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Abstract: Early detection and efficient management practices to control Tuta absoluta (Meyrick)
infestation is crucial for safeguarding tomato production yield and minimizing economic losses. This
study investigates the detection of T. absoluta infestation on tomato plants using object detection
models combined with ensemble techniques. Additionally, this study highlights the importance of
utilizing a dataset captured in real settings in open-field and greenhouse environments to address
the complexity of real-life challenges in object detection of plant health scenarios. The effectiveness
of deep-learning-based models, including Faster R-CNN and RetinaNet, was evaluated in terms
of detecting T. absoluta damage. The initial model evaluations revealed diminishing performance
levels across various model configurations, including different backbones and heads. To enhance
detection predictions and improve mean Average Precision (mAP) scores, ensemble techniques were
applied such as Non-Maximum Suppression (NMS), Soft Non-Maximum Suppression (Soft NMS),
Non-Maximum Weighted (NMW), and Weighted Boxes Fusion (WBF). The outcomes shown that
the WBF technique significantly improved the mAP scores, resulting in a 20% improvement from
0.58 (max mAP from individual models) to 0.70. The results of this study contribute to the field of
agricultural pest detection by emphasizing the potential of deep learning and ensemble techniques in
improving the accuracy and reliability of object detection models.

Keywords: deep learning; ensembles; Faster R-CNN; object detection; RetinaNet; tomato plants; Tuta
absoluta; weighted boxes fusion

1. Introduction

The tomato plant (Solanum lycopersicum L.) plays a significant role in global agri-
culture, serving as a dietary staple and contributing significantly to the world’s food
systems, with an annual production exceeding 160 million tonnes globally [1]. Addition-
ally, the tomato industry holds economic significance in various market segments such
as canned goods, sauces, beverages, and cosmetics, with approximately a quarter of its
production dedicated to processing, making it an essential commodity [2].

However, this thriving industry is facing a formidable adversary in the form of the
tomato leaf miner, scientific name Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and
henceforth referred to as T. absoluta [3]. This pest, native to South America, has managed to
proliferate far beyond its region of origin, causing considerable damage to tomato crops
worldwide. The invasive pest was first detected in Europe in late 2006 [4] and has spread to
North Africa and the Middle East at an exceptional speed. The severity of this infestation
is such that it can cause production losses ranging from 80% to 100% [5]. This leads to
a ripple effect of economic distress, affecting not just the agricultural sector but also the
livelihoods of millions who depend on it [6].

The widespread presence of T. absoluta not only threatens the worldwide tomato supply
but also discourages growers due to the rising costs of its integrated pest management.
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Despite the availability of various pest management methods, such as chemical pesticides,
pheromone traps, and the cultivation of resistant tomato varieties [7], effective control of
T. absoluta spread remains elusive. Therefore, for the surveillance of T. absoluta, there is a
need for digital-based technologies that leverage deep learning techniques, enabling fast,
accurate, and non-invasive early detection of this pest [8].

Recently, the successful application of deep learning models in many fields of computer
vision for early pest and disease detection in crops using convolutional neural network
(CNN) has presented a unique opportunity for enabling efficient and rapid detection of
T. absoluta infestation at early stages [9].

In this study, four ensemble techniques were benchmarked to evaluate their perfor-
mance in improving the detections of T. absoluta infestations on tomato plants, as generated
by deep learning object detection models. A dataset captured under real-life conditions
in open fields and greenhouses was utilized, presenting various challenges in detecting
T. absoluta damage. The outputs from multiple configurations of the employed Faster
R-CNN and RetinaNet deep learning models, combined with ensemble techniques such as
Non-Maximum Suppression (NMS), Soft Non-Maximum Suppression (Soft NMS), Non-
Maximum Weighted (NMW), and Weighted Boxes Fusion (WBF) exhibited improved per-
formance. In particular, the fusion of detection results using WBF, considering the detection
scores, effectively improved the mean Average Precision (mAP) metric by 20%, elevating
it from 0.58 (the highest observed mAP from individual deep learning models) to 0.70.
This study demonstrates the superiority of the WBF ensemble technique in addressing
the challenges associated with T. absoluta digital detection on tomato plants, highlight-
ing its significance in enhancing the accuracy and reliability of deep learning models for
agricultural applications. The innovation in this study lies in the combination of estab-
lished object detection models with ensemble techniques, which reveals an improvement
in T. absoluta detection accuracy under real-world agricultural settings. This approach not
only establishes a robust method for pest detection but also extends the applicability of
deep learning models in precision agriculture, aligning with the broader goal of integrated
pest management.

The rest of the paper is structured as follows. Section 2 presents the related work
in the field of tomato disease and pest identification and T. absoluta detection. Section 3
delineates the methodology employed in this study, encompassing the dataset, the object
detection models, the ensemble techniques utilized, and the evaluation metrics adopted
for detecting the impacts of T. absoluta on tomato plants. Section 4 exhibits the results.
The study concludes in Section 5.

2. Related Work

In this section, the application of deep learning techniques for the identification
of tomato diseases and pests, as well as the detection of T. absoluta effects, is reviewed.
Significant progress has been made in agricultural applications by employing deep learning
methods. In particular, the identification of diverse plant diseases and pests has yielded
promising and impressive outcomes, as evidenced by recent studies [10–12].

2.1. Tomato Disease and Pest Identification

Tomato disease and pest identification have been actively investigated in the field
of deep learning. Nevertheless, it is crucial to acknowledge that the nature of the tasks
addressed in these investigations differs, with certain studies emphasizing classification
while others prioritize object detection. It is worth noting that, in real-world applications,
classification tends to present limitations and poses a comparatively simpler challenge
compared to detection.

Wang et al. (2019) [13] used Faster R-CNN and Mask R-CNN in tomato disease
detection. The models achieved a mAP of 88.53% and 99.64% for Faster R-CNN and
Mask R-CNN, respectively. Wang et al. (2021) [14] used a YOLOv3-tiny network on a
self-built tomato disease and pest dataset and dealt with light shadow, branch occlusion,
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and overlapping leaves conditions. Yet, it should be noted that the objects depicted in the
images were considerably prominent in size, which significantly facilitated the detection
task by providing distinct and easily identifiable visual features. Fuentes et al. (2017) [15]
used a deep-learning-based approach to detect diseases and pests in tomato plants using
images captured in-place by camera devices with various resolutions. Using Faster R-CNN,
R-FCN, and SSD, combined with various backbones such as VGG and ResNets, the authors
demonstrated the performance of these models on images with diseases and pests.

Other studies primarily focused on the classification of tomato diseases rather than the
detection of specific regions. Zaborowicz et al. (2017) [16] explored the application of computer
image analysis and artificial neural modeling for assessing the quality of greenhouse tomatoes.
Zaborowicz et al. (2013) [17] aimed to devise a neural network classification model for the
automatic evaluation of greenhouse tomato quality, leveraging computer image analysis and
artificial neural networks. Brahimi et al. (2017) [18] presented deep models, including AlexNet
and GoogleNet, which were trained using a large dataset of 14,828 images to identify nine
tomato diseases. Ferentinos (2018) [19] employed several deep models, namely AlexNet,
GoogLeNet, and VGG, to recognize 58 diseases from a dataset consisting of 87,848 leaf images
of various plants. Liang et al. (2019) [20] proposed a multitasking system based on the ResNet-
50 architecture capable of diagnosing diseases, recognizing plant species, and estimating the
severity of diseases. Rangarajan et al. (2018) [21] used two pre-trained deep learning models,
VGG-16 and AlexNet, to classify six tomato diseases. Trivedi et al. (2021) [22] used CNNs to
effectively define and classify tomato diseases with 98.49% accuracy.

In the field of tomato disease and pest identification, there is a distinguishable difference
between classification and detection tasks, despite both utilizing deep learning models. Detection-
focused studies, such as those by Wang et al. (2019) [13] and Fuentes et al. (2017) [15], are aimed
at identifying and localizing specific affected areas within images, dealing with complexities like
varied lighting and occlusions. Conversely, classification-centric research, exemplified by works
by Brahimi et al. (2017) [18] and Ferentinos (2018) [19], is focused on categorizing images based
on the type of disease or pest present, without localizing the affected areas. These differences
underline the varied approaches and complexities within the broader scope of automated
identification of plant diseases and pests.

2.2. Tuta Absoluta Identification

Tuta absoluta identification has been a subject of interest in the field of deep learning.
However, while several studies have focused on the classification of T. absoluta effects,
limited research has addressed the specific task of T. absoluta detection using object detection
techniques. Notably, detection poses a more complex challenge compared to classification
and carries greater relevance in real-world applications.

Among the studies that have explored T. absoluta detection, Loyani et al. (2021) [23] in-
oculated T. absoluta on randomly selected tomato plants and created a dataset of 5235 tomato
images. The authors used semantic and instance segmentation models based on U-Net
and Mask R-CNN to segment the effects of T. absoluta on tomato leaf images at the pixel
level using field data. The Mask R-CNN achieved a mAP of 85.67%, while the U-Net
model achieved an Intersection over Union (IoU) of 78.60% and Dice coefficient of 82.86%.
Nonetheless, the large size of the depicted objects facilitated the detection task with distinct
visual features. Georgantopoulos et al. (2023) [24] presented a dataset of multispectral im-
ages of tomato plants at various stages of infection with Tuta absoluta and Leveillula taurica.
The authors applied a Faster-RCNN object detector for the localization and classification of
lesions, achieving a 90% F1-score on binary classification, and 20.2% mAP on detection.

However, existing research on T. absoluta primarily focuses on its classification or
the classification of the damage it causes. Rubanga et al. (2020) [25] determined the
severity status of T. absoluta’s damage on tomato plants at an early stage of tomato growth.
The authors pre-trained four CNN architectures to classify healthy and infested tomato
leaves collected from real field experiments with an average accuracy of 87.2%. Mkonyi et al.
(2020) [26] leveraged CNN network architectures for the identification of T. absoluta in



AI 2023, 4 999

the tomato plant. The approach reinforces the classification of a dataset that consists of
2145 images with an accuracy of 91.9% on the tested images.

Research on Tuta absoluta identification via deep learning exhibits a division between
classification and detection. Loyani et al. (2021) [23] and Georgantopoulos et al. (2023) [24]
delve into object detection, focusing on identifying and localizing the impacts of T. absoluta
on tomato plants, a task accentuated by its complexity and applicative relevance. Con-
versely, works by Rubanga et al. (2020) [25] and Mkonyi et al. (2020) [26] are anchored in
classification, assessing the severity and identifying the presence of T. absoluta damage with-
out specific localization. Despite the shared foundation in deep learning, a clear distinction
emerges from the depth of analysis and practical implications each approach entails.

3. Methodology

The methodology section outlines the dataset utilized, details the object detection
models implemented, and describes the evaluation metrics adopted to assess the effec-
tiveness of these models in the detection of T. absoluta infestation on tomato plants. The
model is tailored to run on a mobile platform aboard a fully autonomous mobile robot [27].
The collected data is processed within a robust decision support system [28] to ensure
precise detection and evaluation of the infestations.

3.1. Dataset

The dataset used in this study consists of color images collected under real-life condi-
tions in both fields and greenhouses depicting T. absoluta damage on tomato plants. These
images were obtained by the EDEN Library (https://edenlibrary.ai (accessed on 1 March
2023)) in collaboration with its partners, ensuring the clear distinction of T. absoluta damage
on tomato plant cultivation while preserving background information. The collection
process involved farmers using mobile phones and other devices to capture images from
various angles and under different lighting conditions. This collection style is consistent
with typical precision farming and robotic tasks, and it provides a suitable basis for train-
ing deep learning models to detect T. absoluta infestations under diverse scenarios in real
settings. The dataset’s robustness is enhanced by the intentional inclusion of images cap-
tured under non-optimal illumination conditions and with variable resolution and color
balance. Any images that did not meet the high standards set by experts were excluded
from the dataset.

The dataset comprises a total of 659 images, with 396 reserved for training and
263 designated for validation. The average size of the training images is (1964 ± 1068)×
(1863± 802) with a median of 1504× 1504 (ranging from 960× 720 to 4640× 4000). The vali-
dation images have a mean size of (1772± 801)× (1769± 725) and a median of 1504× 1504
(ranging from 1200 × 1504 to 4640 × 4000).

Each of the 659 images has been annotated with bounding boxes that enclose areas
of T. absoluta damage. These annotations were executed by expert agronomists from the
EDEN Library. All annotations underwent manual review and adjustment to ensure their
consistency and accuracy. The training set contains 5443 annotations while the validation
set includes 3267, totaling 8710 annotations. This equates to an average of 13.83 annotations
per image across the one class. The annotation area for the training set has a mean size of
14,508 ± 31,806 pixels and a median of 5764, while the validation set’s annotation area has
a mean size of 12,234 ± 24,857 pixels and a median of 5304. Therefore, it can be deduced
that the mean object, as indicated by the bounding boxes, captures approximately 0.39%
(as far as training set is concerned). For a visual reference, an example image depicting
T. absoluta damage on tomato leaves, annotated with bounding boxes, is presented in
Figure 1. The aforementioned details highlight the inherent difficulty associated with
addressing the object detection task within this dataset.

https://edenlibrary.ai
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Figure 1. Sample featuring bounding box annotations that point out T. absoluta damage (class 0) on
tomato leaves under various conditions and illuminations. Six different images are displayed, each
containing annotations highlighting the damage. The images have been resized to a resolution of
1024 × 1024 pixels.

3.2. Object Detection Models

Two popular object detection models, Faster R-CNN [29] and RetinaNet [30], were
utilized in this study to detect T. absoluta damage in tomato crops.

Faster R-CNN is a pivotal model in the domain of object detection that efficiently
handles the task of object localization and classification in images. Its architecture is orches-
trated in a manner that first employs a deep convolutional network as a backbone to extract
a rich set of feature maps from the input image. Following the backbone, a Region Proposal
Network (RPN) operates as the neck, generating a set of object proposals with associated
objectness scores, significantly speeding up the detection process while maintaining a high
level of accuracy. These proposals are then forwarded to the head of the model, where two
sibling layers perform classification and bounding box regression to accurately identify
and localize objects within the image.

For the Faster R-CNN models, configurations were established using ResNet-50 and
ResNet-101 backbones [31] with Feature Pyramid Network (FPN), Convolutional Layer
4 (C4), and Dilated Convolutional Layer 5 (DC5) heads. The FPN head, paired with a
ResNet+FPN backbone, was used with standard convolutional (conv) and fully connected
(FC) heads for box prediction due to its optimal speed/accuracy tradeoff [32]. The C4 head
employed a ResNet conv4 backbone with a conv5 head, following the original baseline
configuration in the Faster R-CNN paper [29]. Lastly, the DC5 head utilized a ResNet conv5
backbone with dilations in conv5, as well as standard conv and FC heads for box prediction.

Meanwhile, RetinaNet is recognized for its effectiveness in detecting objects across
a wide range of scales. Its architecture also comprises a backbone for feature extraction,
an FPN neck for multi-scale feature aggregation, and a head with two sub-heads for
classification and bounding box regression. Notably, RetinaNet introduces a novel loss
function, the Focal Loss, designed to focus training on hard negative examples and thereby
mitigate the foreground–background class imbalance.

RetinaNet configurations were set up with ResNet-50 and ResNet-101 backbones [31],
complemented with an FPN head. The choice of these configurations was informed by their
demonstrated efficiency in various object detection tasks, thus enabling a comprehensive
evaluation of their performance in the detection of T. absoluta infestations.
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The employment of different backbones and heads in these models serves to explore
the speed–accuracy trade-off and the level of detail captured in the object detection task.
For instance, a ResNet-101 backbone, with its deeper architecture, is expected to capture
more intricate features compared to a ResNet-50 backbone, albeit at a higher computational
cost. Similarly, the choice of head (FPN, C4, or DC5) influences the model’s capability to
handle varying object scales and complexities, which is crucial for accurately detecting
T. absoluta damage in diverse real-world agricultural scenarios.

3.3. Ensemble Techniques

The process of combining predictions from the multiple object detection models was
achieved using several ensemble techniques, namely Non-Maximum Suppression (NMS),
Soft Non-Maximum Suppression (Soft NMS) [33], Non-Maximum Weighted (NMW) [34],
and Weighted Boxes Fusion (WBF) [35].

NMS is a fundamental algorithm in object detection that removes duplicate detections
by keeping only the bounding box with the highest confidence score and suppressing others
that have a high IoU overlap with it. Soft NMS, an improvement over NMS, instead of
discarding overlapping detections entirely, decreases their confidence scores based on the
degree of overlap [33]. The NMW method uses a weighted combination of the overlapping
detections to create a more accurate bounding box [34]. The weights are calculated based
on the confidence scores of the detections, resulting in a bounding box that better represents
the detections. The WBF method uses the detection score to obtain a weighted box [35].
This allows for a fused result that reflects all detection results according to the score, unlike
existing methods that use only one result with the highest score when multiple models
detect the same object.

All ensemble techniques were applied post the training of the models; hence, no
additional training was required. The ensemble process was executed by aggregating
the prediction outputs of the individual trained models. This strategy not only conserves
computational resources by avoiding the need for further training but also enhances the
robustness and accuracy of the detection process, making it a pragmatic approach for
real-world agricultural applications [36].

3.4. Object Detection and Ensemble Workflow

Figure 2 illustrates the workflow employed for object detection and ensemble aggrega-
tion in this study. The process initiates with an input image which is fed into multiple object
detection models. Each of these models processes the image independently to identify
and localize T. absoluta infestations, producing images annotated with bounding boxes
around detected instances of damage. The individual outputs from these models are then
aggregated using an ensemble technique that merges the detection results, leveraging
the strengths of each model to enhance accuracy and reliability. This ensemble approach
effectively combines the diverse detection capabilities of the employed models, ensuring
a more comprehensive representation of T. absoluta damage instances within the input
image. The final output of this workflow is an image with aggregated bounding boxes
around detected instances of T. absoluta damage, representing a consensus among the
models employed.
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Figure 2. Object detection and ensemble workflow: the diagram delineates the process from in-
put image, through individual model processing (Faster R-CNN, RetinaNet), to ensemble aggre-
gation, producing the final output with aggregated bounding boxes around detected T. absoluta
damage instances.

3.5. Object Detection Model Training

The object detection models were trained using a specific set of hyperparameters.
Initially, each backbone was pre-trained on the COCO 2017 dataset [37]. The models were
then trained on an image input size of 1024 × 1024 for a total of 20,000 iterations with
a batch size of 2. The Stochastic Gradient Descent (SGD) optimization algorithm was
used for model training. The learning rate was set at 0.001, with a momentum of 0.9 and
a weight decay of 1 × 10−5. In order to facilitate better learning, the learning rate was
reduced by 0.1 at both the 80% and 90% completion stages of the total iterations. This
strategy is known to help models converge more effectively towards the end of the training
process. To improve model robustness and ensure that the models could generalize to new
data, several data augmentation techniques were applied during training. These included
vertical flipping, horizontal flipping, rotation, and Contrast Limited Adaptive Histogram
Equalization (CLAHE) [38].

All models were trained using the Detectron2 framework [39] in PyTorch [40]. The train-
ing was executed on a PC equipped with an Intel Xeon CPU, an NVIDIA Tesla K80 GPU
with 16GB of VRAM, and 12 GB of RAM.

3.6. Evaluation Metrics

The evaluation of the object detection models in this study was performed using the
COCO detection metrics [37]. These metrics have been widely adopted in the field for
their comprehensive evaluation of both localization and classification aspects of object
detection. The primary metric of interest in this study was mAP50, which represents the
mean Average Precision (mAP) at an Intersection over Union (IoU) threshold of 0.5 across
all classes (in this paper, the terms mAP and mAP50 are used interchangeably, indicating
the same concept).

4. Results and Discussion
4.1. Initial Model Evaluations

The initial performance evaluation, as summarized in Table 1, revealed varying levels
of effectiveness among the object detection models, taking both accuracy and inference
time (in seconds per image) into consideration. An mAP50 score of 0.56 was achieved by
the Faster R-CNN model with a ResNet-101 backbone and C4 head, with an inference time
of 0.139 s per image. Its DC5 and FPN variants completed inferences in 0.086 and 0.051 s
per image, respectively, and yielded mAP50 scores of 0.58 and 0.56.

Faster R-CNN with a ResNet-50 backbone and C4 head reached an mAP50 score of
0.58, taking 0.103 s per image for inference. The DC5 and FPN heads on the same backbone
completed their inferences in 0.069 and 0.038 s per image, respectively, with mAP50 scores
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of 0.58 and 0.55. Notably, the Faster R-CNN model with the ResNet-50 backbone and FPN
head boasted the fastest inference time among all evaluated configurations.

With a ResNeXt-101 backbone and FPN head, the Faster R-CNN model displayed an
mAP50 score of 0.56 and took 0.098 s per image for inference. RetinaNet models equipped
with ResNet-101 and ResNet-50 backbones, both with FPN heads, showed mAP50 scores of
0.57. Their inference times were 0.054 and 0.041 s per image, respectively.

Table 1. Initial performance evaluation (mAP50 and inference time in seconds per image) of object
detection models across various model configurations, including different backbones and heads.

Model Backbone Head mAP50 Inference Time

Faster R-CNN ResNet-101 C4 0.56 0.139
Faster R-CNN ResNet-101 DC5 0.58 0.086
Faster R-CNN ResNet-101 FPN 0.56 0.051
Faster R-CNN ResNet-50 C4 0.58 0.103
Faster R-CNN ResNet-50 DC5 0.58 0.069
Faster R-CNN ResNet-50 FPN 0.55 0.038
Faster R-CNN ResNeXt-101 FPN 0.56 0.098
RetinaNet ResNet-101 FPN 0.57 0.054
RetinaNet ResNet-50 FPN 0.57 0.041

4.2. Qualitative Results

Detecting T. absoluta damage on tomato plants is a challenging task due to the inherent
imperfections of individual detection models. When multiple object detection models are
employed, it is common for certain instances of damage to be detected by one model while
being missed by others (Figure 3). Such inconsistencies in detection results can signifi-
cantly impact the overall accuracy and reliability of the detection process. To address this
limitation, ensemble techniques offer a viable solution for improving T. absoluta detection.
By combining the outputs of multiple models, ensemble methods can effectively encompass
a wider range of T. absoluta damage instances, capitalizing on the strengths of different
models and compensating for their respective shortcomings.

Figure 3. Example of T. absoluta damage instances identified by various models. The image represents
the top left image of Figure 1, demonstrating varying bounding box predictions by each model.
Each bounding box is annotated with its respective class, and class 0 signifies damage attributed to
T. absoluta, accompanied by the predicted probability for each identified object.

Individual models may fail to accurately detect T. absoluta infestations due to various
factors. The limitations often arise from the model’s architecture, training data, and the
inherent variability in real-world agricultural imagery [36]. Furthermore, the model’s
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ability to generalize might be hindered if the training data is not diverse enough to capture
the range of conditions under which T. absoluta damage occurs [41]. Furthermore, the hy-
perparameters and the architecture of the model might not be optimal for the specific task
of detecting T. absoluta infestations on tomato plants [36].

4.3. Ensemble Results

In an effort to improve the object detection performance, four ensemble techniques were
benchmarked to assess their effectiveness in enhancing the detection of T. absoluta infestations
on tomato plants. Different configurations of models were ensembled using NMS, Soft NMS,
NMW, and WBF. NMS was configured with an IoU threshold of 0.1, a sigma of 0.01, and a
box-skipping threshold of 0.01. For Soft NMS, only the box-skipping threshold of 0.01 was
applied. NMW utilized an IoU threshold of 0.4 and a box-skipping threshold of 0.01. Lastly,
the WBF method was implemented with an IoU threshold of 0.5 and a threshold of 0.01 for
skipping a box.

The ensemble results, as depicted in Table 2, demonstrated the impact of different
ensemble configurations on the mAP50 scores and the associated inference time. The total
inference time for each ensemble configuration is calculated as Ttotal = ∑N

i=1 Ti + Tensemble,
where Ttotal is the total inference time, Ti is the inference time of the ith model, Tensemble is
the fixed additional latency due to the ensemble technique, and N is the total number of
models in the ensemble.

A detailed examination of the ensemble techniques uncovered the specific average
times associated with each. The NMS method recorded an average inference time of
1.9046 × 10−5 s. The Soft NMS recorded an average time of 4.2064 × 10−5 s. The NMW
method emerged as faster with an average time of 3.5040 × 10−5 s. Impressively, the WBF
method was the fastest, clocking an average time of 1.0002 × 10−5 s. However, these en-
semble techniques contribute a slight increase to the total inference time of the processing.

The ensemble of all models resulted in mAP50 scores of 0.70, 0.66, 0.63, and 0.61 for
WBF, NMW, Soft NMS, and NMS, respectively. When ensembling only Faster R-CNN
models, the scores were slightly lower: 0.69 for WBF, 0.66 for NMW, 0.63 for Soft NMS,
and 0.61 for NMS. Ensembling the RetinaNet models, the scores were 0.64, 0.63, 0.60,
and 0.59 for WBF, NMW, Soft NMS, and NMS, respectively. For ensembles of Faster R-
CNN models with a ResNet-101 backbone, the scores ranged from 0.64 for WBF to 0.59 for
NMS. When only the Faster R-CNN models with a ResNet-50 backbone were ensembled,
the scores increased to 0.67 for WBF and 0.60 for NMS. The ensemble of all Faster R-CNN
models with a C4 head resulted in scores of from 0.63 for WBF to 0.59 for NMS. For the
DC5 head, the scores were similar, ranging from 0.63 for WBF to 0.60 for NMS. Lastly,
the ensemble of all Faster R-CNN models with an FPN head produced the lowest scores,
ranging from 0.61 for WBF to 0.56 for NMS.

The success of ensemble models in this study is clearly illustrated in Figure 4, which
demonstrates the superior performance of ensemble models in terms of mAP50 scores
compared to individual models, despite the inference time. For a balance between accuracy
and inference time, the ensemble of RetinaNet models lies on the top left of Figure 4,
showcasing a favorable trade-off. However, for enhanced accuracy, ensembles involving
all models or just Faster R-CNN models are preferred as they achieve higher mAP50 scores.
In particular, the WBF ensemble stands out in achieving a higher mAP50 score, showcasing
the advantage of aggregating detection results from different models.

These ensemble techniques, namely NMS, Soft NMS, NMW, and WBF, effectively
merge the detection results from different models, leading to a more robust and accurate
detection of T. absoluta damage. The aggregated knowledge from different models provides
a broader understanding of the data, which is crucial for handling the variability and
complexities inherent in real-world agricultural imagery [42]. Ensemble models often
outperform single models as they benefit from the diversity among the models in the
ensemble [43]. The diversity can arise from differences in the model architectures, training
data, or the learning algorithms, which contribute to a more comprehensive and reliable
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detection performance [36]. The fusion of detection results from diverse models, facilitated
by ensemble techniques, forms a more complete representation of the data, thus enhancing
the model’s ability to accurately detect T. absoluta infestations across varying conditions
encountered in agricultural settings.

Table 2. Ensemble results (mAP50) using different configurations of models and ensemble techniques.

Ensemble Configuration WBF NMW Soft NMS NMS

All models 0.70 0.66 0.63 0.61
All Faster R-CNN 0.69 0.66 0.63 0.61
All RetinaNet 0.64 0.63 0.60 0.59
All Faster R-CNN ResNet-101 0.64 0.62 0.60 0.59
All Faster R-CNN ResNet-50 0.67 0.64 0.61 0.60
All Faster R-CNN C4 0.63 0.61 0.60 0.59
All Faster R-CNN DC5 0.63 0.62 0.60 0.60
All Faster R-CNN FPN 0.61 0.60 0.58 0.56

Figure 4. Comparison of mAP50 scores versus inference time (images per second) among individ-
ual and ensemble models. Higher mAP50 values indicate better model performance in accurately
detecting T. absoluta damage.

4.4. Comparison with State-of-the-Art

The results generated in this study are significant, particularly when compared with
those obtained by Loyani et al. (2021) [23] and Georgantopoulos et al. (2023) [24]. Loy-
ani et al. managed to achieve a high mAP50 of 0.8567 using Mask R-CNN for detecting
T. absoluta effects, which was facilitated by the large size of the depicted objects in their
dataset. However, even though this study tackles a more challenging detection scenario,
the ensemble methods, especially the WBF, managed to achieve an mAP50 score of 0.70,
showcasing the robustness and effectiveness of the employed ensemble techniques.

In addition, Georgantopoulos et al. leveraged multispectral images, which provide
richer spectral information compared to color images, yet their Faster-RCNN model only
achieved a 0.202 mAP50 on detection. This stark contrast in performance, compared to
the 0.70 mAP50 score achieved with the ensemble of all models in this study, underscores
the significance of the ensemble techniques deployed. The refined configurations in the
ensemble methods, such as combining models with different backbones and heads, demon-
strated an ability to adjust to specific attributes of the data, thereby optimizing detection
performance.
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4.5. Benchmark Analysis with YOLOv8

For a more comprehensive benchmark analysis, additional state-of-the-art models
were examined alongside the proposed ensemble techniques employed with Faster R-CNN
and RetinaNet. Specifically, various versions of YOLOv8 [44], namely YOLOv8n, YOLOv8s,
YOLOv8m, YOLOv8l, and YOLOv8x, were trained and evaluated. Every variant varied in
network depth, denoted by a growing number of layers, and network width, demonstrated
by an increasing number of filters in these layers. Each model was trained for 100 epochs,
with a patience of 15, a batch size of 8 (4 in the case of YOLOv8x), and an image size of
1024 × 1024. The SGD optimizer was used with a learning rate of 0.01, momentum of 0.9,
and a weight decay of 0.0005.

All models were trained using the Ultralytics framework [44] in PyTorch [40]. The train-
ing was executed on a PC equipped with an Intel Xeon CPU, an NVIDIA Tesla K80 GPU
with 16 GB of VRAM, and 12 GB of RAM.

The results, shown in Table 3, reveal that the YOLOv8 models achieved comparable
performance to the models in the initial model evaluations, albeit not surpassing them.
This underlines the effectiveness of the ensemble approach proposed in this study, which
has shown superior performance in detecting T. absoluta infestations on tomato plants,
as shown in Figure 4. The ensemble techniques enhanced the mAP50 scores, showcasing
the advantage of this study’s methodology in the realm of agricultural pest detection.

Table 3. Performance evaluation (mAP50, recall, and precision) of YOLOv8 models.

Model Depth Width mAP50 Recall Precision

YOLOv8n 0.33 0.25 0.55 0.53 0.60
YOLOv8s 0.33 0.50 0.57 0.55 0.61
YOLOv8m 0.67 0.75 0.58 0.54 0.61
YOLOv8l 1.00 1.00 0.58 0.57 0.62
YOLOv8x 1.00 1.25 0.58 0.54 0.65

Using ensemble techniques with Faster R-CNN and RetinaNet models allows this
study to draw from the strengths of each model, overcoming the limitations of each when
used alone. Unlike using a single model like YOLOv8, the ensemble method combines
the detection capabilities of different models, achieving more reliable and accurate de-
tection output. The shared information between Faster R-CNN and RetinaNet models,
facilitated by ensemble techniques, provides a better understanding of the data, lead-
ing to more accurate detection of T. absoluta infestations even in challenging real-world
agricultural scenarios.

Moreover, the ensemble approach balances the distinct attributes of Faster R-CNN
and RetinaNet, which, when combined, contribute to a higher mAP50 score compared to
using a single model like YOLOv8. This pairing, arranged by ensemble techniques, results
in a detection pipeline that performs better than the YOLOv8 models. The comparative
performance of YOLOv8 models in this benchmark analysis further supports the chosen
methodology of this study, affirming the better performance and usefulness of ensemble
techniques in real-world agricultural pest detection tasks.

5. Conclusions

In conclusion, the detection of T. absoluta infestation on tomato plants was addressed
in this study using object detection models combined with ensemble techniques. This ap-
proach contrasts with previous works by focusing on the challenges of detecting T. absoluta
infestations in real-life conditions, including open-field and greenhouse environments,
and specifically identifying and localizing T. absoluta damage on tomato plants.

Initial evaluations of the Faster R-CNN and RetinaNet models, involving different
backbones and heads, suggested a need for a refined strategy to enhance performance.
The application of ensemble techniques, namely NMS, Soft NMS, NMW, and WBF, suc-
cessfully improved detection predictions, leading to enhanced mAP scores. In particular,
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the employment of WBF led to a significant increment of 20% in the mAP score, from
0.58 to 0.70, highlighting the potential of ensemble methods to address the challenges
associated with T. absoluta detection.

By enhancing the accuracy and reliability of T. absoluta detection using deep-learning-
based object detection models combined with ensemble techniques, a contribution is made
towards the development of more effective pest management strategies in tomato produc-
tion. This study underscores the potential of these techniques in the field of agricultural
pest detection and provides valuable insights for the development of advanced detection
systems, aiding farmers in effectively managing T. absoluta infestations and minimizing
economic losses in tomato production. Moreover, these technological strides resonate well
with the objectives of integrated pest management, emphasizing a shift towards sustainable
agriculture. This progression directly supports the Green Deal’s ambitious aim of achieving
a 50% reduction in pesticide use by 2030.

In future work, the refined models from this study could enable artificial-intelligence-
enabled robotic traps to monitor and detect insects in real-time, integrating with decision
support systems or mobile apps for immediate alerting to mitigate insect or moth attacks
and spreads. Given that these traps capture images periodically, the enhanced accuracy
of the models, even at the expense of minimal additional inference time, is a crucial
attribute. Moreover, the models can be adapted for autonomous navigated mobile robots
or unmanned aerial vehicles equipped for in-field detection and surveillance. Integrated
with deep learning models, these robotic systems promise enhanced detection accuracy
in precision agriculture, even in low fps modes, providing a sophisticated solution for
real-time, on-site pest monitoring and management.
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C4 Convolutional Layer 4
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CLAHE Contrast Limited Adaptive Histogram Equalization
CNN Convolutional Neural Network
DC5 Dilated Convolutional Layer 5
FPN Feature Pyramid Network
Faster R-CNN Faster Region-Based Convolutional Neural Network
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NMS Non-Maximum Suppression
NMW Non-Maximum Weighted
ResNet Residual Network
SGD Stochastic Gradient Descent
Soft NMS Soft Non-Maximum Suppression
WBF Weighted Boxes Fusion
YOLO You Only Look Once
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