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Abstract: In this paper, a deep learning enabled object detection model for multi-class plant disease
has been proposed based on a state-of-the-art computer vision algorithm. While most existing models
are limited to disease detection on a large scale, the current model addresses the accurate detection of
fine-grained, multi-scale early disease detection. The proposed model has been improved to optimize
for both detection speed and accuracy and applied to multi-class apple plant disease detection
in the real environment. The mean average precision (mAP) and F1-score of the detection model
reached up to 91.2% and 95.9%, respectively, at a detection rate of 56.9 FPS. The overall detection
result demonstrates that the current algorithm significantly outperforms the state-of-the-art detection
model with a 9.05% increase in precision and 7.6% increase in F1-score. The proposed model can be
employed as an effective and efficient method to detect different apple plant diseases under complex
orchard scenarios.

Keywords: real-time object detection; apple leaf diseases; deep learning; convolution neural net-
works; artificial intelligence; computer vision

1. Introduction

Plant diseases and pests cause significant ecological and agricultural losses. Thus,
early detection and prevention of various plant diseases is a key strategy in agriculture
technology for commercial farms and orchards. Generally, traditional manual visual obser-
vation for disease diagnosis methods are inefficient and time-consuming and significantly
increase overhead costs [1–6]. Recently, with the modern advancement of computer vision
in precision agriculture technology, disease detection protocol has become an integral part
of collecting information regarding crop health monitoring, which substantially improves
the efficiency of disease detection and output of the crop production [7–11].

Early identification and prevention of plant diseases are the important aspects of crop
harvesting since they can effectively reduce any growth disorders, and thus minimize
pesticide application for pollution-free crop production. In this regard, automated plant
disease detection utilizing different machine learning (ML) algorithms have become an effi-
cient approach for precision agriculture [12–18]. Different ML approaches such as K-means
clustering [14] and support vector machine (SVM) [16–18] have been employed for plant
and disease classification and detection. However, due to complex image preprocessing
and feature extraction steps, such methods have lower performance and speed in real-time
disease detection. Additionally, one of the main drawbacks of traditional ML approaches
is that they are not suitable for real-life detection scenarios with non-uniform complex
backgrounds. In this regard, recently, deep learning has made a significant breakthrough in
the realm of computer vision with various applications [19–21]. It has also been employed
in automated agricultural technology [22], including crop and fruit classification [23–25],
image segmentation [26,27], and crop detection [28]. Consequently, convolution neural
network (CNN)-based models have gained significant popularity by demonstrating higher
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accuracy in object detection [29,30]. CNNs can avoid complex preprocessing by automat-
ically extracting features directly from the input images. Thus, they have created major
breakthroughs in crop disease detection in recent advancements [31–38]. CNN-based
object detection models have been developed that can be classified into two classes: two-
stage and one-stage detectors [39]. One of the popular two-stage detectors is the region
convolution neural network (RCNN), which includes fast/ faster-RCNN [40,41] and mask-
RCNN [42]. These models have had a significant impact on crop and fruit detection, yield,
growth evaluation, and automated agricultural management [43–45]. However, Faster
R-CNN consists of region proposal networks (RPN) and classification networks, which
leads to a significant drop in detection time, and these models cannot perform real-time
detection for high-resolution images. More recently, the You Only Look Once (YOLO) algo-
rithm [46–49] has been proposed, which unifies target classification and localization into a
regression problem. Since YOLO does not have RPN, it can directly perform regression to
detect targets in the image, which leads to significant improvement in the detection speed.
The state-of-art YOLOv4 not only has high detection speed but also performs with high
precision and accuracy for different real-time object detection applications.

The current study focuses on plant disease detection in the apple, which has significant
commercial value due to its vast dietary and nutritional qualities. However, during
the growth stage, apple plants are vulnerable to various diseases including two serious
and common fungus diseases: scab (caused by Venturia inaequalis) and rust (caused by
Gymnosporangium juniperi-virginianae), which can drastically reduce yield and fruit
quality. Thus, it is a critical aspect in autonomous agriculture production to detect the
early phase of disease spots in apple plants to employ disease prevention and curing more
efficiently. However, the real-time early disease detection of apple leaf remain challenging
due to fine-grained multi-scale distribution, the similarity of color texture between diseases
and background, diversity of diseases’ morphology, and occurrence of multiple diseases in
the same leaf. Additionally, a complex background, including overlapping leaves and soil,
variability of light in a real environment, and several other factors, leads to the difficult
task of detecting diseases in apple leaves with high precision. In addition, existing disease
detection models have a trade-off between accuracy and real-time detection speed. Thus,
there is a significant gap between the existing model and the real-time detection of diseases
in fields based on mobile computing devices.

In order to address the aforementioned challenges and shortcomings, an multi-scale
disease detection model has been proposed based on improved version of the state-of-art
YOLOv4 algorithm [49] and applied to real-time apple plant disease identification in real
environment. In the proposed model, CSPDarkNet53 has been modified to be Dense-
CSPDarkNet53 by introducing DenseNet blocks to improve feature transfer and reuse for
small-target detection. To optimize redundancy and reduce computing cost, the number
of network layers has been reduced by modifying the convolution blocks. Furthermore,
a modified path aggregation network (PANet) has been utilized to preserve fine-grain
localization information and enhance feature fusion of multi-scale semantic information.
In addition, the integration of a spatial pyramid pooling (SPP) block in the proposed model
enhances the receptive field. Implementing Mish [50] as a primary activation function
in both neck and backbone, the current model improves the feature learning ability and
increases the accuracy of detection procedures substantially. In order to prevent overfitting
and increase robustness during the training process, a data augmentation procedure has
been employed. The proposed model can automatically detect the discriminating features
of each disease of different sizes as well as the coexistence of multiple diseases within
the same image with high accuracy under a complex orchard environment. The overall
detection result demonstrates that the current method outperforms the original YOLOv4
model. Current work can be employed as an effective and efficient method of detecting
different plant diseases in apple with accurate detection performance under complex
orchard scenarios.
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2. The Proposed Network Structure of the Detection Model

In the current work, an improved model based on the start-of-the-art YOLOV4 algo-
rithm [49] has been utilized for disease detection.

YOLOv4 is a high-precision one-stage object detection model that transforms the
object detection task into a regression problem by generating bounding box coordinates
and corresponding probabilities of each class. During object detection, the inputted image
is divided into N × N uniformly equal grids. The model generates B predictive bounding
boxes and a corresponding confidence score if the target falls inside the grid. When the
center of the target-class ground truth falls inside a specified grid, it detects the target for a
particular object class. Each grid predicts B bounding boxes with the confidence scores and
corresponding C class conditional probabilities for the each target-class. The confidence
scores can be expressed as

con f idence = pr(object)× IoUtruth
pred ∨ pr(object) ∈ 0, 1 (1)

When the target class falls inside the YOLO grid, pr(object) = 1 is prescribed; otherwise,
pr(object) = 0. The coincidence between the reference and the predicted bounding box
is described by IoUtruth

pred . Here, IoU is the intersection over union. The value of pr(object)
indicates the accuracy of bounding box prediction when the target class is detected inside
the grid. Finally, the best bounding box prediction from each of these scales has been
filtered by non-maximum suppression (NMS) [41] algorithm before the final bounding box
can be obtained. The detection process is shown in Figure 1.

 

N ×N grids on input 

Bounding boxes+ confidence 

Class probability map 

Disease  detection 
 

 

 

 

Figure 1. Schematic of YOLOv4 object detection algorithm for disease detection.

However, when detecting different diseases in the apple plant in the original YOLOv4
model, there are several issues, in particular, densely populated fine-grained and multi-
scale distribution, irregular geometric morphology of the infected areas, the occurrence of
multiple diseases in the same leaf, and complex background, which significantly hinder
detection accuracy and leads to a high number of missed detection as well as false object
prediction. In order to resolve the aforementioned issues, in the present work, an improved
and optimized version of the state-of-the-art YOLOv4 algorithm has been proposed based
on the characteristics and complexities of the disease dataset to achieve better efficiency
and accuracy of detecting different apple plant diseases with a real-time detection speed in
a complex environment. The complete schematic of the model network architecture has
been shown in Figure 2, which consists of three parts: backbone for the feature extraction,
neck for semantic representation of extracted features, and head for the prediction.
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Figure 2. Schematic of (a) the proposed network architecture for plant disease detection consisting of Dense-CSPDarknet53
integrating SPP as the backbone, modified PANet as a neck with a regular YOLOv3 head; (b) dense block structure.

During object detection, the YOLOv4 algorithm reduces the feature maps in the
neural network. In order to preserve important feature maps and reuse the critical feature
information more efficiently, the DenseNet framework [51] has been implemented in the
proposed model, where each layer has been connected to other layers in feed-forward
mode. The main advantage of the DenseNet block is that the n-th layer is able to receive
the required feature information Xn from all the previous layers X0, X1, ..., Xn−1 inputs,
which can be expressed as Xn = Hn[X0, X1, ..., Xn−1], where Hn is the spliced feature map
function for layer n; [X0, X1, ..., Xn−1] is the feature map of layers X0, X1, ..., Xn−1. Due to
the complexity of the image dataset, it is found out that the dense blocks facilitate better
feature transfer and gradients throughout the proposed neural network. Additionally, it
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may mitigate over-fitting to some degree. Thus, in the proposed model, the Cross-Stage
Partial (CSP) networks convolution blocks CSP1, CSP2, CSP8, CSP8, and CSP4 in original
CSPDarknet53 have been modified to D1-CSP1, D2-CSP2, D3-CSP4, D4-CSP4, and D5-
CSP2 by adding dense connection blocks to enhance feature propagation and reducing
convolution blocks to reduce the number of redundant feature operations and improve the
computational speed. The schematic of the proposed dense block network structure has
been shown in Figure 2b.

One of the important aspects of the object detection model is to select proper activation
function for a specific problem to enhance the accuracy and performance of the neural net-
work [52]. In order to enhance stabilization of the network gradient flow and help learning
more expressive features in the detection model, the proposed model uses Mish activation
function [50], which can be expressed as: f (x) = x.tanh(so f tplus(x)) = x.tanh(In(1+ ex)).
Additionally, due to Mish’s unique property of unboundedness and bounded below, it
helps to remove the saturation problem of the output neurons and improve network regu-
larization. Additionally, it is unbiased towards the initialization of weights and learning
rate due to the smoothness property. Thus, using Mish as a primary activation func-
tion replacing Leaky Rectified Linear Unit (Leaky-ReLU) [53] in the proposed model has
demonstrated a significant gain in accuracy in our custom model dataset.

To enhance the receptive field and separate important context features during object
detection, an SPP block [54] was tightly integrated with the last residual block (D5-CSP2)
as shown in Figure 2. In the proposed model, the SPP was modified to retain the output
spatial dimension, with a maximum pool applied to a sliding kernel of size 5× 5, 9× 9, and
13× 13, considering stride equal to 1. A relatively large 13× 13 max-pooling effectively
increases the receptive field of the backbone. Furthermore, to preserve fine-grain localize
information, a modified PANet [55] has been used in the neck part of the proposed network
model which shortens the path of high and low fusion for multi-scale feature pyramid map
as shown in Figure 2. Additionally, drop block regularization [56] for learning spatially
discriminating features and class label smoothing [49] for better generalization of a dataset
was employed. The original YOLOv3 head was utilized as the detection head. With the
inputted image size of 512× 512× 3, the proposed model can predict bounding boxes at
the detection head in three different scales: 64× 64× 24, 32× 32× 24, and 16× 16× 24. The
data augmentation procedure (i.e., rotation, mirror projection, color balancing, brightness
transformation, blur processing) was employed (as shown in Figure 3) to increase the
variability of inputted images obtained from different environments, which enhances the
robustness of the detection model.
 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 3. Different image augmentation methods: (a) original image, (b) 90◦ ACW rotation, (c) 180◦

ACW rotation, (d) 270◦ ACW rotation, (e) horizontal mirror projection, (f) color balancing, (g–i)
brightness transformation, and (j) blur processing.
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3. Performance Matrices of the Detection Model

In deep learning-based object detection models, some important statistical measures
of matrices, including intersection over union (IoU), precision (P) recall (R), F-1 score,
average precision (AP), and mean average precision (mAP), are generally used to evaluate
the performance of the model. In YOLOv4, a scale-invariant evaluation metric IoU is
a standard measure to define the accuracy of target object detection. IoU calculates the
efficiency and performance of the given model by measuring the overlap area ratio between
the bounding box prediction from the model and the true bounding area of the object,
which can be expressed as

IoU =
Aoverlap

Aunion
(2)

where Aoverlap is defined as the intersection area between the bounding box prediction
from the model and true bounding box of the object as shown in Figure 4. However, Aunion
is the union area of aforementioned bounding boxes. For binary classification, if IoU is
greater than 0.5, the classified object class can be defined as true positive (TP). For IoU
below 0.5, corresponding class can be labeled as false positive (FP). From the definition of
TP, FP, and FN, the performance parameters P and R can be expressed as follows

P =
TP

(TP + FP)
; R =

TP
(TP + FN)

(3)

From Equation (3), one can conclude that higher P represents stronger capability of models
to distinguish negative datasets, whereas higher R refers to stronger detection capability
for positive datasets. In order to obtain the degree of precision of the test accuracy, F1 score
can be defined from Equation (3) as follows:

F1 =
2PR

(P + R)
. (4)

The F1 score is an evaluated indicator to integrate the mean of the precision and the recall,
which could reconcile the precision and recall of the model. A higher F1 score indicates
that the model is more robust. In a general sense, AP is equal to the area under a PR-curve,
which can be expressed as

AP =
∫ 1

0
P(R)dR. (5)

A higher AP corresponds to a larger area under the PR curve, indicating better accuracy of
predicting a object class, whereas mAP is the average of all APs, which can be expressed as

mAP =
1
N

N

∑
i=1

APi. (6)

In the dense object detection models, bounding box regression is a popular approach
to predict the localization boxes on the input images. In the proposed model, complete
IoU (CIoU) [57] has been utilized to achieve better accuracy and speed of convergency for
the target bounding box prediction process. CIoU loss has been formulated incorporating
consistency of aspect ratio parameter v and a positive trade off parameter α, which can be
expressed as:

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv. (7)

v =
4

π2

(
tan−1 wgt

hgt
− tan−1 w

h

)2
; α =

v
(1− IoU) + v′

(8)

where wgt, w and hgt, h are the widths and heights of ground truth bounding box and
prediction bounding box, respectively, as shown in Figure 5.
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Figure 4. Schematic definition of precesion (P), recall (R) and intersection over union (IoU) during
object detection.
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Figure 5. Schematic of offset regression for target bounding box prediction process during CIoU loss
in bounding box regression for proposed object detection algorithm.

4. Result and Discussion

In order to develop a real-time high-performance disease detection model on a single
GPU, an improved version of state-of-art YOLOv4 algorithm has been considered. Initially,
a total of 600 original images consisting of 200 images from each of the two apple diseases
(i.e., scab and rust) and 200 images containing both scab and rust have been collected from
the publicly available Kaggle PlantPathology Apple Dataset [58] to construct the single
dataset. Utilizing different image augmentation procedures, the single dataset has been
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expanded tenfold to obtain the custom dataset for this study (see Table 1). For image
annotation of target classes in the custom dataset, a Python-based open-source script
LabelImg [59] has been used, which saves the annotations as XML files and organizes them
into PASCAL VOC format. Each XML contains the information of the target class and
corresponding bounding coordinate during annotation for images in the training dataset.

Table 1. Different diseases in apple plant and corresponding class identifier with original number of
images and images produced by augmentation method for the custom dataset.

Object Class Scab Rust Mix (Scab and Rust)

Class identifier 1 2 1, 2
Original images 200 200 200

Rotation 800 800 800
Color balancing 200 200 200

Brightness transform 600 600 600
Blur processing 200 200 200

Total number of images/class 2000 2000 2000

From the custom dataset, a total of 3600, 1200, and 1200 were randomly selected
for constructing training, validation, and test sets, respectively. The experiments were
performed on the local system. The local computing resources and deep neural network
(DNN) environment specifications are detailed in Table 2. To obtain better accuracy of the
proposed detection model for different growth phases of apple, inputted dataset images of
size 512× 512 were considered. The initial configuration parameters (i.e., initial learning
rate, number of channels, momentum value, decay regularization, etc.) were kept the
same as the original parameters in the YOLOV4 model. The primary initial configuration
parameters corresponding to the improved YOLOV4 model are presented in Table 3.

Table 2. Local computing resources and DNN environments.

Testing Environment Configuration Parameter

OS Windows 10 Pro 64
CPU Intel Core i5-10210U
RAM 8 GB DDR4
GPU NVIDIA GeForce RTX 2080

GPU acceleration env. CUDA 10.2.89
GPU acclerated DNN lib. cuDNN 10.2 v7.6.5

Int. development env. Visual Studio comm. v15.9 (2017)
Comp. Vision lib. OpenCV 4.5.1-vc14

Table 3. Initial configuration parameters of improved YOLOv4 model.

Input Size of Image Batch Subdivision Channels Momentum

512× 512 16 4 3 0.9

Initial Learning Rate Decay Classes Filters Training Steps

0.001 0.005 4 27 85,000

4.1. Overall Performance of the Proposed Detection Model

In order to compare the overall performances of the proposed detection model, the
values of IoU, F1-score, mAP, final validation loss, and average detection time were com-
pared with YOLOv3 and YOLOv4 as shown in Table 4. Comparing IoU, it was found
that the proposed model attained the highest IoU value of 0.922, which is 6.1% over the
original YOLOv4 model. Thus, the proposed detection model has better accuracy of detect-
ing bounding boxes compared to the other two models. The model demonstrated better
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efficiency and accuracy in detection performance with an F1 score of 0.959 and mAP of
0.912, which are 7.6% and 7.3% improvement from YOLOv4.

Furthermore, the average detection time has been compared between these three
models, which indicates that the YOLOv4 has the lowest detection time of 15.301 ms (or
speed of 65.22 FPS). The detection time of the proposed model was found to be higher than
the YOLOv4 model with a detection time of 17.577 ms (or 56.89 FPS). Nevertheless, it can
still provide the real-time detection of high-resolution images with better accuracy and
confidence compared to the other two models.

Table 4. Comparison of IoU, F1 Score, final loss, detection speed, and average detection time between YOLOv3, YOLOv4,
and the proposed model.

Detection Model IoU F1-Score mAP Validation Loss Detection Time (ms) Detection Speed (FPS)

YOLOv3 0.787 0.822 0.781 11.12 16.254 61.52
YOLOv4 0.861 0.883 0.839 4.31 15.301 65.22

Proposed model 0.922 0.959 0.912 1.65 17.577 56.89

The comparison of precision–recall (PR) curves between these three models is shown
in Figure 6. By comparing the characteristics of PR curves, one can conclude that the
precision value from the proposed model is higher for a particular recall when the area
under the PR curve is the highest between all three models. This indicates that the current
model demonstrates better detection accuracy compared to YOLOv3 and YOLOv4.
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Figure 6. Comparison of P-R curves between YOLOv3, YOLOv4, and proposed detection model.

Figure 7 compares the validation loss curves between three models. At the initial
phase, the loss began to decrease significantly after approximately 20,000 training steps
in YOLOv4, whereas, for the proposed model, the loss reduction occurred after approx-
imately 5000 training steps, indicating better convergence characteristics compared to
YOLOv4. After exhibiting several cycles of fluctuation in the loss curve, loss began to
saturate after approximately 60000 training steps with a final loss value of 1.65, whereas
the final loss valuess in the YOLOv3 and YOLOv4 were 11.12 and 4.31, respectively, as
shown in Table 4. Clearly, the proposed model has a faster convergence rate and better
convergence characteristics compared to the original YOLOV4 model, which indicates
superior performance and detection accuracy in the proposed model. Detailed detection
results containing TP, FP, and FN for each class and corresponding precision, recall, and
F-1 score are presented in Table 5. The proposed model has demonstrated relatively higher
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precision and recall in rust, namely 94.37% and 98.41%, respectively. Overall, the proposed
model attained 93.91% precision and 98.14% recall, which are increased by 9.05% and 5.91%
from the original YOLOv4, respectively. In comparison to other models, one can see that
the proposed model maximizes the TP value, while FP and FN reach minimum compared
to YOLOv3 and YOLOv4 for all classes. For example, TP increases from 2944 to 3272; FP
and FN decrease from 525 to 212 and 248 to 62, respectively, from YOLOv4, as shown in
Table 5. Thus, the proposed model significantly improves the overall precision, recall, and
F-1 score of the test dataset compared to YOLOv3 and YOLOv4 detection models. Thus, it
is evident from the aforementioned comparison that the proposed object detection model
can significantly outperform YOLOv3 and YOLOv4 in terms of precision and accuracy,
slightly compromising the detection speed. Thus, it can be concluded that the performance
and the accuracy of the proposed model have been significantly improved.
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Figure 7. Comparison of validation loss curves between YOLOv3, YOLOv4, and proposed detec-
tion model.

Table 5. Comparison of detection results between YOLOv3, YOLOv4, and proposed model on the test dataset.

Model Class Objects TP FP FN P (%) R (%) F1-Score

YOLOv3

All 3517 2688 750 408 78.18 86.82 82.27

Scab 1975 1501 398 187 79.04 88.92 83.69

Rust 1542 1187 352 221 77.12 84.30 80.56

YOLOv4

All 3517 2944 525 248 84.86 92.23 88.39

Scab 1975 1643 286 137 85.17 92.30 88.59

Rust 1542 1301 239 111 84.48 92.13 88.14

Proposed Model

All 3517 3272 212 62 93.91 98.14 95.98

Scab 1975 1845 127 39 93.55 97.93 95.69

Rust 1542 1427 85 23 94.37 98.41 96.35

4.2. Detection Results for Different Plant Disease Class

The detection results from the proposed model for two distinct diseases in the apple
plant considering two different infected leaves belonging to each of the disease classes were
considered and compared with YOLOv3 and YOLOv4 models, as shown in Figures 8 and 9.
For better clarity of the bounding boxes, two different diseases, scab and rust, were marked
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with corresponding bounding box class identifiers: 1 and 2, respectively. Corresponding
detection results consisting of detected (detec.), undetected (undetec.), and missdetected
(misdetc.) diseases for each of the leaves are detailed and compared between these three
models in Tables 6–8. From the detection result, one can see that the bounding box
prediction from the proposed model is more accurate compared to YOLOv3 and YOLOv4
detection models for all disease classes.
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Figure 8. Comparison of detection result for apple scab on two distinct apple leaves from three models: (a1,a2) YOLOv3;
(b1,b2) YOLOv4; (c1,c2) proposed model.

Table 6. Comparison of detection results between YOLOv3, YOLOv4, and the proposed model for apple scab detection as
shown in Figure 8. Bold highlights the best result obtained from corresponding model prediction.

Figs. No Model Detc. Undetc. Misdetc. Confidence Scores

Figure 8(a1) YOLOv3 3 3 0 0.84, 0.93, 0.98
Figure 8(b1) YOLOv4 4 2 0 0.94, 1.00, 1.00, 0.98
Figure 8(c1) Proposed model 6 0 0 0.98, 1.00, 1.00, 0.97, 1.00, 1.00

Figure 8(a2) YOLOv3 3 5 1 0.81, 0.94, 0.77
Figure 8(b2) YOLOv4 4 4 1 0.97, 0.81, 1.00, 0.78

Figure 8(c2) Proposed model 8 1 0 1.00, 1.00, 0.92, 1.00
1.00, 1.00, 1.00, 0.97

Scab detection: Scab lesions in leaves are roughly elliptical with feathery edges and
have an olive green-to-black color. They are preferably distributed as the discreet form of
patches, as shown in Figure 8. Due to erratic growth patterns and often high aspect ratio of
the patch size, it is a challenging task to detect each of the spots individually. In the first test
case, a relatively less dense discreet distribution of scab has been considered. For such a
case, all three models work relatively well; however, the proposed model showed superior
performance by correctly identifying all scab spots, while YOLOv3 and YOLOv4 had three
and two undetected spots, respectively, as shown in Figure 8(a1–c1). For a more challenging
case, a highly dense scab-infected sample was considered with a complex background
of soil and leaves; the detection results from the proposed model indicate a significant
improvement of detection accuracy and reduction of several undetected disease spots
compared to the other two models, as shown in Figure 8(a2–c2). Overall, the proposed
model demonstrates a reduced number of undetected scab spots compared to YOLOv3
and YOLOv4 as shown in Table 6.
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Figure 9. Comparison of detection result for apple rust on two distinct apple leaves from three models: (a1,a2) YOLOv3;
(b1,b2) YOLOv4; (c1,c2) proposed model.

Table 7. Comparison of detection results between YOLOv3, YOLOv4, and proposed model for apple rust detection as
shown in Figure 9. Bold highlights the best result obtained from corresponding model prediction.

Figs. No Model Detc. Undetc. Misdetc. Confidence Scores

Figure 9(a1) YOLOv3 6 5 0 0.84, 0.93, 0.79, 0.93, 0.89, 0.94

Figure 9(b1) YOLOv4 8 3 0 0.88, 0.91, 0.87, 0.91, 0.78, 0.83
0.99, 0.89

Figure 9(c1) Proposed model 11 0 0 0.96, 0.91, 1.00, 1.00, 0.92, 1.00
1.00, 1.00, 0.98, 1.00, 0.97

Figure 9(a2) YOLOv3 7 7 1 0.91, 0.78, 0.98, 0.76, 0.79, 0.92, 0.86

Figure 9(b2) YOLOv4 8 6 1 0.92, 0.91, 0.83, 1.00, 0.92, 0.87
0.91, 0.83

Figure 9(c2) Proposed model 12 2 0 0.95, 0.99, 0.87, 1.00, 0.92, 1.00
0.94, 1.00, 0.98, 1.00, 0.83, 0.97

Rust detection: The infections with rust usually first appear as small pale yellow spots
on the upper surfaces of the leaf. They can rapidly extend to the whole surface of the leaf
with dense distribution of spots. Due to the fine-grained nature and similarity of texture
with the complex background, it is often hard to detect each of these affected areas precisely.
In the first test case, a relatively less dense, fine-grained discreet distribution of rust has
been considered. While the detection results from YOLOv3 and YOLOv4 indicate several
missed detections for the fine-grained diseases spots, the proposed model demonstrated
superior performance, in particular, by identifying fine-grained infected zones without any
undetected spots, as shown in Figure 9(a1–c1), whereas there are five and three undetected
rust spots from YOLOv3 and YOLOv4, respectively, as shown in Table 7. In a more
challenging scenario with the densely populated distribution of infected areas, there are
several missed detections from YOLOv3 and YOLOv4, as shown in Figure 9(a2,b2). In such
a critical scenario, the proposed model demonstrated better multiscale disease detection
capability compared to the other two models with higher confidence scores in bounding
box prediction and a significant reduction in missed detection (see Table 7).
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Table 8. Comparison of detection results between YOLOv3, YOLOv4, and proposed model for both apple scab and rust as
shown in Figure 10. Bold highlights the best result obtained from corresponding model prediction.

Figs. No Model Detc. Undetc. Misdetc. Confidence Scores

Figure 10(a1) YOLOv3 6 5 0 0.84, 0.88, 0.76, 0.79, 1.00, 0.98

Figure 10(b1) YOLOv4 7 4 0 0.82, 0.77, 1.00, 0.93, 1.00
0.83, 0.94

Figure 10(c1) Proposed model 10 1 0 0.90, 0.87, 1.00, 0.92, 1.00
0.94, 1.00, 1.00, 0.83, 0.97

Figure 10(a2) YOLOv3 6 6 1 0.91, 0.67, 0.81 0.94, 0.77, 0.79
Figure 10(b2) YOLOv4 6 6 1 0.97, 0.86, 1.00, 0.77, 0.85, 0.67

Figure 10(c2) Proposed model 9 3 0 0.72, 0.90, 1.00, 0.92, 1.00
0.83, 0.95, 0.94, 0.99

Multi-class disease detection: In this section, the proposed model has been tested for
multi-class diseases detection where both scab and rust are present in the image. At first,
we have considered a challenging case for the early disease phase where both diseases are
of fine-grain nature. One can see that the proposed model has better accuracy of detecting
multi-class fine-grained diseases spots compared to YOLOv3 and YOLOv4, as shown in
Figure 10(a1–c1). In our second case, we have considered a multi-scale disease detection
problem where the size of rust is relatively larger than the scab as shown in Figure 10(a2–c2).
In such a challenging scenario, the proposed model demonstrated superior detection results
and reduced missed detections to a great extent, as shown in Figure 10(c2). Moreover, it has
higher confidence scores in bounding box prediction compared to the other two models, as
shown in Table 8.
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Figure 10. Comparison of detection result for both apple scab and rust on two distinct apple leaves from three models:
(a1,a2) YOLOv3; (b1,b2) YOLOv4; (c1,c2) proposed model.

It can be concluded from our results that the proposed detection model has better
capability and higher adaptability of disease detection in various environments compared
to YOLOv3 and YOLOv4. The detection results demonstrate that the proposed detection
model can provide high classification accuracy for multi-scale disease spot detection.
Overall, it has a higher accuracy of detecting an object and can effectively avoid the
problem of false detection and missing detection compared to the YOLOv3 and YOLOv4
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models. The proposed model can be employed in real-life complex orchard scenarios for
disease detection under various environmental conditions.

5. Conclusions

To summarize, in this study, a real-time object detection framework has been de-
veloped based on an improved YOLOv4 algorithm and applied to various plant disease
detections in apple. The proposed model has been modified to optimize for accuracy
and verified by detecting diseases under complex orchard scenarios. At a detection rate
of 56.9 FPS, the proposed algorithm reached a mean average precision (mAP) value of
91.2%, F1-score of 95.9%. Compared to the original YOLOv4 model, the proposed model
acquires 9.05% increase in precision and 7.6% increase in F1-score, indicating the potential
of superior inspection performance in the real-time in-field application. The current work
provides an effective and efficient method of detecting different plant diseases under com-
plex scenarios and can be extended to different fruit and crop detection, generic disease
detection, and automated agricultural detection processes.
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