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Abstract: Water and nitrogen (N) are major factors in plant growth and agricultural production.
However, these are often confounded and produce overlapping symptoms of plant stress. The
objective of this study is to verify whether the different levels of N treatment influence water
status prediction and vice versa with hyperspectral modeling. We cultivated 108 maize plants
in a greenhouse under three-level N treatments in combination with three-level water treatments.
Hyperspectral images were collected from those plants, then Relative Water Content (RWC), as well
as N content, was measured as ground truth. A Partial Least Squares (PLS) regression analysis was
used to build prediction models for RWC and N content. Then, their accuracy and robustness were
compared according to the different N treatment datasets and different water treatment datasets,
respectively. The results demonstrated that the PLS prediction for RWC using hyperspectral data
was impacted by N stress difference (Ratio of Performance to Deviation; RPD from 0.87 to 2.27).
Furthermore, the dataset with water and N dual stresses improved model accuracy and robustness
(RPD from 1.69 to 2.64). Conversely, the PLS prediction for N content was found to be robust against
water stress difference (RPD from 2.33 to 3.06). In conclusion, we suggest that water and N dual
treatments can be helpful in building models with wide applicability and high accuracy for evaluating
plant water status such as RWC.

Keywords: nitrogen treatment; drought stress; hyperspectral camera; plant phenotyping; partial
least squares regression

1. Introduction

Water and nitrogen (N) are major factors in plant growth and agricultural production.
Water is necessary for normal plant growth and development. Drought is one of the major
constraints limiting crop production [1] and many actual cases have been reported [2–4].
Drought stress reduces leaf size, stem extension, and root proliferation, disturbs plant water
relations, and reduces water-use efficiency [5]. Drought stress also reduces photosynthesis
in a variety of ways. For example, drought progressively decreases CO2 assimilation rates
due to reduced stomatal conductance [6]. Moreover, it induces a reduction in the contents
and activities of photosynthetic carbon reduction cycle enzymes, including the key enzyme,
ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco [6].

N is one of the most important nutrients for a plant. Organically bound N is used to
build all amino acids, amines, ureides, peptides, and proteins in plants [7]. Much of the
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plant response to N deficiency is centered on photosynthetic elements. One study showed
that N deficiency leads to a breakdown of proteins in wheat chloroplasts, peroxisomes,
and cytosol [8]. Chloroplasts contain N involved in photosynthesis as soluble protein,
dominated by the enzyme Rubisco, and protein in the thylakoid membranes [9]. Another
study determined that N deficiency decreased the leaf area, chlorophyll content, and
photosynthetic rate, ultimately resulting in lower dry matter accumulation of sorghum
plants [10]. The decreased photosynthetic rate due to N deficiency was mainly associated
with the decreases in stomatal conductance and intercellular CO2 concentration [10].

For the reasons described above, water and N condition monitoring in plants play an
important role for plant science, breeding, and agricultural production purposes. There are
a variety of ways to analyze the water and N status of plants [11,12]. However, most of these
analyses are slow, labor-intensive, and destructive to the plant. Remote sensing of plant
water and N status could solve these problems. Particularly, hyperspectral imaging is one
of the promising tools to evaluate plant traits of interest. Compared to traditional RGB (Red,
Green, and Blue) images, hyperspectral images are able to collect much more information
from hundreds of narrow spectral bands. Water and N content prediction models can be
built using a bunch of spectral information. Researchers have used hyperspectral imaging
to evaluate the water content [13–17] or the N content [18–21] of various plant species.
Several previous works have combined water and nutrient stresses in the experiment, but
only demonstrated that hyperspectral data could be used to predict water content and
nutrient content, respectively [22–25].

Water and N stresses are confounded, and the application of one stress affects the
other stress. Previous biological studies have determined that water and N stresses are
involved in each other’s expression of plant phenotypes. One of the large contributors
to a decrease in growth under drought stress is N deficiency [26]. In one drought stress
study, the plant N content decreased by almost 4% [27]. In other studies, drought reduced
plant growth by reducing N uptake, transport, and distribution [28]. Within the plant, as a
consequence of the link between nutrient mass flow and transpiration, nutrient availability,
particularly that of nitrate, partially regulates plant water flux [29]. However, as described
above, there are not enough previous hyperspectral imaging studies of combined water
and N stresses, and there is no direct discussion about the impact of dual stresses to predict
water and N content in plants.

Our main contributions and novelty in this study are as follows:

• In order to investigate how the popular imaging models confuse between different
types of plant stresses, we conducted hyperspectral imaging for maize plants under
three levels of N treatments inter-leaved with three levels of water treatments.

• Partial Least Squares (PLS) models to predict Relative Water Content (RWC) and N
content were developed. We compared their accuracy and robustness according to the
different N and water treatment datasets.

• RWC prediction using hyperspectral data was severely impacted by N stress difference.
Conversely, N content prediction was robust against water stress difference.

• The new models developed from the inter-leaved assay significantly helped to relieve
the impacts on RWC prediction.

This paper is organized as follows: Following the introduction, Section 2 briefly
reviews previous works related to water and N prediction models using hyperspectral
imaging. Section 3 describes the materials and methods and Section 4 provides the exper-
imental results. Section 5 discusses experimental results and the limitation of this study,
and finally, Section 6 concludes with some remarks and future works.

2. Related Work

Water and N condition monitoring can be performed in a variety of ways. Plant
physiological studies commonly measure water and N content using plant tissue as a
sample [11,12]. Most of these analyses are time-consuming, labor-intensive, and inherently
destructive to the plant, making it impossible to measure the same plant multiple times dur-
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ing its growth period. For example, RWC is one of the most commonly used measurements
to evaluate water status in plants [12].

Remote sensing of plant water and N status could solve these problems. Vegetation
indices are often used to evaluate them in the field. Normalized Difference Vegetation Index
(NDVI) is one of the most common vegetation indices and is calculated with reflectance
in red and infrared bands or is measured by a spectroradiometer. Yousfi et al. [30] used
NDVI measured by a spectroradiometer to evaluate water status in the turfgrass field.
Colovic et al. [31] also used NDVI and other vegetation indices calculated with reflectance
data from a hyperspectral image to assess water and N status. Using the vegetation index
is an easy and quick, especially for field measurements, but difficult way to predict the
actual content of water and N.

Image-based plant phenotyping offers a high-throughput and non-destructive method
that can significantly reduce time and labor costs. It is also a repeatable way to measure
the same plant sample. A hyperspectral camera is gradually becoming more common in
the plant research area. Traditional RGB images capture data on light intensities in three
spectral bands, whereas hyperspectral images are able to collect much more information
from hundreds of narrow spectral bands. Using a bunch of spectral information from
hyperspectral imaging, models to predict the water and N contents of the plant can be built.
In previous studies, hyperspectral imaging has successfully evaluated the water content
such as in maize [13], wheat [14], soybean [15], rice [16], and grapevine [17], and N content
evaluation has been also reported in sugarcane [18], wheat [19], cucumber [20], and oilseed
rape [21].

Several prior works have combined water and nutrient stresses in their experiments.
Pandey et al. [22] combined different levels of water and nutrient stress in maize and
soybean. Then, water content and nutrient content (N, phosphorus, potassium, sulfur, and
so on) were predicted respectively. Similar studies of combined water and N stresses only
demonstrated that hyperspectral data could be used to predict water content and N content,
respectively, in wheat [23], spinach [24], and sorghum and maize [25].

However, there are not enough previous hyperspectral imaging studies of combined
water and N stresses, and there is no direct discussion about how the popular imaging
models confuse between different types of plant stresses. This work fills the gap in previous
works by conducting hyperspectral imaging for maize plants under three levels of N
treatments inter-leaved with three levels of water treatments to investigate the impact of
dual stresses to predict water and N content in plants.

3. Materials and Methods
3.1. Hyperspectral Imaging System

The imaging system consisted of an L-shaped cabinet with top-view and side-view
hyperspectral cameras and lighting mounted inside. The cameras were 5.5 megapixels
sCMOS visible near-infrared hyperspectral sensors (MSV-500, Middleton Spectral Vision,
Middleton, WI, USA). The spectral resolution of the sensor was approximately 0.64 nm, and
there were 969 bands in the spectral range 400–1019 nm. Inside the imaging tower, there
were eight 500 W halogen lamps to provide lighting: four around the top-view camera and
four around the side-view camera.

3.2. Experimental Design

Plant growth and data collection were conducted in the Purdue University Lily green-
house from January to February 2017. A total of 108 maize (Zea mays, B73xMo17 hybrid)
plants were grown in 5.7 L pots. B73xMo17 is an F1 hybrid. The Dr. Tuinstra Lab produced
seeds of B73xMo17 by crossing the public inbred lines B73 and Mo17 at Purdue University.
Seeds were used without any pretreatment. Pots were filled with a 50/50 mixture of sand
and Turface AthleticsTM MVP® (PROFILE Products LLC, Buffalo Grove, IL, USA). All
maize plants were initially given one round 24-8-16 commercial fertilizer (Miracle-Gro®

Water Soluble All Purpose Plant Food, The Scotts Miracle-Gro Company, Marysville, OH,
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USA). The greenhouse was set to 23–29 ◦C and supplemental lighting was on 12 h a day.
Each pot had an irrigation line that delivered 500 mL water to each plant every morning.

Maize plants were grown under 3 different N treatments by 3 different water treat-
ments and therefore 9 different treatment groups (Table 1). Treatments were assigned to
pots following a randomized complete block design with 12 replications.

Table 1. N and water treatment combinations.

N Treatment Water
Treatment

Number of
Plants

Training Test Total

Low N Watered 10 2 12
Low Drought 10 2 12

Drought 10 2 12
Medium N Watered 10 2 12

Low Drought 10 2 12
Drought 10 2 12

High N Watered 10 2 12
Low Drought 10 2 12

Drought 10 2 12
(Total) 90 18 108

N treatments were started from the fourth week after sowing (Figure 1b). Plants were
in the vegetative growth stage three or four at this point in time. Plants were fertilized
weekly with 250 mL of 3 different modified Hoagland’s solutions, which contain different
levels of N (0, 3, and 20 mM ammonium nitrate). The original Hoagland solution was
developed in 1938 [32] and revised in 1950 [33]. The solutions used in this experiment were
modified from the original recipe in order to provide all macronutrients and micronutrients
with three different levels of N.
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While the N treatments were applied over the entirety of plant growth, water treat-
ments were applied for a short period of time. At the vegetative growth stage seven,
the plants assigned to receive low drought and drought treatments were withheld from
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watering for 3 or 4 days before data collection day. The other plants assigned to the watered
treatment were kept watered every morning.

3.3. Image Acquisition and Sample Collection

Data collection was performed at the vegetative growth stage seven on 16 February
2017 (Figure 1c). All the plants were placed inside the imaging tower and scanned one by
one from top-view. The distance from the camera to the plant was 2.3 m. To calibrate the
acquired images, a flat polyvinyl chloride (PVC) panel was scanned as the white reference.
The white reference calibration was used to minimize the effect of the uneven intensity of
the lighting source in different bands [34,35].

After image acquisition, a small section of the top collared leaf was taken to measure
relative water content (RWC). Then, the rest of the top-collared leaf was collected for N
content analysis. The collected RWC and N content data were used as the ground truth
data in a later hyperspectral image-based prediction model.

3.4. Relative Water Content Measurements

RWC was measured to estimate the water status of the leaf samples as described by
Turner [12]. In this study, a piece of the top collared leaf sampled for RWC measurement
was approximately 2.5 cm × 5.0 cm and weighed to obtain the fresh weight (FW). The
samples were immediately submerged in deionized water overnight to ensure the tissue
was fully turgid and weighed to obtain the turgid weight (TW). Finally, all samples were
fully dried in a 60 ◦C dryer and weighed to obtain the dried weight (DW). These values
were used to determine the RWC using the equation below.

RWC (%) = [(FW - DW)/(TW - DW)] × 100 (1)

3.5. Nitrogen Content Measurements

The harvested top-collared leaf materials were dried in a 60 ◦C dryer for a week.
Dried leaf materials were ground and stored at room temperature, and subsequently, N
concentration of these samples was analyzed using a Thermo Scientific FlashEA® 1112
Nitrogen and Carbon Analyzer for Soils, Sediments, and Filters (Thermo Fisher Scientific,
Waltham, MA, USA) based on the flash dynamic combustion method [25].

3.6. Image Processing

Figure 2 shows whole image processing steps. To process the hyperspectral images, the
raw images were first calibrated with a white reference. The calibrated hyperspectral images
were processed using a segmentation procedure with simple convolution methodology
that was the same as used in our previous study. [34]. A vector of sequential integers
from −20 to 20 was multiplied by the reflectance intensity vector from the red-edge region
(680–720 nm). By choosing threshold 7 as the boundary between plant tissue and the
background, the plant was successfully segmented out (Figure 3).

The hyperspectral imaging produced a reflectance data point at every pixel of every
plant at every wavelength. After segmentation, the pixels representing plant tissues were
extracted from the hyperspectral images. Then, the reflectance spectrum of each plant
pixel was calculated from those extracted plant images. The average of all the pixels was
calculated for every plant at every wavelength and this average was used to represent the
plant at a specific wavelength. The spectral resolution was approximately 0.64 nm, and
there were 969 bands in the spectral range 400–1019 nm. We used 777 wavebands (from 450
to 962 nm) instead of 969 bands (from 400 to 1019 nm) due to the low signal-to-noise ratio
in the two tails of the spectra. Matlab R2016a (MATLAB 9.0) software (The MathWorks Inc.,
Natick, MA, USA) was used to develop image processing algorithms.
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3.7. Data Analysis

PLS is a widely used predictive method for regression and has been applied in previous
studies to analyze hyperspectral images for estimating plant water status [13,22,36] and
N content [19,37]. In this study, PLS was used to model and predict RWC and N content.
The final dataset contained 108 maize samples reflectance at every wavelength along with
RWC and N content ground truth collections.

PLS modeling was carried out in Matlab R2016a software and PLS Toolbox (Eigen-
vector Research Inc., Manson, WA, USA). The preprocessing steps were first introduced
and applied to spectra features to remove scaling effects and so on. All 108 samples were
separated into two groups as shown in Table 1: a training dataset with 90 samples for
model building and calibration, and a test dataset with 18 samples for validating purposes.
Leave-one-out cross-validation was used for model calibration. The number of components
was determined by choosing those that gave the first local minimum in Root Mean Squared
Error of Cross Validation (RMSECV).

To determine how N treatment influences RWC prediction by hyperspectral imaging,
three PLS models were built using three different sub-datasets. Each sub-dataset repre-
sented an individual N treatment and was referred to as Low-N, Medium-N, and High-N.
Each sub-dataset consisted of 30 samples with one N level but varying water stress levels
(Watered, Low drought, and Drought) from 90 samples of training dataset. Then, these
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models were applied to the test dataset including all N and water level combinations,
to predict RWC. In addition, another three models were developed with another three
sub-datasets named R1, R2, and R3. A total of 30 samples were chosen for each sub-dataset
by randomly dividing all 90 samples of the whole training dataset into 3 groups. These
models were also applied to the same test dataset to predict RWC.

Similar approaches were used to investigate the water treatment effect on N content
prediction. Three PLS models for N content prediction were built using three different
sub-datasets. Each sub-dataset represented individual water treatment and was referred to
as Watered, Low drought, or Drought. Each sub-dataset consisted of 30 samples, which
have one water level with varying N stress levels (Low-N, Medium-N, and High-N) from
90 samples of training dataset. Then, these models were applied to the test dataset including
all water and N level combinations, to predict N content. Then, another 3 prediction models
for N content were developed with R1, R2, and R3 sub-dataset. These models were also
applied to the same test dataset to predict N content.

To assess the model performance, the following three indicators were calculated for
both the training and testing datasets: Coefficient of Determination (R2) between measured
and predicted values; Root Mean Square Error (RMSE), defined as the Equation (2) in which
yi are measured values and ŷi are predicted values; and Ratio of Performance to Deviation
(RPD), calculated as the ratio of the Standard Deviation (SD) of the measured values of the
samples to the RMSE using Equation (3).

RMSE =

√
1
N

× ∑(yi − ŷi)
2 (2)

RPD = SD/RMSE (3)

3.8. Statistical Analysis

A two-way analysis of variance (ANOVA) was carried out to determine the main
effect of each N and water treatment as well as their interaction effect on RWC ground
truth and on N content ground truth, respectively. These ground truth data were checked
for normality before the ANOVA. Data were analyzed in R statistical environment [38].

4. Results
4.1. RWC and N Content Ground Truth

Figure 4 shows the range of RWC levels measured in maize leaves under all different
N and water treatment combinations. The RWC ranged from 54.3% to 98.9% of the leaf
section. In each N treatment, watered plants had consistently high RWCs close to 100%
while both the low drought and drought treatment plants had RWCs in the clearly wider
range toward the lower side. There was a significantly clear water treatment effect as well
as an N treatment effect shown in the ANOVA, but no significant water × N interaction
effect was found for RWC ground truth (Table 2).

Figure 5 illustrates the range of N content levels measured in maize leaves under all
different N and water treatment combinations. The N content ranged from 1.11% to 2.96%
of the leaf section. In each water treatment, plants grown with higher N treatment tended
to have higher N content in the leaves. As in the case with RWC, the ANOVA confirmed
that N content ground truth was significantly affected by N treatment as well as water
treatment, but no significant water × N interaction effect was found for N content ground
truth (Table 2).
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4.2. PLS Modeling for RWC Prediction

N and water stresses are often confounded and produce overlapping symptoms of
plant stress. To determine how N treatment influences RWC prediction by hyperspectral
imaging, three PLS models were built using three different N treatment sub-datasets.
Figure 6 shows the relationships between measured and predicted RWC. The predicted
RWC from each model was plotted against the reference RWC. Table 3 provides detailed
statistical results from the different N-level training dataset approach. For comparison
purposes, another three models (R1, R2, and R3) using randomly selected datasets were
applied. Then, the predicted value was plotted against the reference value in Figure 5, and
the statistical results are shown in Table 3.

4.3. PLS Modeling for N Content Prediction

Similar approaches were tested to investigate the water treatment effect on N content
prediction. Three PLS models for N content prediction were built using three different
water treatment sub-datasets. Figure 7 shows the relationships between the measured and
predicted N content. The predicted N content from each model was plotted against the
reference N content. Table 4 provides detailed statistical results from different water-level
training dataset approaches. In addition, another three prediction models (R1, R2, and R3)
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using randomly selected datasets were also applied. Then, the predicted value was plotted
against the reference value in Figure 6, and the statistical results are shown in Table 4.
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Table 3. Results of predicting RWC of maize plants using hyperspectral imaging with different datasets.

Sub-Dataset Training (n = 30) Test (n = 18)

Approach Label PLS
Comp R2 RMSECV RPD R2 RMSEV RPD

Individual water treatment Watered 8 0.698 6.01 1.80 0.831 7.35 1.70
Low drought 4 0.632 6.96 1.63 0.911 5.50 2.27

Drought 5 0.849 5.73 2.56 0.832 14.44 0.87
Randomly selected R1 7 0.757 7.36 2.00 0.934 4.73 2.64

R2 4 0.623 7.10 1.61 0.723 7.38 1.69
R3 4 0.728 6.27 1.90 0.854 5.27 2.37

Table 4. Results of predicting N content of maize plants using hyperspectral imaging with differ-
ent datasets.

Sub-Dataset Training (n = 30) Test (n = 18)

Approach Label PLS
Comp R2 RMSECV RPD R2 RMSEV RPD

Individual water treatment Watered 1 0.799 0.204 2.23 0.896 0.170 3.06
Low drought 3 0.809 0.193 2.28 0.842 0.210 2.47

Drought 5 0.820 0.204 2.34 0.835 0.223 2.33
Randomly selected R1 4 0.772 0.232 2.08 0.853 0.212 2.45

R2 1 0.800 0.170 2.24 0.896 0.172 3.02
R3 3 0.854 0.197 2.59 0.863 0.206 2.52
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5. Discussion
5.1. Effects of N and Water Treatments on RWC and N Content Ground Truth

There was a significantly clear water treatment effect as well as an N treatment effect
shown in the ANOVA, but no significant water × N interaction effect was found for RWC
ground truth (Table 2). This means that both water and N treatment certainly affected
RWC ground truth, but each treatment worked independently and there was no positive or
negative synergistic effect. As in the case with RWC, the ANOVA confirmed that N content
ground truth was significantly affected by N treatment as well as water treatment, but no
significant water × N interaction effect was found for N content ground truth (Table 2).
This means both N and water treatment certainly affected N content ground truth, but each
treatment worked independently and there was no positive or negative synergistic effect.
These results indicated that the design of this experiment was successful and created a
large variation in plant RWC and N content across the water and N treatments. This also
provided a reliable base to examine both the N treatment effect for RWC prediction and the
water treatment effect for N content prediction with hyperspectral images.

5.2. N Treatment Effect on PLS Modeling for RWC Prediction

N and water stresses are often confounded and produce overlapping symptoms of
plant stress. To determine how N treatment influences RWC prediction by hyperspectral
imaging, three PLS models were built using three different N treatment sub-datasets.

Figure 6 shows the relationships between measured and predicted RWC. In the case
of RWC prediction with the High-N base model, many of the lower N-level plants (crosses
and open circles) were plotted above the 1:1 line. This means lower N levels cause the
predictions to be higher than the reference measurements. The Low-N base model displayed
an opposite trend. Some of the higher N-level plants (open and filled circles) tended to
be plotted below the 1:1 line. This means that higher N levels cause the predictions to be
lower than the reference measurements. The Medium-N base model seems to have no bias.
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Table 3 provided detailed statistical results from different N-level training dataset
approaches. RMSE is a good measure of how accurately the model predicted the response,
and it is the most important criterion for fit if the main purpose of the model was prediction.
Among the three individual N treatment approaches, the accuracy of RWC prediction
fluctuated depending on the N treatment level. The Medium-N model showed the highest
accuracy (lowest RMSE) and the High-N-based model showed the lowest accuracy (highest
RMSE). RPD also showed a similar trend. RPD is widely used as a criterion to evaluate the
usefulness of prediction models in analytical chemistry and chemometric modeling [39,40].
Ge et al. [13] and Pandey et al. [22] used RPD to assess their hyperspectral models to predict
the water content as well as the nutrient concentration of plants. There were three categories:
(A). good models RPD > 2.0; (B). fair models RPD = 1.4~2.0; and (C). non-reliable models
RPD < 1.4 [39]. Following this category standard, only the Medium-N model belonged to
good models. Conversely, the High-N model indicated non-reliable model performance.
These results demonstrated that RWC prediction models using hyperspectral data are
potentially impacted by N stress. We expected that using the dataset with water and N
dual stresses can help to improve the accuracy and robustness of the model.

To confirm this idea, another three models (R1, R2, and R3) using randomly selected
datasets were applied. The R3 scatterplot in Figure 5 showed less bias. Samples from
Low-N, Medium-N, and High-N were plotted uniformly around the 1:1 line. RMSEV and
RPD in Table 3 also looked improved. In conclusion, the dataset with water and N dual
stresses can help to build an accurate and robust PLS model for RWC prediction by using
hyperspectral data.

5.3. Water Treatment Effect on PLS Modeling for N Content Prediction N

Correspondingly, three PLS models for N content prediction were built using three
different water treatment sub-datasets to investigate the water treatment effect on N con-
tent prediction.

Figure 7 shows the relationships between measured and predicted N content. As
contrasted with the RWC prediction in Figure 6, the scatter of crosses (samples from
Watered), open squares (samples from Low drought), and filled squares (samples from
Drought) around the 1:1 line were quite consistent. There was no overestimation or
underestimation of the difference in water treatment. Table 4 provides detailed statistical
results from different water-level training dataset approaches. The results of RMSE and
RPD for N content prediction also showed steady performance regardless of the water-level
difference in model building.

In addition, another three prediction models (R1, R2, and R3) using randomly selected
datasets were also applied. Figure 7 and Table 4 show that there was no significant
improvement in N content prediction by using the dataset with water and N dual stresses.
We expected the water and N stress phenotypes to overlap each other because N deficiency
as a result of drought is the largest contributor to the decrease in growth under drought
stress [26]. However, in contrast to the N treatment impact on RWC prediction, the PLS
prediction for N content was found to be robust against the water status difference in plants.

5.4. The Limitation of This Study

Though the importance of growing plants under both water and N stresses has been
suggested, further study is still needed to improve the model applicability and accuracy of
plant water status estimation. For example, the two types of stresses may show significantly
different color distribution patterns between the different leaf areas such as the base,
edge, tip, mid-rib, secondary veins, and mesophyll. Analysis of these color distribution
patterns may provide more accurate models to clearly differentiate between N and water
stresses. Purdue University’s LeafSpec hyperspectral leaf imager [41] is a new sensor
technology providing high-quality single-leaf hyperspectral images with 0.5 mm resolution,
which enables such spatial stress distribution analyses. Preliminary studies with this 2021
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Davidson Prize winner technology have already shown advantages in accurate plant stress
detection [42].

6. Conclusions

In this study, we investigated how N stress influences water status predictions, as
well as how water stress affects N status predictions through hyperspectral imaging. We
conducted hyperspectral imaging for maize plants under three-level N treatments inter-
leaved with three-level water treatments. Then, PLS models to predict RWC and N content
were developed and their accuracy and robustness were compared according to the different
N treatment datasets and different water treatment datasets, respectively. The results
demonstrated that the PLS prediction for RWC using hyperspectral data was potentially
impacted by the N stress difference. Furthermore, the dataset with water and N dual
stresses improved model accuracy and robustness. Conversely, the PLS prediction for
N content was found to be robust against the water stress difference. In conclusion, we
suggested that water and N dual treatments can be helpful in building models with wide
applicability and high accuracy for evaluating plant water status, such as RWC.

In the future, other limitation factors should be included to further improve the
model’s applicability and accuracy. We conducted similar hyperspectral plant phenotyping
research previously in terms of multi-species [25] and different imaging angles [34]. These
findings should be combined to develop a broader solution. We also plan to include
our new sensor technology, the LeafSpec hyperspectral imager [41], to detect single-leaf
high-quality stress distribution. This approach could provide high-quality predictions of
plant conditions.
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