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Abstract: Inertial-sensor-based attitude estimation is a crucial technology in various applications,
from human motion tracking to autonomous aerial and ground vehicles. Application scenarios
differ in characteristics of the performed motion, presence of disturbances, and environmental
conditions. Since state-of-the-art attitude estimators do not generalize well over these characteristics,
their parameters must be tuned for the individual motion characteristics and circumstances. We
propose RIANN, a ready-to-use, neural network-based, parameter-free, real-time-capable inertial
attitude estimator, which generalizes well across different motion dynamics, environments, and
sampling rates, without the need for application-specific adaptations. We gather six publicly available
datasets of which we exploit two datasets for the method development and the training, and we use
four datasets for evaluation of the trained estimator in three different test scenarios with varying
practical relevance. Results show that RIANN outperforms state-of-the-art attitude estimation filters
in the sense that it generalizes much better across a variety of motions and conditions in different
applications, with different sensor hardware and different sampling frequencies. This is true even
if the filters are tuned on each individual test dataset, whereas RIANN was trained on completely
separate data and has never seen any of these test datasets. RIANN can be applied directly without
adaptations or training and is therefore expected to enable plug-and-play solutions in numerous
applications, especially when accuracy is crucial but no ground-truth data is available for tuning or
when motion and disturbance characteristics are uncertain. We made RIANN publicly available.

Keywords: attitude estimation; nonlinear filters; inertial sensors; information fusion; neural networks;

recurrent neural networks; performance evaluation

1. Introduction

As a result of rapid improvements in microelectromechanical systems technologies,
miniature Inertial Measurement Units (IMUs) have become more and more lightweight
and small at reasonable accuracies. They have thus entered a wide range of applications in
which some form of motion tracking or analysis is required. Popular examples are found
in aerospace engineering, autonomous vehicle technologies, robotics, and wearables for
health and sports applications [1].

To estimate the motion of an object from the raw readings of an IMU, one needs to
determine the orientation of the sensor frame with respect to the vertical axis and horizontal
plane, i.e., the attitude. While the attitude itself is of high interest in many applications
(see e.g., [2-5]), attitude estimation is also a crucial step in velocity and position strapdown
integration since it enables the separation of gravitational acceleration and the change of
velocity [6].

It should be noted that often additional value lies in estimating the heading with
respect to the local magnetic field from magnetometer readings. However, abundant
research shows that the assumption of a homogeneous magnetic field is often violated [7,8],
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and a wide range of magnetometer-free methods and solutions rely on deriving attitude
estimates directly from gyroscope and accelerometer readings [9-14]. This is sometimes
called 6D (or 6-axis) sensor fusion, in contrast to 9D (or 9-axis) sensor fusion, which also
incorporates the three-dimensional magnetometer readings. Any solution to the latter
must contain a solution to the former.

1.1. The Challenge of Generalizability in Inertial Attitude Estimation

A multitude of advanced methods has been proposed for inertial attitude estimation
via 6D sensor fusion. The vast majority of these methods are complementary filters or
Kalman filters with various modifications [7]. All of these algorithms have parameters
such as covariance matrices and filter gains that are used to adjust the filter to different
measurement errors and motion characteristics. When an algorithm is applied to a given
application problem, it is highly desirable to use it plug-and-play without any adaption
of the mentioned parameters. However, given the wide variety of these conditions in
different applications, state-of-the-art attitude estimators need to be tuned for every ap-
plication to assure small errors [7]. This represents a significant lack of generalization
ability across different motion characteristics, environmental conditions, and application
demands. A recent comparison of ten different state-of-the-art filters on a dataset with three
different rotation speeds has shown that filters with more tunable parameters have the
potential for lower errors on a specific task but perform worse without a suitable parameter
selection [15]. For example, in a fast and jerky motion, the accelerometer must be used
much more carefully than during a smooth and slow motion [16].

It was found that the optimal parameter regions for different motion characteristics
rarely overlap, that default parameterizations often yield inadequate results, and that
specific tuning is critical for many experimental scenarios [15]. To date, there is no attitude
estimator that performs robustly well (i.e., without requiring parameter tuning) across
the different motion characteristics, sensor hardware, sampling rates, and environmental
conditions that appear in different application scenarios.

1.2. The Potential of Neural Networks in Inertial Attitude Estimation

The history of 70 years of Al research has shown that in many applications leveraging
human understanding granted a short-term boost to performance and efficiency, but in the
long-term more general approaches that require more computing resources and data often
succeeded, for example in computer vision and natural language processing [17]. Inspired
by this observation, an alternative approach to the given attitude estimation task is to
train a neural network end-to-end on the raw IMU data of a large variety of experimental
datasets with ground truth measurements. Considering the success of neural networks
in other system identification tasks [18,19], it seems promising to employ them for robust
attitude estimation.

To date, neural networks have been used to augment conventional attitude estimation
methods by classifying the type of motion [20], compensating measurements errors [21],
or smoothing the output of the conventional filter [22-24]. In [25,26] Recurrent Neural
Networks (RNNs) are used end-to-end for the strapdown-integration but still require
additional sensor fusion to be applicable in long-term attitude estimation tasks. All of
these methods improve the estimation performance by optimizing the estimator for a
specific task in contrast to making it more robust across different tasks. A first step in that
direction has been taken by the authors of the current contribution in a recent conference
paper [27]. Therein, a neural network structure with domain-specific adaptations has been
developed and applied to a dataset with a wide variety of motions, demonstrating that
neural networks can outperform conventional filters. However, the study was limited to
a single dataset with one specific sensor and one specific sampling rate, which strongly
limits the usefulness of the neural network for attitude estimation.
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1.3. Contributions

The present work introduces RIANN (Robust IMU-based Attitude Neural Network),
a ready-to-use, real-time capable, neural-network-based attitude estimator with no need
for task- or condition-specific tuning. The main contributions are:

¢  We propose three domain-specific advances for neural networks in the context of
inertial attitude estimation.

¢ We identify two methods that enable neural networks to handle different sampling
rates in system identification tasks.

e We present the attitude estimation neural network RIANN, which results from these
advances, and make it publicly available at [28].

*  We combine six different publicly available datasets for a comprehensive evaluation
of the robustness of attitude estimation methods.

¢ We compare RIANN with commonly used state-of-the-art attitude estimation filters in
three evaluation scenarios with different degrees of practical relevance.

e We show that RIANN consistently outperforms commonly used state-of-the-art atti-
tude estimation filters across different applications, motion characteristics, sampling
rates, and sensor hardware.

2. Problem Statement

The problem that is addressed by the present work is to design an attitude estimator
that processes the gyroscope and accelerometer measurements of an IMU to provide real-
time estimates of the sensor’s attitude with respect to the vertical axis defined by Earth’s
gravitational field. In the following, we give a precise definition of the problem and the
performance metric by which any solution to that problem can be assessed.

Consider the fundamental problem of attitude estimation, in which an inertial sensor
with a right-handed coordinate system S is rigidly attached to an object of interest. For any
motion that the object of interest performs, we strive to estimate the sensor’s attitude,
i.e., the orientation of the frame S with respect to the vertical axis. That estimation should
be based on current and previous (but not future) measurement samples a(f;) and g(tx)
of the three-dimensional accelerometers and gyroscopes, respectively, i.e., we consider a
filtering problem and omit magnetometer readings. See Figure 1 for illustration.

Unlike many previous works, we refrain from assuming an initial rest period for
filter convergence, since we deem this assumption too restrictive for a range of application
scenarios. For the same reason, we assume that the inertial sensor is factory-calibrated,
but no dedicated calibration of the turn-on bias has been performed. Such bias calibration
algorithms typically also require static periods, which are difficult to assure and restrictive
to assume in many applications. Instead, we consider the non-restrictive setting in which
the estimation task is initialized during some motion with arbitrary rotation and transla-
tion characteristics, and the available gyroscope and accelerometer measurements exhibit
standard noise and bias errors.

We formalize the given attitude estimation task using the mathematical notion of
unit quaternions, which avoids the singularities in Euler angles. Let £ be some inertial
frame whose z-axis e; = [0,0,1]T is aligned with the vertical axis, i.e., we neglect Earth’s
rotation. Represent the relative orientation between § and £ as a unit quaternion q with
the components [w, x, y,z] and assume that an estimate q of that relative orientation q
is provided by some attitude estimation algorithm. If § correctly describes the sensor’s
attitude, then § equals q up to some heading rotation around the vertical axis, which implies
that the rotation axis of the error quaternion

Qerr :=q ® (‘Tl ® q) ®q ! 1)
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is exactly the z-axis. Note the important detail that qerr is defined and determined in
€ coordinates.

In the more general case of a non-zero attitude estimation error, a scalar measure
is needed that quantifies the disagreement between the true and the estimated attitude
regardless of the aforementioned heading difference. To this end, note that every error
quaternion gerr can be decomposed into a heading error and an attitude error, i.e., into a
rotation qpead err around the vertical axis and the smallest possible rotation qatterr around
any horizontal axis. That smallest rotation angle can be determined analytically [16] at any
sampling instant t; and for any given qer(tx) = [w, x,y, 2] by

eq(tc) = 2arccos v w? + 22, (3)

and it is equal to the angle between the true vertical axis q ® e; ® q~! and the estimated
vertical axis § ® e; ® §!. We can therefore use e, (#;) to correctly quantify the disagreement
between the true attitude and any estimated attitude.

In the following, we consider established and novel methods that solve the given
attitude estimation problem and quantify their performance by the root-mean-square of
ex(t;) over the duration of motion in many different non-restrictive scenarios.

example applications with estimated

different IMUs, environments, frame
motions, and sampling rates

sensor
frame

attitude IMU
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Figure 1. IMUs are used in various applications to measure an object’s attitude with respect to
the vertical axis. A robust attitude estimator, unlike conventional filters, performs well across the
different sensor hardware, motion characteristics, environmental conditions, and sampling rates
without application- or trial-specific parameter tuning. Graphic based on [27,29].

3. Neural Network Structure and Implementation

In this section, we present the current state-of-the-art methods for common time series
regression that are suitable for application to the attitude estimation task. Based thereon,
we propose domain-specific advances, which lead to a neural network that will be trained
and studied in Section 4.

3.1. Choice of the Neural Network Structure

When addressing the given problem by means of artificial neural networks, several
different network structures might be considered. The main candidates for processing time-
series data are Temporal Convolutional Networks (TCNs), Transformers, and Recurrent
Neural Networks (RNNSs).
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TCN s are stateless feed-forward neural networks [18], which are able to model dy-
namic systems by processing windows of a fixed size at once instead of samples sequentially.
Transformers are the current state-of-the-art architectures for natural language processing,
because of their ability to process relations between two distant points in time [30].

RNNSs have recurrent connections in their hidden layers, which store state information
between time steps. The main advantage of this approach is that the calculation is very
efficient and the state information may be stored infinitely in theory. In practice, there are
limits to the number of time steps that may be performed before the state has degraded too
much, because of the vanishing gradient problem [31]. Targeting this issue, many RNN
architectures have been developed with Long Short-Term Memories and more recently
Gated Recurrent Units (GRUs) [32] being the most common one. They use a gating
mechanism to alleviate the numerical problems, allowing for training with thousands
instead of hundreds of time-steps in one mini-batch. The inherently sequential nature of
RNNSs limits the parallelizability of the training and especially the inference.

Previous work has shown that the RNN variant GRU outperforms TCNs in the attitude
estimation task because of its ability to store state information over an indefinite amount
of time [27]. Transformers on the other hand have similar capabilities but are less suited
to real-time applications in environments with limited resources because of their large
amount of required memory and computing capacity. Therefore, we use GRUs to process
the sequential signal.

A stack of two GRU layers, which transforms the 6-dimensional IMU input u(k) of
every sampling instant f; to an N,,-dimensional feature vector h(t), with N, being the
number of neurons per layer, has proven to be effective in attitude estimation [27]. To assure
that the network output is a unit quaternion, the N,,-dimensional feature vector h(#) is
transformed to a four-dimensional vector §(tx) with a Euclidean norm of 1. To this end,
we use a linear layer with a weight matrix W for dimensional reduction and normalize
the result:

sy W-h(t)
) = W (b @

The complete model structure is visualized in Figure 2a.

acc (x,y,z) —2 5
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(a) neural network structure
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(b) grouped-input neural network structure
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(c) time-aware neural network structure

Figure 2. The structure of the neural network (a); the grouped-input neural network (b) with
separate layers for accelerometer and gyroscope; and the time-aware neural network (c) with the
time-difference as an additional input for attitude estimation.
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3.2. Neural Network Implementation with General Best Practices

We train and evaluate the neural networks with datasets that consist of multiple
measured sequences of sensor and ground truth data. To avoid memorizing the same
sequences, long overlapping windows get extracted from the measured sequences, so
the neural network has to start at different points in time. Because of the vanishing
gradient problem, RNNs can only be trained with a limited number of time steps per
mini-batch. To process longer sequences in training, truncated backpropagation through
time is used [33]. It is a method that splits sequences into a chain of shorter sequences,
which are used sequentially for training with the network keeping its last hidden state
between each mini-batch. To improve training stability and remove any scaling-related
input signal bias, the signals are standardized to zero mean and a standard deviation of
one [34]. A crucial component of the training process is the optimizer. We use the current
state-of-the-art combination of RAdam and Lookahead, which has proven effective in
various tasks [35,36]. The implementation of all adaptations in the training process has
been done with the Fastai 2 API, which is based on PyTorch [37]. Parameterization of
the learning rate is critical for the optimization process. We use the learning rate finder
heuristic proposed in [38] for the maximum learning rate and cosine annealing for faster
convergence [39].

Neural Networks have many hyperparameters that span a vast optimization space.
There are two state-of-the-art hyperparameter optimization algorithms: Population Based
Training (PBT) [40] and Asynchronous Successive Halving Algorithm (ASHA) [41]. PBT is
an evolutionary algorithm that trains a population of neural networks in parallel, relying on
the survival of the fittest principle. ASHA on the other hand is an early stopping algorithm
that utilizes the observation that most of the models that perform well at the final epoch
also perform well early in the training process. This way the number of configurations that
may be tested is increased by orders of magnitude. It has been shown that PBT performs
better in reinforcement learning because it is able to learn a schedule of hyperparameters
but performs worse in supervised learning [41]. ASHA has the main advantage that it is
easy to use and stable. Therefore, we optimize the neural networks in this work with ASHA.

3.3. Loss Function

For the error component of the loss function that is minimized during the training
process, we use the metric e, (#) as defined in (3). Taking the mean square results in the
loss function epsg for a sequence of N samples starting at some sampling instant #:

1 k+N-1

eMSE = 77 ea(te)? ®)

K=k

As pointed out in previous work [27], the gradient of the loss function grows un-
bounded as the optimization approaches the target argument 1 of the arccos function,
which results in numerical issues:

d arccos(a) -1

li =1 = —o0.
al—rﬂ da alir} 1—a2 oo ©)

The solution approach [27] was to replace arccos in the loss function by a linear
term 1 — a that keeps the monotonicity and correlation with the attitude. This avoids
all numerical problems but leads to a discrepancy between loss function and evaluation
metric [27]. We, therefore, propose to tackle the numerical problems directly by increasing
the floating-point precision for the calculation of e, (¢) to 64 bit and cutting values that are
too close to 1. This results in a numerically stable and direct projection of the metric to the
loss function at a negligible computational cost.

Gaps in the ground truth time series are problematic for the training process of
neural networks since continuous data is needed for gradient calculation. Such gaps,
however, are commonly present in motion tracking datasets due to temporary occlusion
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of optical markers or other disturbances of the optical reference system. Since filling the
gaps compromises the integrity of the ground truth, we mask out the corresponding time
intervals when generating the mini-batches.

3.4. Generalization across Sampling Rates

In this work, the neural network is targeted to work equally well in a broad range of
scenarios with different sampling rates. To allow a neural network to operate as a filter
with varying sampling rates, we propose a just-in-time-resampling (JITR) network and a
time-aware (TA) neural network which will be evaluated in Section 4.2.

The JITR network incorporates the idea to adapt an existing neural network that has
been trained with a fixed sampling rate to the application of a broad range of sampling
rates. This is achieved by resampling the input signal to the sampling rate of the neural
network and doing the same in reverse with its output. This approach has the advantage of
being applicable to every existing neural network. On the other hand, for every inference
step, two resampling steps are required, which increases the required computation time
and latency. In addition to that, more inference time steps have to be taken if the neural
network has a higher sampling rate than the source signal, which increases the required
computation time even more—or information is lost if the neural network has a lower
sampling rate than the source signal.

The time-aware neural network incorporates sampling rate-related information to its
input, allowing it to be applied to signals of different sampling rates directly. The time
difference between two samples dt is used as an additional input, as visualized in Figure 2b.
Since dt is provided for every time step, the network is generally able to process signals with
unevenly sampled data, but we leave the analysis of this case for future work. The time-
aware neural network needs to be trained on data with a range of sampling rates that are
expected to be used in inference time. Since neural networks are known to carry the risk of
bad extrapolation beyond the range of training data, the performance of the time-aware
neural network is expected to degrade outside the range of sampling rates used for training.

In both models, the input and output data have to be resampled either in the training or
in the inference process. The measured acceleration and angular velocity may be resampled
independently with a conventional discrete-Fourier-transformation-based method [42].
The output and reference signals are unit quaternions, which means that processing compo-
nents independently generally leads to leaving the feasible set. For resampling quaternions,
we thus use spherical linear interpolation [43].

3.5. Data Augmentation

With data augmentation, the size of the training data can be increased by using domain-
specific information. With this method the generalizability of a network trained with a
limited dataset may be improved, which has been demonstrated in computer vision [44]
and audio processing [45]. We propose two data augmentation transformations for the
attitude estimation task: the virtual IMU rotation and the induction of artificial inertial
measurement errors.

For the virtual IMU rotation, we transform all accelerometer data, gyroscope data,
and the ground truth attitude data of a given time interval by rotating them with a fixed
randomly generated unit quaternion. If the original data was generated by moving an
object with a mounted IMU, then this virtual rotation simulates the effect of attaching the
IMU to the moving object in a different orientation. By this data augmentation, the net-
work’s inference capabilities become independent of the sensor-to-object orientation, which
crucially enriches any training dataset.

There are multiple kinds of errors in inertial measurement data that influence the accu-
racy of the attitude estimation task [46]. We model the two most notable: the measurement
noise and the gyroscope bias. For noise augmentation, we apply normally distributed noise
with randomly generated standard deviations to each raw data sequence. The standard
deviations are generated separately for the accelerometer and the gyroscope for every
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sequence. This also introduces varying levels of reliability of the accelerometer and the
gyroscope into the training data. For the bias augmentation, an individual, randomly gen-
erated but constant offset is applied to every axis of the gyroscope measurement. The error
augmentation methods add new hyperparameters to the training process, which may be
picked either based on available measurement data or via a hyperparameter optimization
with representative validation data, which is what we will do in Section 4.

3.6. Grouped Input Channels

As an alternative method to putting all measured signals in the same first layer, we
consider creating groups of signals that are processed in separate layers, which are then
merged in the following one. This reduces the possible interactions between the signals,
which may assist the neural network in focusing on the relevant relations between the
signals. In the attitude estimation task, the first layer is split into an accelerometer and a
gyroscope layer, such that the accelerometer layer may provide attitude information in slow
movements and the gyroscope layer may focus on the strapdown integration during rapid
movements over time. Related work employed such approaches but without analyzing the
influence on the models’ performance [25,47], which is what we will do in Section 4.1.

4. Neural Network Optimization

In this section, we train the proposed recurrent neural network and compare different
combinations of the domain-specific advances developed in Section 3 to find the best
performing network configuration and hyperparameters.

For the development of a robust network, we need a dataset with a wide spectrum
of different motion characteristics. The dataset also needs to be large enough, so it can be
split into training and validation data, which are used to optimize the hyperparameters
and test data, which is used for performance evaluation. We meet these requirements
by combining six publicly available datasets with optical ground truths from different
sources and application domains. Figure 3 shows the split of the combined dataset into
training, validation, and test data. The BROAD dataset is an inertial dataset with a wide
variety of motion characteristics [16]. The TUM-VI dataset contains inertial and optical
measurements of a handheld camera rig moving in various environments, of which we use
the six room sequences because only they have an optical ground truth for the orientation
over the whole sequence [48]. The EuRoC-MAYV dataset is composed of inertial and optical
measurements on a micro aerial vehicle [49]. The Sassari dataset is a rich inertial dataset
with measurements of several different IMUs [50]. The OxIOD Dataset is an inertial dataset
with multiple devices and various types of motion [51]. Finally, the RepoIMU dataset
comprises inertial measurements from motions of a T-stick and a pendulum [52].

The datasets come from different applications with different motion patterns, on which
a robust estimator should be able to work equally well without individual parameter tuning.
Figure 4 illustrates the variety of motion characteristics in terms of one short exemplary
time sequence from each dataset. The entire spectrum of motion characteristics of all
sequences of all datasets is visualized in Figure 5 in terms of the mean and standard
deviation of the accelerometer and gyroscope measurements. The datapoints of most
datasets create narrow clusters in dataset-specific regions of the plot, which demonstrates
that most applications have a specific but limited spectrum of motion characteristics. This
indicates that a sufficiently rich combination of data is required for the training of a robust
neural network and, likewise, for an evaluation that shows whether the network performs
well across a broad range of scenarios. To preserve as many datasets as possible for the
evaluation of the final network in Section 5, we decide to use only the BROAD dataset and
the TUM-VI dataset for training and hyperparameter optimization in this section.

The best network configuration is determined in three steps: ablation study, sampling
rate study, and network size analysis. While the ablation study quantifies the benefits of
each domain-specific advance developed in Section 3, the sampling rate study identifies
the best strategy for enabling the network to process data with a wide range of sampling
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rates. In the network size analysis, we then quantify the effect of the parameter count on
the estimation accuracy and latency.

BROAD - 39 sequences at 286 Hz

TUM-VI - 6 sequences at 200 Hz

OxIOD - 71 sequences at 100 H
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
ﬁ:T:aoIMU -21 sefuences at 100 Hz

Sassari - 18 sefuences at 100 Hz

EuRoC-MAV - 6 sequences at 200 Hz

| Training | | Validation | | Test |

Figure 3. The dataset collection is composed of six publicly available datasets, which are split into
training, validation, and test data. While the validation data is used to find the best performing
network configuration and hyperparameters, the test data is reserved for the final performance
evaluation in Section 5.
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Figure 4. Raw signal magnitudes over time for exemplary sequences from all six datasets. Rotational and translational
characteristics vary largely.
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Figure 5. Comparison of motion characteristics of the different datasets. Differences between datasets are considerable.
The datasets BROAD, Sassari, and RepoIMU contain motions with a relatively large variety of characteristics.

4.1. Ablation Study

To determine the best performing network configuration, we consider all combinations
of a network with/without the loss function adaptation, with/without rotation augmenta-
tion, with/without error augmentation, and with/without grouped input adaptation. This
results in 16 possible network configurations. Each network configuration is trained on
the training data and then applied to the validation data (cf. Figure 3) to determine the
average RMSE over all validation sequences. This process is repeated five times, and the
median of the five average RMSE values is used for comparison. To exclude the sampling
rate question from the described procedure, all training and validation time sequences
are resampled to a fixed sampling rate of 300 Hz, which is chosen higher than all source
sampling rates to avoid information loss in the resampling process. We include every
time sequence once without and once with an artificial turn-on gyroscope bias, which was
drawn from a normal distribution with a standard deviation of 0.5°/s.

The results of the described comparison show that most of the proposed advances are
sequentially dependent on each other and that successive improvements can be achieved
as visualized in Figure 6. A naive state-of-the-art neural network for time series processing
does not achieve competitive performance when compared to conventional attitude esti-
mation filters. Optimizing the loss function to the task-specific requirements improves the
results, but the network does not generalize across different sensor-to-object orientations.
The proposed data augmentation by virtual rotations solves this problem and further
improves the network performance. Adding also the error augmentation further decreases
the error, whereas grouping the input brings no additional benefit.

+grouped input F—i:'—|

+error augmentation } AR i
-+rotation augmentation I—:'——|
+loss function } :' o
basemodel } { o
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 10.0 20.0
RMSE [°]

Figure 6. Ablation study of domain-specific advances, which are added successively (bottom to
top). The RMSE distributions over 12 validation sequences are compared. Adaptations of the loss
function and data augmentation have the largest impact on accuracy. Bold font indicates the chosen

final configuration.
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All in all, the best configuration is a state-of-the-art recurrent neural network for
time series processing with an optimized loss function and data augmentation by virtual
rotations and artificially induced measurement errors.

4.2. Sampling Rates Study

The network configuration that was identified in the previous section performs well at
a single sampling rate. We now combine that network with any of the two approaches that
were proposed in Section 3.4 for generalization to a broad range of sampling rates. More
precisely, we first identify the best resampling strategy for the time-aware neural network and
then compare it to the JITR network. The study utilizes the training and validation data (cf.
Figure 3) resampled over a frequency range of 50 to 500 Hz, as detailed below. To compare
different configurations, every configuration is trained five times, and as before, the median
of the five average RMSE values is used for comparison.

For training the time-aware neural network, each training sequence is resampled to
a certain number Ng; of different frequencies from the given range, which effectively
multiplies the number of training sequences by Ng;. To analyze the ability of the network
to interpolate between sampling rate gaps, we consider training at Ng; = 6, 20, 100, or 500
different sampling rates. Additionally, we consider three different strategies for drawing
these different sampling rates: equidistantly over the sampling time (¢;) space (2-20 ms),
equidistantly over the sampling rate (fs) space (50-500 Hz), or both strategies combined.
The performance of these different configurations is compared in terms of the average
RMSE over all validation sequences resampled to any frequency between 50 and 500 Hz,
as shown in Figure 7. In the given frequency range, 20 different sampling rates or less lead
to sub-optimal results for all resampling strategies. With at least 100 different sampling
rates, the resampling with equidistant sampling rate values yields the lowest error over
the entire frequency range. Since it achieved the lowest error, we denote the time-aware
neural network that was trained with 100 different equidistant sampling rates by NN-TA
and disregard the other resampling configurations in the following.

equidistant t; sampling equidistant f; sampling combined f,/t, sampling
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0925 T 100 frequencies —— 100 frequencies —— 100 frequencies
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50 125 200 275 350 425 500 50 125 200 275 350 425 500 50 125 200 275 350 425 500
validation sampling rate [Hz] validation sampling rate [Hz] validation sampling rate [Hz]

Figure 7. Comparison of time-aware networks with training data that was resampled to frequencies
drawn equidistantly from sampling time t;, sampling rate f;, or both combined. At least 100 different
frequencies are required to achieve high accuracy. The f; space models are the most accurate across
the entire frequency range.

In the second step, we compare the network NN-TA with the just-in-time resampling
(JITR) approach from Section 3.4. We consider the neural network that resulted from the
ablation study, add a JITR of the network’s input data, and denote that combination by
NN-JITR. Figure 8 visualizes the mean RMSE of NN-TA and NN-JITR over a frequency
range of 30 to 600 Hz, which is broader than the range of 50 to 500 Hz on which NN-TA has
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been trained. NN-JITR has a stable accuracy over the complete frequency range, whereas
the performance of NN-TA degrades outside of its training frequency range. However,
inside that training range, NN-TA performs better than NN-JITR, which is probably due
to the regularization introduced by the resampling in the training process. Considering
the inference time benefits of the time-awareness approach, NN-TA seems better suited for
applications in embedded systems with sampling rates within the given range of 50-500 Hz.
In scenarios with completely unknown sampling rates, the JITR approach may be the better
choice. For further evaluations, we consider NN-TA.

3.0
—— NN-JITR
14
2.5 NN-TA
020
w
Z 15
c —\
o 1.0
=
0.5
0.0
30 50 100 150 200 250 300 350 400 450 500 550 600

Sampling rate [Hz]

Figure 8. Comparison of the mean RMSE of NN-JITR and NN-TA over an extended sampling
frequency range. NN-TA performs slightly better within the trained frequency range but fails
outside. Due to just-in-time resampling, NN-JITR shows stable performance over the entire extended
frequency range. Bold font indicates the chosen final configuration.

4.3. Network Size Analysis

We now analyze the effect of the network size on the estimation error and required
resources. To this end, NN-TA is trained with a hidden layer size in the range of 10 to 300
on the training dataset and evaluated on the validation dataset.

Figure 9 visualizes the influence of the network size on the estimation error. It also
shows the exponential relationship between the number of trainable parameters and the
neurons per layer. The estimation error keeps decreasing with the increase of the network
size, as expected. For the decision of which network size to choose for the final network,
we need to consider the trade-off between the increasing computational requirements and
gains in estimation accuracy.

neurons per layer

10 20 40 70 100 200 250 300
[ | 1 1 | I T T T B | 1 1 [ B T T || 1 I IR VR N
10 —— mean RMSE
8
oL 6
n
=
x4
2
0IIII| 1 1 1 LI R B R A | 1 1 1 LI R B R A | 1 1 1 III(I)I|

103 104 10° 106
trainable parameters

Figure 9. Performance of NN-TA for varying network size. Performance is quantified by box plots and
the mean of the RMSE over all validation sequences. Increasing the network size leads to continuous
performance improvements at the cost of an exponentially growing number of parameters.
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The attitude estimation task often comes with real-time requirements that call for
an algorithm that is fast enough to run on the limited hardware of an embedded system.
For analysis of the required resources of NN-TA with different sizes, we evaluated the
execution on a Jetson Nano [53], which is a microcontroller with an integrated GPU for
hardware acceleration of neural networks. On this platform the models may be executed
on the CPU, representing a commonly available, fast microcontroller, or on the GPU,
representing a more expensive embedded system that is specialized for the execution of
neural networks. The prediction times are compared to the ones of a C implementation [54]
and a native Python implementation [55] of two commonly used attitude filters [56].

Figure 10 visualizes the results of the study. The estimation latency depends on the
complexity of the estimator as well as on the implementation. While a non-optimized
Python implementation of Filter-A is even slower than NN-TA with over 800,000 param-
eters, an optimized C implementation is orders of magnitude faster. The choice of the
number of parameters is essential for the inference speed of the neural network and for the
required memory but has no impact on the ease of use of the final model, which will be
applied plug-and-play without any change of parameter values. Considering that the error
decreases significantly up to 200 neurons per layer, and considering the high performance
of modern microcontrollers, we chose 200 neurons per layer for the final network, and we
denote this neural network by RIANN. With 367,000 fitted parameters, RIANN has an
estimation latency of 0.29 ms on the target hardware, which results in a high inference
speed of 3424 Hz (fast enough for real-time applications).

ot Filter Latency Neural Network Performance (Latency + Error)
0.7296 i i
10 4451
I | 3 o /_.——o/'
Elo_l _:,_._,_...._.__..___M—/—:—o——»——-o——-o——o——b——-‘ |
= mmm Python : =
< c ]
(O] -2 . / - —
2 10 = 2
8 /
10-3 _ —— CPU |
0003 Z -e- GPU
000 2 —— RIANN
107 - -
Filter-A Filter-B 10 50 100 200 300

neurons per layer

Figure 10. Inference latency and mean RMSE of different neural network sizes, compared to
the latency of a C and native Python implementation of popular conventional filters. On both
CPU and GPU, the network RIANN with 200 neurons per layer is slightly faster than the native
Python implementation.

RIANN has been exported to the ONNX format to be executed with the ONNX
Runtime [57], which is available for a broad range of platforms and hardware. It supports
an optimized C implementation for execution on the CPU of the Jetson Nano and a
CUDA Version for the GPU. At low network sizes, the CPU implementation has smaller
latencies than the GPU version because of the CUDA inference overhead. However, with
increasing network size, the GPU latency increases only slightly because the bigger matrix
multiplications can be calculated in parallel, for which the GPU is optimized.
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5. Performance Evaluation

The proposed neural-network-based estimator RIANN can be considered a viable
alternative to conventional attitude estimation filters only if it performs well on data
from a broad range of applications with different motion characteristics, environmental
conditions, sensor hardware, and sampling rates. We compare the performance of RIANN
to the performance of two attitude estimation filters, which are the best performing attitude
estimators with a publicly available C implementation according to a recent study of ten
different estimators on a dataset with a wide variety of motions [15]. We denote these filters
by Filter-A [58] and Filter-B [56]. While we will, at some point, optimize the parameters
of Filter A and Filter B to individual test datasets, we will use RIANN always as it is and
refrain from performing any additional training or adaptation, to realistically evaluate its
performance on unseen data and unknown application scenarios.

For the intended comparison, we consider test data from several different datasets
as described in Figure 3, and we consider three different scenarios that represent different
levels of restrictiveness and practical relevance of the assumptions under which the network
and the filters are applied to the test sequences:

®  restrictive scenario: It is assumed that the sequence starts with a period of perfect rest,
during which the attitude estimation can converge to an accurate estimate before the
actual motion starts. Moreover, it is assumed that the turn-on bias of the gyroscopes
has been removed in a preprocessing step, which requires a sufficiently long rest
phase.

*  partially restrictive scenario: We still assume a rest phase prior to the motion onset,
but no turn-on bias correction has been conducted. We emulate this scenario by
adding a random constant bias, which is drawn from a zero-mean normal distribution
with a standard deviation of 0.5° /s, to the bias-free test sequences of the restrictive
scenario.

e realistic scenario: The sensor already moves when it is turned on and the attitude
estimation is started. The test sequences have the same gyroscope bias as in the
partially restrictive scenario, but the initial rest periods are removed.

Those scenarios are chosen because these two assumptions, which make the difference
between the restrictive and the realistic scenario, are crucial for the practical usability
of attitude estimators in many applications, cf. Section 2. In fact, comparison between
these scenarios exposes a common tuning dilemma of conventional filters, as illustrated
in Figure 11 for Filter-A. A low filter gain yields a smaller long-term error, while a high
gain yields more rapid initial convergence. This issue can be addressed by initializing the
filter with an attitude calculated from the first accelerometer measurement rather than
using a fixed initial quaternion. However, without an initial rest phase, this initializa-
tion is inaccurate, and the same dilemma occurs, cf. Figure 11b. In summary, despite
accelerometer-based initialization, the low-gain filter needs several seconds up to minutes
to converge but then achieves a small error, whereas the filter with a higher gain converges
within seconds but exhibits larger errors in the long run. The same trade-off is observed
in other filters, such as Filter-B, and similar trade-offs and dilemmas are found when
balancing between fast and slow or between rotational and translational motions. It is one
major goal of this study to investigate whether RIANN can overcome these limitations.

Figure 12 shows the distribution of the attitude RMSE over all test sequences, grouped
by the dataset, in all three scenarios for RIANN and both conventional filters. All test
sequences are evaluated with the original dataset-specific sampling frequency in which they
were recorded, cf. Figure 3. The filters are evaluated in two variants: one with parameters
that were numerically optimized on the training data and one with parameters that were
optimized for the specific test dataset. The latter simulates the theoretical best-case in
which the circumstances of the specific application are known and ground truth data is
available for filter tuning. It grants the filters an advantage that the neural network does
not have—RIANN was configured and trained without ever seeing any of the test data.
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In the restrictive scenario, RIANN and the conventional filters perform similarly well
on most datasets. However, in the more diverse and dynamic dataset Sassari, the neural
network achieves consistently small errors, while the filter performance is clearly decreased,
even for dataset-specific tuning. In the partially restrictive scenario with a realistic gyroscope
bias, the differences become more pronounced. RIANN outperforms the conventional filters
on at least two of the datasets and consistently maintains mean RMSE values at or below
2 degrees. Finally, in the realistic scenario, RIANN clearly outperforms all filter variants
in all datasets except EuROC-MAYV, where the errors of all estimators stay similarly small.
Especially in datasets that contain highly dynamic motions, the errors of the conventional
filters increase significantly, while the neural network shows no noticeable degradation
of accuracy.

The fact that RIANN performs equally well across the different IMU hardware, motion
patterns, sampling rates, and environmental conditions is especially important for all
practical applications in which these conditions are unknown or may change over time.
In addition to the improved average performance, it is worth noting that there is not a
single sequence with an RMSE of more than 4.5°. This means the worst-case performance
of RIANN is clearly better than those of the conventional filters—even if they were tuned
for the individual test dataset.

As a final test, we want to confirm that RIANN performs equally well over the whole
frequency range. For this, we resample all test sequences from all datasets to many different
frequencies between 50 and 500 Hz and apply RIANN to those resampled sequences, while
assuming the realistic scenario. Figure 13 visualizes the mean and distribution of the
RMSE values over all test sequences plotted over the frequency range. Unsurprisingly,
the performance remains equally good over the entire frequency range. Not only the
average but also the maximum errors of the neural network are consistently below the
average errors of the conventional filters.

10.0 12,5 15.0 17.5 20.0 0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
time [s] time [s]
(@) Start with rest (b) Start without rest

Figure 11. Attitude error of Filter-A and RIANN in the first 20 s of a sequence starting with rest (a) or without rest (b)

with an unknown attitude. Filters exhibit a trade-off between taking a long time converging to a low error and having a larger

error over the complete sequence. In sequence (a), which starts with rest, only one filter configuration provides good results.

In sequence (b), which starts without rest, there is no good performing filter configuration, whereas RIANN performs

similarly well as in sequence (a).
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Figure 12. Comparison of RIANN with Filter-A and Filter-B, which are optimized either on the entire
training data or on the specific test dataset. Across all scenarios and datasets, RIANN performs at
least as good as the conventional filters and often outperforms them, especially in the realistic scenario
and partially restrictive scenario.
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Figure 13. RIANN’s attitude RMSE distribution (over all test sequences from all datasets) plotted
over different sampling rates to which all test data is resampled. The most challenging, the realistic
scenario, is considered. Performance is consistent in the filters and in RIANN, with the latter achieving
consistently smaller errors.

6. Conclusions

In this work, we introduced RIANN, a ready-to-use, parameter-free, real-time-capable
attitude estimator, which is based on a recurrent neural network with domain-specific
advances and trained on two publically available datasets. We compared the performance
of RIANN with commonly used state-of-the-art attitude filters on a combination of another
four publicly available datasets from different applications.

Our results show that state-of-the-art recurrent neural networks with domain-specific
adaptations perform well on the general attitude estimation task over a broad range of
specific applications and conditions with no need for retraining or adjustments. RIANN
even outperforms commonly used state-of-the-art attitude filters in cases, in which the filter
is granted the additional advantage of parameter optimization on the target sequences.
Furthermore, RIANN has shown a generally low worst-case RMSE of 4.5° across all test
datasets. RIANN's performance generalizes across different hardware, sampling rates,
motion characteristics, and application contexts, which were not included in the training
data. This demonstrates that RIANN can be expected to perform well in applications
with unknown characteristics and conditions and to yield high accuracy without the
conventional need for ground truth data recording and context-specific parameter tuning.

Compared to conventional filters, RIANN requires more computational resources
but can still be run in real-time applications on fast, commonly available microcontrollers
without specialized hardware. The proposed domain-specific advances alter the training
process but not the neural network implementation itself. This means that RIANN can
be applied to a wide range of devices using the ONNX format and that platform-specific
hardware acceleration capabilities can be exploited. RIANN is publicly available at [28].

Future work will be concerned with embedding RIANN into motion tracking and
analysis toolchains in various applications. Furthermore, the proposed methods may be
extended to the 9D inertial sensor fusion task, which incorporates magnetometer data.
Another interesting aspect would be the use of neural architecture search to find the smallest
optimized neural network structure that yields competitive performance for applications
where the computation capacities are severely limited.

Author Contributions: Conceptualization, methodology, validation, investigation, visualization,
and writing—original draft preparation, D.W. and T.S.; writing—review and editing, D.W., C.G.
and T.S,; supervision, C.G. and T.S.; software, D.W.; funding acquisition, C.G. All authors have read
and agreed to the published version of the manuscript.



Al2021,2 461

Funding: This work was partly funded by the German Federal Ministry of Education and Research
(FKZ: 16EM00262). We acknowledge support by the German Research Foundation and the Open
Access Publication Fund of TU Berlin.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: [16,48-52].

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References

1. Seel, T.; Kok, M.; McGinnis, R.S. Inertial Sensors—Applications and Challenges in a Nutshell. Sensors 2020, 20, 6221. [CrossRef]

2. Euston, M.; Coote, P; Mahony, R.; Kim, J.; Hamel, T. A complementary filter for attitude estimation of a fixed-wing UAV. In
Proceedings of the 2008 IEEE/RS] International Conference on Intelligent Robots and Systems, Nice, France, 22-26 September
2008; pp. 340-345. [CrossRef]

3. Ding, W.; Xu, M.; Ma, Y,; Shi, G. Tricycle Attitude Estimation and Turn Control Based on MEMS Sensing Technology. In
Proceedings of the 2018 IEEE 1st International Conference on Micro/Nano Sensors for Al, Healthcare, and Robotics (NSENS),
Shenzhen, China, 5-7 December 2018; pp. 30-34. [CrossRef]

4. Valarezo Anazco, E.; Han, S.J.; Kim, K.; Lopez, P.R,; Kim, T.S,; Lee, S. Hand Gesture Recognition Using Single Patchable Six-Axis
Inertial Measurement Unit via Recurrent Neural Networks. Sensors 2021, 21, 1404. [CrossRef]

5. Marco, V.R,; Kalkkuhl, J.; Seel, T. Nonlinear observer with observability-based parameter adaptation for vehicle motion estimation.
In Proceedings of the 18th IFAC Symposium on System Identification, (SYSID), Stockholm, Sweden, 9-11 July 2018; pp. 60-65.
[CrossRef]

6. Woodman, O.J. An Introduction to Inertial Navigation; Technical report; University of Cambridge, Computer Laboratory:
Cambridge, UK, 2007.

7. Nazarahari, M.; Rouhani, H. 40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units:
Methods, lessons learned, and future challenges. Inf. Fusion 2021, 68, 67-84. [CrossRef]

8. De Vries, W.; Veeger, H.; Baten, C.; Van Der Helm, F. Magnetic distortion in motion labs, implications for validating inertial
magnetic sensors. Gait Posture 2009, 29, 535-541. [CrossRef]

9. Kok, M.; Hol, ].D.; Schén, T.B. An optimization-based approach to human body motion capture using inertial sensors. IFAC Proc.
Vol. 2014, 47, 79-85. [CrossRef]

10. Teufl, W.; Miezal, M.; Taetz, B.; Frohlich, M.; Bleser, G. Validity, test-retest reliability and long-term stability of magnetometer free
inertial sensor based 3D joint kinematics. Sensors 2018, 18, 1980. [CrossRef] [PubMed]

11. Lorenz, M.; Taetz, B.; Bleser, G. An Approach to Magnetometer-free On-body Inertial Sensors Network Alignment. In Proceedings
of the IFAC World Congress, Berlin, Germany, 12-17 July 2020.

12.  Eckhoff, K.; Kok, M.; Lucia, S.; Seel, T. Sparse Magnetometer-free Inertial Motion Tracking—A Condition for Observability in
Double Hinge Joint Systems. In Proceedings of the 21st IFAC World Congress, Berlin, Germany, 12-17 July 2020; pp. 1-8.

13. Grapentin, A.; Lehmann, D.; Zhupa, A.; Seel, T. Sparse Magnetometer-Free Real-Time Inertial Hand Motion Tracking. In
Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe,
Germany, 14-16 September 2020. [CrossRef]

14. Lehmann, D.; Laidig, D.; Deimel, R.; Seel, T. Magnetometer-free Inertial Motion Tracking of Arbitrary Joints with Range-of-motion
Constraints. In Proceedings of the 21st IFAC World Congress, Berlin, Germany, 12-17 July 2020; pp. 1-8.

15. Caruso, M.; Sabatini, A.M.; Laidig, D.; Seel, T.; Knaflitz, M.; Della Croce, U.; Cereatti, A. Analysis of the Accuracy of Ten
Algorithms for Orientation Estimation Using Inertial and Magnetic Sensing under Optimal Conditions: One Size Does Not Fit
All. Sensors 2021, 21, 2543. [CrossRef]

16. Laidig, D.; Caruso, M.; Cereatti, A.; Seel, T. BROAD—A Benchmark for Robust Inertial Orientation Estimation. Data 2021, 6, 72.
[CrossRef]

17.  Rich, S. The Bitter Lesson. Available online: http://www.incompleteideas.net/Incldeas/BitterLesson.html (accessed on 9 March
2021).

18. Andersson, C.; Ribeiro, A.H.; Tiels, K.; Wahlstrom, N.; Schon, T.B. Deep Convolutional Networks in System Identification. arXiv
2019, arXiv:1909.01730.

19. Oord, A.V.D,; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.
WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499.

20. Brossard, M.; Barrau, A.; Bonnabel, S. RINS-W: Robust Inertial Navigation System on Wheels. arXiv 2020, arXiv:1903.02210.

21. Brossard, M.; Bonnabel, S.; Barrau, A. Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude Estimation. arXiv
2020, arXiv:2002.10718.

22. Chiang, KW.; Chang, HW.; Li, C.Y,; Huang, Y.W. An Artificial Neural Network Embedded Position and Orientation Determina-

tion Algorithm for Low Cost MEMS INS/GPS Integrated Sensors. Sensors 2009, 9, 2586-2610. [CrossRef]


http://doi.org/10.3390/s20216221
http://dx.doi.org/10.1109/IROS.2008.4650766
http://dx.doi.org/10.1109/NSENS.2018.8713641
http://dx.doi.org/10.3390/s21041404
http://dx.doi.org/10.1016/j.ifacol.2018.09.091
http://dx.doi.org/10.1016/j.inffus.2020.10.018
http://dx.doi.org/10.1016/j.gaitpost.2008.12.004
http://dx.doi.org/10.3182/20140824-6-ZA-1003.02252
http://dx.doi.org/10.3390/s18071980
http://www.ncbi.nlm.nih.gov/pubmed/29933568
http://dx.doi.org/10.1109/MFI49285.2020.9235262
http://dx.doi.org/10.3390/s21072543
http://dx.doi.org/10.3390/data6070072
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://dx.doi.org/10.3390/s90402586

Al2021,2 462

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.
34.

35.
36.
37.
38.
39.
40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

Dhahbane, D.; Nemra, A.; Sakhi, S. Neural Network-Based Attitude Estimation. In Artificial Intelligence and Renewables Towards an
Energy Transition; Lecture Notes in Networks and Systems; Hatti, M., Ed.; Springer International Publishing: Cham, Switzerland,
2021; pp. 500-511.

Al-Sharman, M.K,; Zweiri, Y.; Jaradat, M.A.K.; Al-Husari, R.; Gan, D.; Seneviratne, L.D. Deep-Learning-Based Neural Network
Training for State Estimation Enhancement: Application to Attitude Estimation. IEEE Trans. Instrum. Meas. 2020, 69, 24-34.
[CrossRef]

Esfahani, M.A.; Wang, H.; Wu, K.; Yuan, S. AbolDeeplO: A Novel Deep Inertial Odometry Network for Autonomous Vehicles.
IEEE Trans. Intell. Transp. Syst. 2019, 1-10. [CrossRef]

Esfahani, M.A.; Wang, H.; Wu, K.; Yuan, S. OriNet: Robust 3-D Orientation Estimation With a Single Particular IMU. IEEE Robot.
Autom. Lett. 2020, 5, 399-406. [CrossRef]

Weber, D.; Giihmann, C.; Seel, T. Neural Networks Versus Conventional Filters for Inertial-Sensor-based Attitude Estimation.
arXiv 2020, arXiv:2005.06897.

Weber, D. RIANN (Robust IMU-Based Attitude Neural Network). Available online: https://github.com/daniel-om-weber/riann
(accessed on 15 April 2021).

Beuchert, J.; Solowjow, E; Trimpe, S.; Seel, T. Overcoming Bandwidth Limitations in Wireless Sensor Networks by Exploitation of
Cyclic Signal Patterns: An Event-triggered Learning Approach. Sensors 2020, 20, 260. [CrossRef]

Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. HuggingFace’s
Transformers: State-of-the-art Natural Language Processing. arXiv 2020, arXiv:1910.03771.

Gonzalez, J.; Yu, W. Non-linear system modeling using LSTM neural networks. IFAC-PapersOnLine 2018, 51, 485-489. [CrossRef]
Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches. arXiv 2014, arXiv:1409.1259.

Tallec, C.; Ollivier, Y. Unbiasing Truncated Backpropagation Through Time. arXiv 2017, arXiv:1705.08209

Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,
arXiv:1502.03167.

Liu, L.; Jiang, H.; He, P; Chen, W.; Liu, X.; Gao, ].; Han, J. On the Variance of the Adaptive Learning Rate and Beyond. arXiv 2019,
arXiv:1908.03265.

Zhang, M.R; Lucas, J.; Hinton, G.; Ba, J. Lookahead Optimizer: K steps forward, 1 step back. arXiv 2019, arXiv:1907.08610.
Howard, J.; Gugger, S. Fastai: A Layered API for Deep Learning. Information 2020, 11, 108. [CrossRef]

Smith, L.N. Cyclical Learning Rates for Training Neural Networks. arXiv 2017, arXiv:1506.01186.

Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2017, arXiv:1608.03983.

Jaderberg, M.; Dalibard, V.; Osindero, S.; Czarnecki, W.M.; Donahue, J.; Razavi, A.; Vinyals, O.; Green, T.; Dunning, I.; Simonyan,
K.; et al. Population Based Training of Neural Networks. arXiv 2017, arXiv:1711.09846.

Li, L.; Jamieson, K.; Rostamizadeh, A.; Gonina, E.; Hardt, M.; Recht, B.; Talwalkar, A. A System for Massively Parallel
Hyperparameter Tuning. arXiv 2020, arXiv:1810.05934.

Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser,
W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261-272.
[CrossRef]

Shoemake, K. Animating rotation with quaternion curves. In Proceedings of the 12th Annual Conference on Computer Graphics and
Interactive Techniques; SIGGRAPH ’85; Association for Computing Machinery: New York, NY, USA, 1985; pp. 245-254. [CrossRef]
Perez, L.; Wang, ]J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. arXiv 2017,
arXiv:1712.04621.

Cui, X.; Goel, V.; Kingsbury, B. Data Augmentation for Deep Neural Network Acoustic Modeling. IEEE/ACM Trans. Audio Speech
Lang. Process. 2015, 23, 1469-1477. [CrossRef]

Zhang, Q.; Niu, X.; Shi, C. Impact Assessment of Various IMU Error Sources on the Relative Accuracy of the GNSS/INS Systems.
IEEE Sen. |. 2020, 20, 5026-5038. [CrossRef]

Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, ].L. Time Series Classification Using Multi-Channels Deep Convolutional Neural
Networks. In Web-Age Information Management; Springer International Publishing: Cham, Switzerland, 2014; Volume 8485,
pp- 298-310.

Schubert, D.; Goll, T.; Demmel, N.; Usenko, V.; Stiickler, J.; Cremers, D. The TUM VI Benchmark for Evaluating Visual-Inertial
Odometry. In Proceedings of the 2018 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 1-5 October 2018; pp. 1680-1687. [CrossRef]

Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC micro aerial vehicle
datasets. Int. J. Robot. Res. 2016, 35, 1157-1163. [CrossRef]

Caruso, M; Cereatti, A.; Croce, U.D. Mimu_Optical_Sassari_Dataset; type: Dataset; IEEE: New York, NY, USA, 2020. [CrossRef]
Chen, C; Zhao, P,; Lu, C.X.; Wang, W.; Markham, A.; Trigoni, N. OxIOD: The Dataset for Deep Inertial Odometry. arXiv 2018,
arXiv:1809.07491.


http://dx.doi.org/10.1109/TIM.2019.2895495
http://dx.doi.org/10.1109/TITS.2019.2909064
http://dx.doi.org/10.1109/LRA.2019.2959507
https://github.com/daniel-om-weber/riann
http://dx.doi.org/10.3390/s20010260
http://dx.doi.org/10.1016/j.ifacol.2018.07.326
http://dx.doi.org/10.3390/info11020108
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1145/325334.325242
http://dx.doi.org/10.1109/TASLP.2015.2438544
http://dx.doi.org/10.1109/JSEN.2020.2966379
http://dx.doi.org/10.1109/IROS.2018.8593419
http://dx.doi.org/10.1177/0278364915620033
http://dx.doi.org/10.21227/b23b-rx94

Al2021,2 463

52.

53.

54.

55.
56.

57.

58.

Szczesna, A.; Skurowski, P.; Pruszowski, P.; Peszor, D.; Paszkuta, M.; Wojciechowski, K. Reference Data Set for Accuracy
Evaluation of Orientation Estimation Algorithms for Inertial Motion Capture Systems. In Computer Vision and Graphics; Lecture
Notes in Computer Science; Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K., Eds.; Springer International Publishing:
Cham, Switzerland, 2016; pp. 509-520.

Jetson Nano Developer Kit. Available online: https://developer.nvidia.com/embedded/jetson-nano-developer-kit (accessed on
7 January 2021).

Open Source IMU and AHRS Algorithms—x-io Technologies. Available online: https://x-io.co.uk/open-source-imu-and-ahrs-
algorithms/ (accessed on 28 May 2020).

Garcia, M. Mayitzin/ahrs. Available online: https://github.com/Mayitzin/ahrs (accessed on 7 January 2021).

Mahony, R.; Hamel, T.; Pflimlin, ].M. Nonlinear Complementary Filters on the Special Orthogonal Group. IEEE Trans. Autom.
Control 2008, 53, 1203-1217. [CrossRef]

ONNX Runtime: Cross-Platform, High Performance ML Inferencing and Training Accelerator. Available online: https://github.
com/microsoft/onnxruntime (accessed on 10 February 2021)

Madgwick, S. An Efficient Orientation Filter for Inertial and Inertial/Magnetic Sensor Arrays; Report x-io and University of Bristol:
Bristol, UK, 2010; pp. 113-118.


https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
https://github.com/Mayitzin/ahrs
http://dx.doi.org/10.1109/TAC.2008.923738
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime

	Introduction
	The Challenge of Generalizability in Inertial Attitude Estimation
	The Potential of Neural Networks in Inertial Attitude Estimation
	Contributions

	Problem Statement
	Neural Network Structure and Implementation
	Choice of the Neural Network Structure
	Neural Network Implementation with General Best Practices
	Loss Function
	Generalization across Sampling Rates
	Data Augmentation
	Grouped Input Channels

	Neural Network Optimization
	Ablation Study
	Sampling Rates Study
	Network Size Analysis

	Performance Evaluation
	Conclusions
	References

