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Abstract: Correlation plenoptic imaging (CPI) is an optical imaging technique based on intensity
correlation measurement, which enables detecting, within fundamental physical limits, both the
spatial distribution and the direction of light in a scene. This provides the possibility to perform tasks
such as three-dimensional reconstruction and refocusing of different planes. Compared with standard
plenoptic imaging devices, based on direct intensity measurement, CPI overcomes the problem of
the strong trade-off between spatial and directional resolution. Here, we study the resolution limit
in a recent development of the technique, called correlation plenoptic imaging between arbitrary
planes (CPI-AP). The analysis, based on Gaussian test objects, highlights the main properties of the
technique, as compared with standard imaging, and provides an analytical guideline to identify the
limits at which an object can be considered resolved.
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1. Introduction

Plenoptic imaging (PI) identifies a category of devices and techniques character-
ized by the possibility of detecting the light field, namely the combined information on
the spatial distribution and propagation direction of light, in a single exposure of the
scene of interest [1]. The range of applications of PI is currently expanding, including,
among others, microscopy [2–5], stereoscopy [1,6,7], wavefront sensing [8–11], particle
image velocimetry [12], particle tracking and sizing [13], and photography, where it is
employed to add refocusing capabilities to digital cameras [14]. Cutting edge applications
include 3D neuronal activity functional imaging [5], surgery [15], endoscopy [16], and flow
visualization [17]. In the state of the art, PI represents an extremely promising method
to perform 3D imaging [18], because it gives the possibility of the parallel acquisition of
2D images from different perspectives, with only one sensor. State-of-the-art plenoptic
devices are characterized by the presence of a microlens array in the image plane of the
main lens. This additional component focuses on the sensor repeated images (one for each
microlens) of the main lens [1,14]. These repeated images represent different perspectives
of the illuminated object, which can be used to reconstruct light paths from the lens to the
sensor, providing the possibility to refocus different planes in post-processing, change the
viewpoint, and reconstruct images with a larger depth of field. However, the architecture
of traditional plenoptic systems entails a trade-off between spatial and directional, the
origin of which lies in the fundamental trade-off between the resolution and depth of field.
Given a sensor with Ntot pixels per line and an array of Nx microlenses per line, each
corresponding to Nu pixels per line behind, then Nx Nu = Ntot. This imposes an increase
by a factor Nu in the linear size of the spatial resolution cell, which makes the diffraction
limit, depending on the numerical aperture of the main lens, unreachable. Essentially,
the resolution and depth of field that can be obtained by a standard plenoptic device are
the same as one would obtain with an Nu-times smaller numerical aperture of the main
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lens, entailing the practical (but not fundamental) advantage of a greater luminosity and
signal-to-noise ratio of the final image, as well as the possibility of the parallel acquisition
of multiperspective images.

In order to overcome this practical limitation, we recently developed and experimen-
tally demonstrated a new technique, named correlation plenoptic imaging (CPI), capable
of performing plenoptic imaging without losing spatial resolution [19,20]. In particular,
the resolution of focused images can reach the physical (diffraction) limit. The system
is based on encoding spatial and directional measurement on two separate sensors, by
measuring second-order spatio-temporal correlations of light: the spatial information on a
given plane in the scene is retrieved on one sensor [21–25], and the angular information
is simultaneously obtained on the second sensor [26] thanks to the correlated nature of
light beams [19,27,28]. As a result of such separation, the spatial vs. directional resolution
trade-off is significantly mitigated. This technique paves the way toward the development
of novel quantum plenoptic cameras, which will enable one to perform the same tasks of
standard plenoptic systems, such as refocusing and scanning-free 3D imaging, along with
a relevant performance increase in terms of resolution (which can be diffraction limited),
depth of field, and noise [29]. In the first realizations of CPI, two particular reference planes,
one inside the scene of interest, one practically coinciding with the focusing element, were
imaged in order to reconstruct directional information. Such a task becomes non-trivial
in the case of composite lenses, as those that one can find in a commercial camera or in a
microscope, requiring the introduction of correction factors in the refocusing algorithms.
We thus developed an alternative protocol, called correlation plenoptic imaging between arbi-
trary planes (CPI-AP), in which this difficulty is overcome by retrieving the images of two
generic planes, typically placed inside the three-dimensional scene [30]. The proposed protocol
highly simplifies the experimental implementation and improves refocusing precision; fur-
thermore, it relieves the compromise between the resolution and depth of field, providing
an unprecedented combination of them.

As in all CPI protocols, for technical and physical reasons that will be explained
throughout this work, even in CPI-AP, it is not trivial to define resolution limits. Actually,
the usual definition, based on a point-spread function, becomes immaterial in correlation
plenoptic imaging. In this paper, we consider the paradigmatic case of objects characterized
by a Gaussian profile, to identify reasonable definitions of a resolution limit. The analyticity
of the results will provide a direct comparison, both qualitative and quantitative, with the
case of standard imaging, based on direct intensity measurement.

2. Methods

In a second-order imaging protocol, light from a source is split (e.g., by a beam splitter)
into two optical paths a and b, characterized by their optical propagators, that transfer the
field from a point on the source, identified by the coordinates ρo, to points of coordinates
ρa and ρb on the detector planes. The correlation between fluctuations of the intensities Ia
and Ib measured at the end of the corresponding paths generally encodes more information
than the average intensities. The imaging properties of the correlation imaging device can
be retrieved by the correlation function:

Γ(ρa, ρb) = 〈∆Ia(ρa)∆Ib(ρb)〉 = 〈Ia(ρa)Ib(ρb)〉 − 〈Ia(ρa)〉〈Ib(ρb)〉. (1)

Intensity fluctuation correlations contain relevant information for imaging if light
is chaotic or if the two beams are composed of entangled photons, produced, e.g., by
spontaneous parametric down-conversion [21,28].

Let us now consider a typical setup of CPI-AP [30], shown in Figure 1. Light comes
from an object, which emits chaotic light, propagates toward the lens L f , characterized
by the focal length f , and then, encounters a beam splitter (BS). The latter generates two
copies of the input beam, which are eventually detected by one of the two sensors Da and
Db, both spatially resolving. The detectors are placed in such a way that they collect the
focused images of two planes in proximity of the object, called Do

a and Do
a , respectively.
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As demonstrated in [30], plenoptic information can be retrieved by analysing the spatio-
temporal correlations between the fluctuations in the intensity acquired by the two sensors.
For evaluating Γ(ρa, ρb) in the discussed CPI-AP setup, we shall assume that the object is
positioned at a distance z from the lens L f . Light emitted by this object is characterized by
the intensity profile A(ρo). We further assumed that transverse coherence can be safely
neglected and that emission is quasi-monochromatic around the central wavelength λ
(corresponding to the wavenumber k = 2π/λ). In these conditions, propagation from
an arbitrary point ρo on the object plane to a point ρa (ρb) on the detector Da (Db) occurs
through the proper paraxial optical transfer functions [31]. Neglecting irrelevant factors
(independent of ρa and ρb, the resulting correlation function reads

Γ(ρa, ρb) =

∣∣∣∣∫ d2ρo A(ρo)g∗a (ρa, ρo)gb(ρb, ρo)

∣∣∣∣2, (2)

where

gj(ρj, ρo) =
∫

d2ρ′ l P(ρ′l) exp

{
−ik

[(
1
z
− 1

zj

)
ρ2

l
2
−
(

ρo

z
−

ρj

Mjzj

)
· ρl

]}
, (3)

with j = a, b being the two propagators, P(ρl) the pupil function of the lens L f , and
Mj = z′j/zj the magnifications of the object planes Do

j on detectors Dj.

Figure 1. Representation of a setup for correlation plenoptic imaging between arbitrary planes (CPI-
AP); the object is supposed to be a chaotic light emitter [30]. The lens L f focuses the images of the
two planes Do

a and Do
b on the two spatially resolving sensors Da and Db, respectively. By correlating

the intensity fluctuations retrieved by each pair of pixels on the two detectors, information on the
distribution and direction of light from the object is retrieved.

The plenoptic properties of Γ(ρaρb) from Equation (3) can be fully understood by
considering the dominant contribution to the integrals in the limit k→ ∞ of geometrical
optics, which gives:

Γ(ρa, ρb) ∼ A2
[

1
zb − za

(
z− za

Mb
ρb −

z− zb
Ma

ρa

)]∣∣∣∣P[ 1
zb − za

(
zb
Ma

ρa −
za

Mb
ρb

)]∣∣∣∣4. (4)

In this result, we observe that Γ(ρa, ρb) encodes at the same time images of the
(squared) object intensity profile A2 and of the lens pupil function P. While the latter
is independent of the distance z between the lens L f and the object plane, the image of
the object depends on the linear combination of the coordinates of the two detectors; if
the object is placed in either of the planes Do

a or Do
b , Γ will depend on the coordinates of

only one detector, either ρa or ρb, respectively. This means that for z = za (z = zb), A2

does not depend any longer on ρb (ρa), and thus, integrating Γ on ρb (ρa) would provide a
focused image of the object. As described in [30], when the object lies outside the depth of
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field around one of the two conjugate planes, integrating the correlation function on any
detector plane coordinate would provide a blurred image. A “refocusing” algorithm, able
to decouple the image of the lens from the image of the object, is therefore necessary; this is
achieved by defining a proper linear combination of the detector coordinates ρa and ρb,
such as the one given by the two variables:

ρr =
1

zb − za

(
z− za

Mb
ρb −

z− zb
Ma

ρa

)
, ρs =

1
zb − za

(
zb
Ma

ρa −
za

Mb
ρb

)
. (5)

The transformation in Equation (5) can be inverted and plugged into Equation (4),
yielding the refocused correlation function:

Γref(ρr, ρs) = Γ[ρa(ρr, ρs), ρb(ρr, ρs))] ∼ A2(ρr)|P(ρs)|4, (6)

with ρa(ρr, ρs) and ρb(ρr, ρs) satisfying the system of Equations (5). The effect of applying
the transformation of Equation (5) to the argument of Γ is thus to realign all the displaced
images in order to reconstruct the focused image. We can now integrate the Γref function
over the ρs variable, which gives:

Σref(ρr) =
∫

d2ρsΓref(ρr, ρs) ∼ A2(ρr). (7)

In the limit k→ ∞, the above approximation tends to become exact, and the refocused
image coincides with the squared object intensity profile. The refocusing procedure is
robust against transverse alignment shifts:{

ρa → ρa + Ra
ρb → ρb + Rb

(8)

of the two sensors with respect to the optical axes, since the effect on the refocused image
(7) is a mere translation:

Σref(ρr)→ Σref

(
ρr +

1
zb − za

(
z− za

Mb
Rb −

z− zb
Ma

Ra

))
, (9)

which does not affect the relative transverse distance between details nor the image resolution.
A natural benchmark for the refocused image of Equation (6) is represented by the

images captured by the two detectors Dj (with j = a, b) through direct intensity, namely:

Ij(ρj) = 〈Ij(ρj)〉 =
∫

d2ρo A(ρ0)
∣∣gj(ρj, ρo)

∣∣2. (10)

In the k→ ∞ limit, these quantities provide faithful images of the object profile:

Ij(ρj) ∼ A(ρo) (11)

only in the case z = zj. For different object positions, a geometrical spread of the image
occurs, as we show in more detail in our case study.

3. Results

Due to the structure of the correlation function of Equation (2), the refocused image of
Equation (7) takes the form

Σref(ρr) =
∫

d2ρod2ρ′o A(ρo)A(ρ′o)Φ(ρr; ρo, ρ′o) (12)

namely, it is a double integral on the object coordinates, with Φ a proper function involving
the optical propagators. Such a feature prevents us from defining a proper point-spread
function, as one naturally does in the case of the direct intensity image. The resolution



Optics 2022, 3 142

limits of CPI require a careful evaluation, and even ad hoc definitions. In fact, the plenoptic
reconstruction of the direction of light in CPI-AP is based on imaging the two arbitrary
planes focused by the lens L f on the detectors Da and Db; a transmissive object acts as a
diffractive aperture for such an image; hence, a point object would hinder the one-to-one
correspondence between points of the plane Do

a and points of Do
b. To address this issue, we

must test the behaviour of the refocused images of objects of a finite size. As a testbed, we
consider a class of objects whose intensity profile is characterized by the Gaussian shape

A(ρo) = A0 exp
(
− ρ2

o
2a2

)
(13)

of standard deviation a. This, also, allows performing an analytical determination of the
refocusing function and a direct comparison of the results obtained in different cases. The
lens aperture is modelled by the Gaussian pupil function:

P(ρ`) = P0 exp

(
−

ρ2
`

2σ2

)
, (14)

which is often a good approximation for the pupil, especially for composite lenses. In this
hypothesis, we first compute the correlation function Equation (2), which reads

Γ(ρa, ρb) = Γ(0, 0) exp

[
2 Re

(
ca

ρ2
a

M2
a
+ cb

ρ2
b

M2
b
+ cab

ρa · ρb
Ma Mb

)]
, (15)

with

ca =
(kσ)2(iz2 + kσ2(ika2 + z2ζb))

2z2
a((akσ)2(kσ2(ζa − ζb)− 2i)− iz2(1 + ikσ2ζa)(1− ikσ2ζb))

, (16)

cb =
(kσ)2(iz2 + kσ2(ika2 + z2ζa))

2z2
b((akσ)2(kσ2(ζa − ζb)− 2i)− iz2(1 + ikσ2ζa)(1− ikσ2ζb))

, (17)

cab =
−i(ak2σ2)2

zazb((akσ)2(kσ2(ζa − ζb)− 2i)− iz2(1 + ikσ2ζa)(1− ikσ2ζb))
, (18)

where we used the shorthand notation

ζ j =
1
z
− 1

zj
, with j = a, b. (19)

Then, following the refocusing procedure defined by Equations (5)–(7), we obtain the
Gaussian refocused image

Σref(ρr) = Σ0 exp
(
− ρ2

r
∆2(a)

)
, (20)

where Σ0 coincides with the peak value. On the one hand, the width ∆(a) of this image can
be expressed through the decomposition

∆2(a) = a2 + δ2(a), (21)

where a2 is the value obtained in the limit k → ∞, providing a perfectly resolved image, as
expected from Equation (7). On the other hand, the quantity

δ2(a) =
( z

kσ

)2
+ 2

zazb
(kσ)2

(z− za)(z− zb)

(za − zb)
2 +

1
1
2
( z

kσ

)2
+ a2

(z− za)
2(z− zb)

2

k2(za − zb)
2 , (22)
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defines the spread due to the finite image resolution and is determined by factors such as
the wavelength, the lens size σ, the distances zj of the two reference planes from the lens,
and the object axial position z. It is worth noticing that the finite-resolution contribution δ(a)
depends also on the object width a, a feature not present in standard imaging, but already
observed in other CPI cases, which we shall return to later. Based on Equation (11), the stan-
dard images of the object retrieved by each detector Dj separately (see Equation (13)) reads

Ij(ρj) = I0 exp

(
−

ρ2
j

(M′j)
2∆2

S(j)(a)

)
, (23)

where
M′j = Mj

zj

z
(24)

represents the effective magnification for an object at a distance z, rescaled by a geometrical
projection factor zj/z, and

∆2
S(j)(a) = 2a2 + δ2

S(j) = 2a2 +
( z

kσ

)2
+ σ2

(
1− z

zj

)2

. (25)

By inspection of the results of Equations (21), (22), and (25), we can outline the main
differences between the two cases:

• The different factors 1 and 2 in front of a2 in Equations (21) and (25), respectively, are
determined by the fact that the direct intensity provides an image of A, while the
refocused second correlation yields an image of A2 (see Equations (7)–(11));

• While the spread of the direct intensity image is independent of a, the spread δ of
the refocused CPI-AP image is monotonically decreasing with the object width. The
dependence of the correlation image on the object is related to the role of δ as an
“effective aperture” in correlation imaging;

• Consistent with the previous point, δ(a) in Equation (22) is monotonically decreasing
with the object size a. This entails that the total image width ∆(a) can have a counter-
intuitive non-monotonous behaviour with a, with a minimum for a > 0, unless the
object is very close to one of the reference planes, namely∣∣∣∣ (z− za)(z− zb)

k(za − zb)

∣∣∣∣ < 1
2

( z
kσ

)2
. (26)

Noticeably, the value δ(a = 0) is always finite, unlike in previously analysed cases [20];
• As expected, in the out-of-focus case, the direct intensity image cannot provide a

faithful representation of the object, even for k→ ∞,

lim
k→∞

∆S(j)(a) =

√√√√2a2 + σ2

(
1− z

zj

)2

, (27)

since a residual purely geometrical spread, proportional to the lens aperture, is still
present. Moreover, as the distance from the focused plane increases, the dependence
of ∆S(j) on a becomes progressively weaker, making objects of different widths indis-
tinguishable. This is not the case for CPI-AP, since:

lim
k→∞

∆(a) = a, (28)

refocusing provides a perfectly resolved image of A2, independent of the distance
from the focused planes;

• The resolution and depth-of-field limits of traditional plenoptic imaging devices [14]
are determined by the properties of the collected sub-images, obtained by reducing
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the main lens numerical aperture of a factor N−1
u , with Nu the number of directional

resolution cells per line. Therefore, the image width is obtained by the replacement

σ→ σ

Nu
(29)

in Equation (25). Besides negatively affecting the resolution of the focused image, such
a change entails a limitation to the image width at k→ ∞, which is qualitatively similar
to the case reported in Equation (27) for standard imaging, although quantitatively
attenuated.

The above considerations highlight both the enormous potential of the refocusing
capability of CPI-AP and the difficulty of defining a resolution limit. In particular, the
peculiar non-monotonic behaviour of the image size ∆, which decreases with the object size
when a comes close to zero, makes the definition of a point-spread function non-informative
of the imaging capabilities of the system. To define a resolution limit, we followed the
general idea that an object is resolved when the width of its image is at least approximately
proportional to its own width.

Let us start from the case of a focused object, in which the image width takes the much
simpler form

∆(a)|z=zj
= a2 +

( zj

kσ

)2
, (30)

with the spread determined only by diffraction at the lens. For small a, the image width is
dominated by the constant spread, and the size of the object can hardly be inferred from
it. Instead, for large a, ∆(a) is essentially proportional to a, up to a small correction. A
conventional transition point between the two regimes can be identified as the value ã of
the object width, such that

ã =
zj

kσ
(31)

namely, the value at which the width of the perfectly resolved image becomes equal to the
spread. Incidentally, this value coincides with the minimum image width:

a′ = min
a

∆(a) =
zj

kσ
= ã. (32)

Motivated by these observations, we formulated two definitions to identify a lower
limit to the object width that can be resolved, in the sense that it is proportional to the
corresponding image width. The two definitions coincide in the focused cases z = zj.

First, by generalizing Equation (31), we define ã for an arbitrary object position z as
the width value such that the perfectly resolved contribution to the image width ∆2(a)
becomes equal to the spread contribution:

ã = δ(ã). (33)

By solving the above equation, we obtain

ã =

[
1
4

( z
kσ

)2
+

zazb
(kσ)2

(z− za)(z− zb)

(za − zb)2

+

√(
3
4

( z
kσ

)2
+

zazb
(kσ)2

(z− za)(z− zb)

(za − zb)2

)2

+

(
(z− za)(z− zb)

k(za − zb)

)2
] 1

2

. (34)

In Figure 2, we represent a graphical identification of ã, both in the case of z = zj
(specifically, z = za), in which the spread δ is constant, and in the case z 6= zj (specifically,
z = (za + zb)/2), in which δ decreases with a, thus providing an even more reliable
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proportionality between image and object widths. In all plots, the parameters are fixed to
λ = 532 nm, za = 293 mm, zb = 343 mm, and σ = 8.2 mm.

Figure 2. Graphical identification of the width limit ã, satisfying Equation (34), as the intersection
point between the infinite-resolution image width a (dashed lines) and the spread δ(a) (solid lines).
The left panel represents the case z = za, in which the object is placed in one of the two reference
planes, focused on the detector, and δ is a constant. The right panel shows the case in which the object
is placed midway between the two reference planes, namely z = (za + zb)/2. Numerical values of
the parameters are reported in the text.

The second definition of a lower limit for a resolvable object width a generalizes the
quantity introduced in Equation (32), namely,

a′ = min
a

∆(a), (35)

which coincides with ã in the special cases z = zj. This limit conventionally represents
the value below which object widths are practically indistinguishable from each other. Its
expression depends on the axial position z. Starting from the expression of the image width
∆(a) given in Equation (21), we find that in the limit a→ 0, the quantity

∆(0) =

√√√√( z
kσ

)2
+ 2

zazb
(kσ)2

(z− za)(z− zb)

(za − zb)
2 + 2

(σ

z

)2 (z− za)
2(z− zb)

2

(za − zb)
2 (36)

corresponds to a′ if the monotonicity condition in Equation (26) is satisfied; otherwise, the
minimum occurs for

a = amin =

√∣∣∣∣ (z− za)(z− zb)

k(za − zb)

∣∣∣∣− 1
2

( z
kσ

)2
> 0, (37)

and

a′ = ∆(amin) =

√
1
2

( z
kσ

)2
+ 2

zazb
(kσ)2

(z− za)(z− zb)

(za − zb)2 + 2
∣∣∣∣ (z− za)(z− zb)

k(za − zb)

∣∣∣∣. (38)

In Figure 3, we report a graphical identification of a′, both in the case z = zj (specifically,
z = za), in which ∆ is monotonic with respect to a, and in the case z 6= zj (specifically,
z = (za + zb)/2), in which the minimum occurs for a finite value amin, and the image width
increases with decreasing object width for 0 ≤ a < amin.



Optics 2022, 3 146

Figure 3. Graphical identification of the width limit a′ defined as in Equation (35), as the object width
coinciding with the minimum of the total image width ∆(a). The solid lines represent ∆(a), while the
dashed lines, corresponding to ∆(a) = a, are reported to show the onset of proportionality between
image and object width. The horizontal dashed lines represent the minimum value of ∆(a). The left
panel represents the case z = za, in which the object is placed in one of the two reference planes,
focused on the detector, and δ is a constant. The right panel shows the case in which the object is
placed midway between the two reference planes, namely in z = (za + zb)/2. Numerical values of
the parameters are reported in the text.

A comparison between the two definitions of resolution limits for an object with a
Gaussian intensity profile is reported in Figure 4, showing in the same plot the behaviour
of ã and a′ with varying z. The two quantities have consistent behaviours, with minima
close to the two reference planes z = zj and a local maximum close to z = (za + zb)/2.
While, as discussed before, the two limits coincide close to the focused planes, the limit a′

tends to be more restrictive by a factor
√

2 in the out-of-focus cases.

Figure 4. Behaviour of the limit object ã (dashed red line) and a′ (solid blue line) as a function of
the distance z between the object and the lens. The two functions have consistent behaviours, with
minima close to the two reference planes za = 293 mm and zb = 343 mm and a local maximum close
to the midpoint z = (za + zb)/2. While the two limits coincide close to the focused planes, the limit
a′ is more restrictive by a factor of

√
2 in out-of-focus cases.

4. Discussion

We defined and discussed different characterizations of the resolution limits in CPI-
AP for objects with a Gaussian profile. The difficulty in defining resolution limits in an
unambiguous way has clearly emerged, since the two limit quantities that we considered,
though coinciding in the focused case, deviate from each other as the object is placed away
from the two reference planes. Specifically, the limit a′, which is obtained by imposing that
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the image width at perfect resolution is larger than the minimum image width, turns out to
be generally more restrictive than the limit ã, which is obtained by requiring that the image
width at a perfect resolution is larger than the spread due to the finite resolution.

The definition of resolution limits in the present work is conceptually different with
respect to the one considered in the previous literature on the topic, which was based on
the ability to discriminate a double slit with very specific features, namely a centre-to-
centre distance equal to twice the slit width (see, e.g., [30] for the CPI-AP setup and [20]
for a different CPI system). Despite this difference, the results obtained in our work are
fully consistent with the previous ones in terms of the variation of the resolution with a
varying object axial position. We remark that, though the present analysis highlights a
better performance of CPI-AP in terms of resolution, a full evaluation of the advantages
with respect to standard techniques must also take into account the problem of noise, which
affects correlation imaging in a specific way (see, e.g., [32]). A thorough discussion of this
issue will be a matter for future research.

An alternative approach to the investigation of further conventional resolution limits
is to employ the modulation transfer function (MTF) criterion [33], in which the visibility of
the image of a periodic intensity profile is analysed. This is outside the scope of the present
paper, but we plan to investigate it in future research. In fact, we expect that the analytical
results obtained with a sinusoidal profile can be exploited to provide a full control of the
system performance.

Let us finally remark that the starting point of our analysis, namely the form of the
correlation function given by Equation (2), relies on the physical assumption that the
transverse coherence length on the source is much smaller than both the intensity profile
extension and the linear size of the resolution cell defined by the lens. However, especially
in a microscopy context, transverse coherence is not necessarily negligible and may affect
the imaging properties of the device. Further research will be devoted to investigating how
residual transverse coherence affects the resolution and depth of field of the CPI-AP system.
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