not only fluid mechanics but also
optics and/or physics.

It is worth stressing again that the validity of the generic theory presented so far in
this study should be checked for each concrete example with suitable side conditions. One
such example is provided in [22] about the surface plasmon resonance (SPR) between a
loss-free chiral medium and a loss-free metal. Notice that this SPR problem is endowed
with a proper set of boundary conditions, as stressed in Section 7 [3,5,6,11].

We have reworked in [37] the same SPR from different perspectives by deriving a
dispersion relation that is identical to what has been presented by [22]. In comparison to
the results in [22], we have examined in [37] the attendant key bilinear parameters of the
spin AM density, the electromagnetic helicity, and the Poynting vectors, among others. By
scrutinizing the spatial profiles of these bilinear parameters, we were able to identify the
underlying physical workings, such as translation–rotation interactions, spatial inversions
of a longitudinal spin AM, etc. Specifically, we have examined both

{
C→avg, C⇐avg

}
and/or

{M→E , M→H } [37]. Notice that the achiral cases with evanescent waves have already been
examined by a variety of authors [13,15].
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We have so far discussed which dynamics of electromagnetic waves ensues for a pre-
scribed chirality parameter κ, as presented in Equation (3). This process may be considered
chirality-induced electromagnetic waves. The other way around is a ‘electromagnetically
induced chirality (EIC)’ [38], where an atomic vapor is illuminated by a control laser and a
pump laser. The resulting electromagnetically induced transparency (EIT) could be accom-
panied by an effective medium chirality. This situation with external excitations is distinct
from the intrinsic chiral medium, where an ensemble of passive chiral nano-objects (say,
either sugar or protein molecules) is dispersed into an achiral host medium [3]. There are
several issues as regards implementing such an EIC into our theoretical analysis made in
this study. One aspect is to examine full time-dependent (transient) Maxwell equations,
unlike our time-harmonic fields.

Another interesting phenomenon arises when trying to examine a surface plasmon
resonance (SPR) across a chiral–metal interface. Here, the mathematical analysis is rather
simple when the chiral medium consists of passive chiral materials dispersed in an achiral
medium [3,22,37,39]. In contrast, an SPR becomes more interesting if an EIC medium is
taken to be a chiral medium, as considered by [40], because an SPR could take place even
across a chiral–dielectric interface if a strong coupling were applied by a control field.
We encounter in [40] a TM–TE coupling or an SOC, as we discussed so far in this study
and [22]. What remains to be investigated for an SPR is the various conservation laws, as in
Equations (12) and (13) of this study. In terms of practical realizations, a special excitation
configuration should be implemented to incorporate both control and probe fields in the
setting of an SPR.

10. Conclusions

We have made a thorough analysis of the electromagnetic waves propagating through
loss-free and homogeneous chiral media in an unbounded space. By our choice of conser-
vation laws, we have thus identified the importance of spin–orbit couplings. The spin–orbit
couplings make the conservation laws listed by Equations (12)–(17) rather complicated and
ridden with extra terms that are not present for an achiral case. Such explicit and organized
forms of conservation laws have seldom been presented anywhere. The crucial role of
spin–orbit couplings is illustrated in Figures 1 and 2, whereby the neat hierarchy exhibited
by the achiral case is destroyed by the presence of the spin–orbit couplings accompanied
by the chiral case.

By testing the validity of those conservation laws with a simple plane wave of coupled
circular waves, we have encountered some inconsistencies in the conservation laws. These
inconsistencies stem from a pair of phase speeds or refractive indices due to nonzero
medium chirality. By considering appropriate boundary conditions necessary to deal with
practical wave configurations, we have found ways out of such inconsistencies. Such
inconsistencies and the attendant resolutions helped us to recognize the crucial aspects of
well-posed problems for electromagnetic waves. We have learned that spin–orbit couplings
should take more diverse forms when material losses are included. In addition, the
roles of the reactive parameters turn out to be very useful in addition to the traditional
active parameters.
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Appendix A

With the help of the Maxwell equations in Equation (3), let us derive ∇•M→avg = 0 in
Equation (14) based on Equation (9).

∇•(A× B) = (∇×A)•B− (∇× B)•A ⇒

 ∇× E = ωκE + iωµH

∇×H = −iωεE + ωκH

∇•M→E = εIm[∇•(E∗ × E)] = εIm[(∇× E∗)•E− (∇× E)•E∗]
= εIm[(ωκE∗ − iωµH∗)•E− (ωκE + iωµH)•E∗]
= −2ωεµRe(E•H∗) ≡ −2ωεµC⇐

∇•M→H = µIm[∇•(H∗ ×H)] = µIm[(∇×H∗)•H− (∇×H)•H∗]
= µIm[(iωεE∗ + ωκH∗)•H− (−iωεE + ωκH)•H∗]
= 2ωεµRe(E•H∗) ≡ 2ωεµC⇐ ⇒ ∇•M→avg = 0

. (A1)

Furthermore, we start with Equation (18) in handling the complex Poynting vec-
tor PC ≡ P→ + iP⇐ ≡ ω−1E×H∗, defined previously in Equation (11). Because both
{E, H} show up in PC, there are two ways of treating P→ by the use of Equation (18).
One way is to replace H with Equation (18) in P→ ≡ ω−1Re(E×H∗), whereas the other
way is to replace E with Equation (18) in P→ ≡ ω−1Re(E×H∗). Hence, there are two
expressions as follows.

ω2
(

εµ− κ2
)

PC =

{
E× [−iε(∇× E)− κ(∇×H)]∗ = iεE× (∇× E∗)− κE× (∇×H∗)

[−κ(∇× E) + iµ(∇×H)]×H∗ = κH∗ × (∇× E)− iµH∗ × (∇×H)
. (A2)

We then apply the second vector identity given in Equation (7) to the above equations,
whence an average of the two is taken.

ω2(εµ− κ2)PC = 1
2 i[εE•(∇)E∗ − µH∗•(∇)H]− 1

2 i[ε(E•∇)E∗ − µ(H∗•∇)H]

+ 1
2 κ[H∗•(∇)E− (H∗•∇)E− E•(∇)H∗ + (E•∇)H∗]

. (A3)

We then take the real and imaginary parts of PC to find both {P→, P⇐}, as follows
with the help of the definitions in Equations (15), (16), and (19).{

ω2(εµ− κ2)P→ = O→avg + S→avg +
1
2 κRe(T+)

ω2(εµ− κ2)P⇐ = O⇐avg + S⇐avg +
1
2 κIm(T−)

. (A4)

By employing various auxiliary relations in Equation (4), Equation (A4) is recast into
Equation (20).
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Likewise, consider the average spin AM density M→avg introduced in Equation (9). We
can handle its constituents {M→E , M→H } defined in Equation (9) separately by expressing
{E, H} in terms of their curls {∇× E,∇×H} according to Equation (18). Resultantly, we
obtain the following set. ω

(
εµ− κ2)M→E = −εκIm[E∗•(∇)E− (E∗•∇)E] + εµRe[E∗•(∇)H− (E∗•∇)H]

ω
(
εµ− κ2)M→H = −µεRe[H∗•(∇)E− (H∗•∇)E]− µκIm[H∗•(∇)H− (H∗•∇)H]

⇒ ω
(
εµ− κ2)M→avg = −κ

(
O→avg + S→avg

)
− εµ 1

2 Re(T+)

. (A5)

Here, we have implemented the second vector identity in Equation (7) as well.
By employing various auxiliary relations in Equation (4), Equation (A5) is recast into
Equation (21).

Appendix B

It is worth stressing that all of the bilinear parameters handled in this study
happen not to carry the propagation factor exp(ik±z) because of the cancellation
[exp(ik±z)]∗ exp(ik±z) = 1.

It is helpful to recognize µZ−2
D ≡ ε and to formally define the propagation phase factor

as follows.

µZ−2
D ≡ µ

ε

µ
= ε,

{
Π± ≡ exp(ik±z)
Π∗± ≡ exp(−ik±z) ⇒ dΠ±

dz
= ik±Π±. (A6)

Let us prove that Q± = Q± 1√
2

(
^
x± i

^
y
)

exp(ik±z) in Equation (26) indeed satisfies

the curl condition ∇×Q± = ±k±Q± given in Equation (5).

Q± = Q± 1√
2

(
^
x± i

^
y
)

exp(ik±z) ⇒
√

2Q±
Q± =

(
^
x± i

^
y
)

Π± ≡ Q̃±x
^
x + Q̃±y

^
y

√
2∇×Q±

Q± =

(
∂Q̃±z

∂y −
∂Q̃±y

∂z

)
^
x +

(
∂Q̃±x

∂z −
∂Q̃±z

∂x

)^
y +

(
∂Q̃±y

∂x −
∂Q̃±x

∂y

)
^
z

= − ∂Q̃±y
∂z

^
x + ∂Q̃±x

∂z
^
y = −(ik±)Q̃±y

^
x + (ik±)Q̃±x

^
y

=

[
−(ik±)(±i)

^
x + (ik±)(1)

^
y
]

Π± = ±k±

(
^
x± i

^
y
)

Π± ≡ ±k±
√

2Q±
Q±

(A7)

We have thus proved ∇×Q± = ±k±Q±. In addition, we have found the usefulness

of the ‘tilde’-ed components
{

Q̃±x, Q̃±y, Q̃±z

}
, where it happens that Q̃±z = 0.

Appendix C

The following proof make use of the ‘tilde’-ed notation
{

Ẽx, Ẽy, Ẽz, H̃x, H̃y, H̃z

}
for

the field variables, which turned out to be quite convenient for our ensuing proofs. We
rely on Equation (A6) whenever necessary. We are now to provide derivations of key
parameters for the EM field associated with the pair of plane waves with the circular vectors

Q± = Q± 1√
2

(
^
x± i

^
y
)

exp(ik±z) in Equation (26). The associated fields in Equation (27)

are rewritten as follows with the help of the tilde-ed variables
{

Ẽx, H̃x

}
, for which the

remaining quartet
{

Ẽy, Ẽz, H̃y, H̃z

}
is no longer necessary.
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{
Ẽx(z) = Q+Π+ − iZDQ−Π−

H̃x(z) = Q+Π+ + iZDQ−Π−
,


√

2E ≡ Ẽx
^
x + Ẽy

^
y = Ẽx

^
x + iH̃x

^
y

√
2iZDH ≡ H̃x

^
x + H̃y

^
y = H̃x

^
x + iẼx

^
y

. (A8)

Notice that
(

Ẽx

)∗
= Q∗+Π∗+ + iZDQ∗−Π∗− 6= H̃x. Likewise,

(
H̃x

)∗
= Q∗+Π∗+ −

iZDQ∗−Π∗− 6= Ẽx. Equally important is the fact that
{

Ẽx(z), H̃x(z)
}

carry a pair of distinct
propagation phase factors {Π+, Π−} ≡ {exp(ik+z), exp(ik−z)}, as defined before in (A6).
This feature of two distinct propagation speeds renders rather difficult the algebra involved
in the chiral case.

Let us evaluate below the energy density with the help of µZ−2
D = ε.

I→avg ≡ 1
2 (εE∗•E + µH∗•H) = 1

4 ε
(

Ẽ∗x Ẽx − iH̃∗x iH̃x

)
+ 1

4 µZ−2
D

(
H̃∗x H̃x − iẼ∗x iẼx

)
= 1

2 ε
(

Ẽ∗x Ẽx + H̃∗x H̃x

)
= 1

4 ε
(
|Q+Π+ − iZDQ−Π−|2 + |Q+Π+ + iZDQ−Π−|2

)
= ε
(
|Q+|2 + Z2

D|Q−|
2
)
= ε|Q+|2 + µ|Q−|2

. (A9)

The active energy density is hence constant since all {ε, ZD, Q+, Q−} are assignable
constants. Interestingly, it is found that εE∗•E = µH∗•H during the above process,
thereby signifying a perfect electric–magnetic duality. This duality leads naturally to
J→avg ≡ 1

2 (εE∗•E− µH∗•H) = 0 for Equation (9). Hence, any hypothetical fields with
εE∗•E 6= µH∗•H mean an off-duality state.

The spin AM densities in Equation (9) are also evaluated as follows.

MC
avg ≡ 1

2 (εE∗ × E + µH∗ ×H)

= 1
4 ε

[(
Ẽx

^
x + iH̃x

^
y
)∗
×
(

Ẽx
^
x + iH̃x

^
y
)
+

(
H̃x

^
x + iẼx

^
y
)∗
×
(

H̃x
^
x + iẼx

^
y
)]

= 1
4 ε
(

Ẽ∗x iH̃x + iH̃∗x Ẽx + H̃∗x iẼx + iẼ∗x H̃x

)^
z = iεRe

(
Ẽ∗x H̃x

)
 M→avg ≡ 1

2 Im(εE∗ × E + µH∗ ×H) = εRe
(

Ẽ∗x H̃x

)^
z

M⇐avg ≡ 1
2 Re(εE∗ × E + µH∗ ×H) = 0

. (A10)

We need one further step to evaluate M→avg = εRe
(

Ẽ∗x H̃x

)^
z by Equation (A8)

as follows.

M→avg = εRe
[
(Q+Π+ − iZDQ−Π−)

∗(Q+Π+ + iZDQ−Π−)
]^
z

= εRe[(Q∗+Π∗+ + iZDQ∗−Π∗−)(Q+Π+ + iZDQ−Π−)]
^
z

= εRe
[
|Q+|2 − Z2

D|Q−|
2 + iZD(Q∗+Π∗+Q−Π− + Q+Π+Q∗−Π∗−)

]^
z

= εRe
[
|Q+|2 − Z2

D|Q−|
2 + iZD2Re(Q∗+Π∗+Q−Π−)

]^
z

= ε
(
|Q+|2 − Z2

D|Q−|
2
)^

z =
(

ε|Q+|2 − µ|Q−|2
)^

z

. (A11)
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We thus obtained a symmetric–antisymmetric form since the pair
{

ε|Q+|2, µ|Q−|2
}

is symmetric but the sign between them (−) renders M→avg anti-symmetric [8].
Next, we go on to the complex Poynting vectors.

ω2iZDPC ≡ 2iZDE×H∗

=

(
Ẽx

^
x + iH̃x

^
y
)
×
(

H̃x
^
x + iẼx

^
y
)∗

=

(
Ẽx

^
x + iH̃x

^
y
)
×
(

H̃∗x
^
x− iẼ∗x

^
y
)

=
[

Ẽx

(
−iẼ∗x

)
− iH̃x H̃∗x

]^
z = −i

(
Ẽ∗x Ẽx + H̃∗x H̃x

)^
z = −2i ε|Q+ |2+µ|Q− |2

ε

^
z

PC ≡ E×H∗
ω = 2iZDE×H∗

ω2iZD
= 1

ω2iZD

(
−2i ε|Q+ |2+µ|Q− |2

ε

^
z
)
= − ε|Q+ |2+µ|Q− |2

ωZDε

^
z

⇒ P→ ≡ Re
(

PC
)
= − ε|Q+ |2+µ|Q− |2

ωZDε

^
z = − ε|Q+ |2+µ|Q− |2

kD

^
z

. (A12)

Here, we have employed 1
2 ε
(

Ẽ∗x Ẽx + H̃∗x H̃x

)
= ε|Q+|2 + µ|Q−|2 obtained during the

development in Equation (A9). It is trivially found that P⇐ ≡ Im
(

PC
)
= 0.

Field helicities are straightforwardly evaluated as follows.

2iZDE•H∗ =
(

Ẽx
^
x + iH̃x

^
y
)
•
(

H̃x
^
x + iẼx

^
y
)∗

=

(
Ẽx

^
x + iH̃x

^
y
)
•
(

H̃∗x
^
x− iẼ∗x

^
y
)

= Ẽx H̃∗x + H̃x Ẽ∗x = 2Re
(

Ẽx H̃∗x
)
⇒ E•H∗ = −i

Re(Ẽx H̃∗x)
ZD

Re
(

Ẽx H̃∗x
)
= Re

[
(Q+Π+ − iZDQ−Π−)(Q+Π+ + iZDQ−Π−)

∗]
= Re[(Q+Π+ − iZDQ−Π−)(Q∗+Π∗+ − iZDQ∗−Π∗−)]

= Re
[
Q∗+Q+ − Z2

DQ∗−Q− − iZD(Q∗−Q+Π∗−Π+ + Q∗+Q−Π∗+Π−)
]

= Re
[
Q∗+Q+ − Z2

DQ∗−Q− − 2iZDRe(Q∗−Q+Π∗−Π+)
]
= |Q+|2 − Z2

D|Q−|
2

C→ ≡ Im(E•H∗) = − |Q+ |2−Z2
D |Q− |

2

ZD
= − ε|Q+ |2−µ|Q− |2

εZD
= − ε|Q+ |2−µ|Q− |2√

εµ

.

(A13)
It is again trivial to find that C⇐ ≡ Re(E•H∗) = 0.
Based on Equation (A8), let us consider several orbital and spin operators by utilizing

the fact that field variables are dependent only on the z-coordinate and field variables are
absent in the z-direction.

E∗•(∇)E ≡
(

E∗x
∂Ex
∂x + E∗y

∂Ey
∂x + 0 ∂Ez

∂x

)^
x +

(
E∗x

∂Ex
∂y + E∗y

∂Ey
∂y + 0 ∂Ez

∂y

)^
y

+
(

E∗x
∂Ex
∂z + E∗y

∂Ey
∂z + 0 ∂Ez

∂z

)^
z =

(
E∗x

∂Ex
∂z + E∗y

∂Ey
∂z

)^
z ⇒

H∗•(∇)H =
(

H∗x
∂Hx
∂z + H∗y

∂Hy
∂z

)^
z

(E∗•∇)E ≡
(

E∗x
∂Ex
∂x + E∗y

∂Ex
∂y + 0 ∂Ex

∂z

)^
x +

(
E∗x

∂Ey
∂x + E∗y

∂Ey
∂y + 0 ∂Ey

∂z

)^
y

+
(

E∗x
∂Ez
∂x + E∗y

∂Ez
∂y + 0 ∂Ez

∂z

)^
z = 0 ⇒ (H∗•∇)H = 0

. (A14)
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Therefore, the orbital portions are greatly simplified, whereas the spin portions vanish
identically. Hence, S→avg = S⇐avg = 0 for Equation (15). We are now ready to evaluate the
desired orbital parameters again by utilizing the tilde-ed variables.

2OC
avg ≡ εE∗•(∇)E + µH∗•(∇)H

=
[
ε
(

E∗x
∂Ex
∂z + E∗y

∂Ey
∂z

)
+ µ

(
H∗x

∂Hx
∂z + H∗y

∂Hy
∂z

)]^
z

4OC
avg =

[
ε

(
Ẽ∗x

∂Ẽx
∂z + Ẽ∗y

∂Ẽy
∂z

)
+ µ

Z2
D

(
H̃∗x

∂H̃x
∂z + H̃∗y

∂H̃y
∂z

)]
^
z

= ε
(

Ẽ∗x
∂Ẽx
∂z − iH̃∗x

∂iH̃x
∂z + H̃∗x

∂H̃x
∂z − iẼ∗x

∂iẼx
∂z

)^
z = 2ε

(
Ẽ∗x

∂Ẽx
∂z + H̃∗x

∂H̃x
∂z

)^
z

. (A15)

By use of Equation (A8), we revert to the circular vectors.

2ε−1OC
avg =

(
Ẽ∗x

∂Ẽx
∂z + H̃∗x

∂H̃x
∂z

)^
z

=

 (Q∗+Π∗+ + iZDQ∗−Π∗−)(Q+ik+Π+ − iZDQ−ik−Π−)

+(Q∗+Π∗+ − iZDQ∗−Π∗−)(Q+ik+Π+ + iZDQ−ik−Π−)

^
z

=

 2i
(

k+|Q+|2 + Z2
Dk−|Q−|2

)
+ iZD(Q∗−Π∗−Q+ik+Π+ −Q∗+Π∗+Q−ik−Π−)

−iZD(Q∗−Π∗−Q+ik+Π+ −Q∗+Π∗+Q−ik−Π−)

^
z

= 2i
(

k+|Q+|2 + Z2
Dk−|Q−|2

)^
z ⇒ OC

avg = i
(

εk+|Q+|2 + µk−|Q−|2
)^

z

. (A16)

Here, we stress that we have employed (d/dz)Π± = ik±Π± in Equation (A6).
We then take the real and imaginary parts in Equation (A16) to obtain the following,

according to Equation (16). Therefore, the average orbital linear momentum is found below.

O→avg ≡
1
2

Im[εE∗•(∇)E + µH∗•(∇)H] =
(

εk+|Q+|2 + µk−|Q−|2
)^

z. (A17)

In an analogous way, the average reactive orbital linear momentum in Equation (16)
turns out to vanish, i.e., O⇐avg = 0.

Let us evaluate the pair {Re(T+), Im(T−)} in Equation (19) by employing the fields
in Equation (A8). To this goal, we observe the following according to the operators in
Equation (A14). H∗•(∇)E =

(
H∗x

∂Ex
∂z + H∗y

∂Ey
∂z

)
, E∗•(∇)H =

(
E∗x

∂Hx
∂z + E∗y

∂Hy
∂z

)^
z

(H∗•∇)E = (E∗•∇)H = 0
. (A18)

Therefore, we are left with only two terms from the four terms for T± in Equation (19)
in the following manner.

T+ ≡ H∗•(∇)E− E∗•(∇)H =
(

H∗x
∂Ex
∂z + H∗y

∂Ey
∂z − E∗x

∂Hx
∂z − E∗y

∂Hy
∂z

)^
z

2iZDT+ =

(
H̃∗x

∂Ẽx
∂z + H̃∗y

∂Ẽy
∂z − Ẽ∗x

∂H̃x
∂z − Ẽ∗y

∂H̃y
∂z

)
^
z

=
(

H̃∗x
∂Ẽx
∂z − iẼ∗x

∂iH̃x
∂z − Ẽ∗x

∂H̃x
∂z −

(
−iH̃∗x

)
∂iẼx
∂z

)^
z

=
(

H̃∗x
∂Ẽx
∂z + Ẽ∗x

∂H̃x
∂z − Ẽ∗x

∂H̃x
∂z − H̃∗x

∂Ẽx
∂z

)^
z = 0

. (A19)
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Likewise,

T− ≡ H∗•(∇)E + E∗•(∇)H =
(

H∗x
∂Ex
∂z + H∗y

∂Ey
∂z + E∗x

∂Hx
∂z + E∗y

∂Hy
∂z

)^
z

2iZDT− =

(
H̃∗x

∂Ẽx
∂z + H̃∗y

∂Ẽy
∂z + Ẽ∗x

∂H̃x
∂z + Ẽ∗y

∂H̃y
∂z

)
^
z

=
(

H̃∗x
∂Ẽx
∂z − iẼ∗x

∂iH̃x
∂z + Ẽ∗x

∂H̃x
∂z +

(
−iH̃∗x

)
∂iẼx
∂z

)^
z

= 2
(

H̃∗x
∂Ẽx
∂z + Ẽ∗x

∂H̃x
∂z

)
⇒ T− = − i

ZD

(
H̃∗x

∂Ẽx
∂z + Ẽ∗x

∂H̃x
∂z

)^
z

. (A20)

This time, we need to evaluate the above nonzero vector T− for the circular vectors.

Im(T−) = − 1
ZD

Re

 H̃∗x (i)(Q+k+Π+ − iZDQ−k−Π−)

+Ẽ∗x(i)(Q+k+Π+ + iZDQ−k−Π−)

^
z

= 1
ZD

Im

[
(Q∗+Π∗+ − iZDQ∗−Π∗−)(Q+k+Π+ − iZDQ−k−Π−)

+(Q∗+Π∗+ + iZDQ∗−Π∗−)(Q+k+Π+ + iZDQ−k−Π−)

]
^
z

= 1
ZD

Im

 k+|Q+|2 − Z2
Dk−|Q−|2 − iZD(Q∗−Π∗−Q+k+Π+ + Q∗+Π∗+Q−k−Π−)

+k+|Q+|2 − Z2
Dk−|Q−|2 + iZD(Q∗−Π∗−Q+k+Π+ + Q∗+Π∗+Q−k−Π−)

^
z

= 2
ZD

Im
(

k+|Q+|2 − Z2
Dk−|Q−|2

)^
z = 0

. (A21)

In short, Re(T+) = Im(T−) = 0.
We are left with one pair of scalars introduced in Equation (12), which is now evaluated

with the help of Equation (A8).

ωg± ≡ E•(∇×H∗)∓H•(∇× E∗) = −Ex
∂H∗y
∂z + Ey

∂H∗x
∂z ∓

(
−Hx

∂E∗y
∂z + Hy

∂E∗x
∂z

)
2iZDωg± = −Ẽx

∂(−iẼ∗x)
∂z + iH̃x

∂H̃∗x
∂z ± H̃x

∂(−iH̃∗x)
∂z ∓

(
iẼx

)
∂Ẽ∗x
∂z

= i
(

Ẽx
∂Ẽ∗x
∂z ∓ Ẽx

∂Ẽ∗x
∂z + H̃x

∂H̃∗x
∂z ∓ H̃x

∂H̃∗x
∂z

) . (A22)

Separating the above into its real and imaginary parts, we obtain the following pair.

g+ = 0

g− = 1
ZDω

(
Ẽx

∂Ẽ∗x
∂z + H̃x

∂H̃∗x
∂z

)
= 2i k+ |Q+ |2+Z2

Dk− |Q− |2
ZDω

= 2i√
εµω

(
εk+|Q+|2 + µk−|Q−|2

)
= 2i

kD

(
εk+|Q+|2 + µk−|Q−|2

) . (A23)

Here,weemployedtheformula Ẽ∗x(d/dz)Ẽx + H̃∗x (d/dz)H̃x = 2i
(

k+|Q+|2 + Z2
Dk−|Q−|2

)
obtained in Equation (A16).
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