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Abstract: This paper analyses the contribution of residual network (ResNet) based convolutional
neural network (CNN) architecture employed in two tasks related to plant phenotyping. Among
the contemporary works for species recognition (SR) and infection detection of plants, the majority
of them have performed experiments on balanced datasets and used accuracy as the evaluation
parameter. However, this work used an imbalanced dataset having an unequal number of images,
applied data augmentation to increase accuracy, organised data as multiple test cases and classes,
and, most importantly, employed multiclass classifier evaluation parameters useful for asymmetric
class distribution. Additionally, the work addresses typical issues faced such as selecting the size of
the dataset, depth of classifiers, training time needed, and analysing the classifier’s performance if
various test cases are deployed. In this work, ResNet 20 (V2) architecture has performed significantly
well in the tasks of Species Recognition (SR) and Identification of Healthy and Infected Leaves (IHIL)
with a Precision of 91.84% and 84.00%, Recall of 91.67% and 83.14% and F1 Score of 91.49% and
83.19%, respectively.
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1. Introduction

Plants maintain an environmental balance and nourish the atmosphere with their
multidimensional contribution to nature. Looking at the possible food crisis in the near
future, as reported by the Food and Agriculture Organization of the United Nations
(FAO) [1], it is necessary to provide the plants with a better nourishing environment to
have a sustainable life cycle. Smart farming helps human beings to have a better degree of
control over the nourishment of plants. Plant phenotyping is a technique for quantitative
formulation and analysis of complex plant traits, i.e., plant morphology, plant stress, crop
yield, plant physiological and anatomical traits, etc. [2]. It is preferred in smart architecture
based on efficient and high output farming platforms [3]. Computer vision-based plant
phenotyping techniques offer a non-destructive and efficient representation of the complex
plant traits [4]. Non-destructive methods have the potential to perform large-scale and high-
throughput plant phenotyping experiments. Visible spectral imaging, fluorescence imaging,
infrared imaging, hyperspectral imaging, three-dimensional imaging, and laser imaging are
some of the popular methods used in these experiments [3,5]. Figure 1 represents different
plant phenotyping categories where imaging technique plays an important role [3,6,7].
Visible spectral imaging has the advantages of affordability and quick measurement [8]. It
can also model a wide range of plant traits. Before the comprehensive assessment of plant
traits, computer vision-based recognition of plant species is required. Plant health condition
analysis is also an integral part of the phenotypic analysis. This article has developed
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a computer vision-based plant species recognition and health condition identification
technique analysing plant leaf images. It is generally designed using standard classification
methodologies. Figure 2 elaborates the process flow.

AI 2021, 2, x 2 
 

required. Plant health condition analysis is also an integral part of the phenotypic analysis. 
This article has developed a computer vision-based plant species recognition and health 
condition identification technique analysing plant leaf images. It is generally designed 
using standard classification methodologies. Figure 2 elaborates the process flow. 

 
Figure 1. Computer-vision based plant phenotyping categories. 

 
Figure 2. Process flow of computer vision-based classification methods. 

Collection of relevant images is the primary challenge for which digital cameras, 
charged couple device (CCD) cameras, mobile cameras, cameras with portable spectrora-
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accurate classification result. Sometimes the classifier models error and noise present in 
the data as the original concept and causes overfitting. Data augmentation, i.e., enlarge-
ment of the original dataset by adding synthetically generated data, is an accepted ap-
proach by the researchers to overcome this problem [10]. The next step is feature extrac-
tion of the images. Generally, plant parts affected with some disease show deformation in 
their colour, texture and shape. Hue histogram, Speeded Up Robust Features (SURF), His-
togram of Oriented Gradients (HOG), Scale Invariant Feature Transform (SIFT), etc., are 
the features used for this purpose [11]. Local descriptors like Bags of Visual Words 
(BOVW), Histogram of Oriented Gradients (HOG) are used for plant recognition using 
deep learning (DL) [12]. Classification algorithm learns from the input data features and 
fits a model which can predict target classes. The whole input dataset is divided into train-
ing, testing and validation. Initially, the model parameters are fit based on training data. 
Validation data helps to tune the model’s hyperparameters, and finally, the test data pro-
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Collection of relevant images is the primary challenge for which digital cameras,
charged couple device (CCD) cameras, mobile cameras, cameras with portable spectro-
radiometers, etc., are used [9]. In the pre-processing step, inappropriate data images are
filtered out, and the relevant images are resized, denoised and segmented to get a more
accurate classification result. Sometimes the classifier models error and noise present in the
data as the original concept and causes overfitting. Data augmentation, i.e., enlargement of
the original dataset by adding synthetically generated data, is an accepted approach by
the researchers to overcome this problem [10]. The next step is feature extraction of the
images. Generally, plant parts affected with some disease show deformation in their colour,
texture and shape. Hue histogram, Speeded Up Robust Features (SURF), Histogram of
Oriented Gradients (HOG), Scale Invariant Feature Transform (SIFT), etc., are the features
used for this purpose [11]. Local descriptors like Bags of Visual Words (BOVW), Histogram
of Oriented Gradients (HOG) are used for plant recognition using deep learning (DL) [12].
Classification algorithm learns from the input data features and fits a model which can
predict target classes. The whole input dataset is divided into training, testing and valida-
tion. Initially, the model parameters are fit based on training data. Validation data helps
to tune the model’s hyperparameters, and finally, the test data provides an evaluation
methodology of the model. Researchers have used supervised, unsupervised and other
classification techniques for plant recognition and disease identification [9].
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2. Related Work

This article analyses two particular applications (i.e., plant species recognition and
health condition identification) of visual spectrum imaging-based plant phenotyping
using deep learning (DL) methods. Researchers prefer fours type of deep learning-based
methodologies (i.e., convolutional neural network (CNN), deep belief network, recurrent
neural network (RNN), and stacked autoencoder) for this purpose [13]. Lee et al. (2017)
demonstrated that the use of DL for harvesting important leaf features is effective and can
be successfully used for plant identification purposes [14]. In other research, Zhang, S.,
and Zhang (2017) showed that plant species recognition using a deep convolutional neural
network (DCNN) solves the problem of weak convergence and generalisation [15]. Thus,
DL algorithms perform better than generic classification algorithms, which use colour,
shape, and texture-based features. DL-based plant disease severity assessment achieved
good accuracy and was used to predict yield loss [16]. Table 1 presents state-of-the-art
research on this field. It shows there is a scope of research and analysis of the following
aspects in the context of plant species recognition and health identification:

i. There is a scope to analyse the performance of DL models when fed with an
imbalanced dataset, especially when there is a significant difference in the number
of leaf images present in each class.

ii. The performance change of the model with the size of the leaf image dataset
requires analysis.

iii. Further research is required to map the change in classification accuracy with
differences in the DL classifier’s depth.

iv. A potential analysis is required to record the change in DL model’s performance
with an increased number of classes or increased number of leaf images in each class.

v. Computational time in an affordable experimental setup will better visualise appli-
cation platforms where the model can be deployed.

This paper addresses state-of-the-art issues by organising the imbalanced dataset,
tuning the depth of a DL classifier based on performance and computational time, fixing the
training data size, and including a number of multiclass classifier’s evaluation parameters.

Table 1. State-of-the-art research.

Article Research Area Dataset Methodology Remarks

[17] Plant species identification
with small datasets

32 species from FLAVIA
dataset, 20 species from

CRLEAVES dataset of leaf
images

Convolutional Siamese
network (CSN) and a CNN

with three convolutional
blocks and a convolutional

layer with 32 filters

Classifiers trained with small
training samples (5 to 30 per
species) and got accuracy of

93.7% and 81% by CSN at two
different experimental

scenarios

[18] Plant identification in a
natural scenario

BJFU100 dataset of 10,000
images of 100 plant species.
The images were collected

using mobile devices

Residual network (ResNet)
classifier with 26-layer

architecture
91.78% accuracy was achieved

[19] Plant species classification Dataset with 43 plant species
with 30 image samples each

Feature extraction using
pre-trained AlexNet,
fine-tuned AlexNet, a

proposed CNN model (D-leaf),
and vein morphometric.

Classification using artificial
neural network (ANN),

support vector machine (SVM),
k-nearest neighbours (KNN)

The proposed method with
ANN classifier achieved the
highest accuracy of 94.88%
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Table 1. Cont.

Article Research Area Dataset Methodology Remarks

[20] Leaf species recognition using
DL

Plant leaf dataset of 240
images of 15 different species

AlexNet architecture,
fine-tuning of

hyperparameters has
been done.

Research achieved an accuracy
of 95.56%

[21] Grape plant species
identification

Two vineyard image datasets
of six varieties of grape with

23 and 14 images each

AlexNet architecture with
transfer learning

An accuracy of 77.30%
was achieved

[22] Plant disease diagnosis Open dataset of 87,848 images
with 25 different plants

Five CNN based architecture,
i.e., AlexNet, AlexNetOWTBn,

GoogLeNet, Overfeat and
VGG have been used to

classify 58 different classes of
healthy and diseased plants

Achieved an accuracy of
99.53%

[23] Plant Disease Recognition
Experimented on 8 plants and
19 diseases from a dataset of

40,000 leaf images

AlexNet, VGG16, ResNet,
Inception V3 used for feature

extraction and proposed
two-head network
for classification.

Achieved 98.07% accuracy on
plant species recognition and

87.45% accuracy on
disease classification

[24] Recognition of disease and
pests of tomato plants

Dataset contained 5000 images.
The method applied for 10

different classes.

Deep learning
meta-architectures such as
faster region-based CNN,

region-based fully
convolutional network

(R-FCN) and single shot
multibox detector (SSD) used

for detection and VGG net,
ResNet based

feature extraction

The research reports the
highest average precision of
85.98% with ResNet50 and

R-FCN

[25] Identification of plant disease

14 plant species with 26
diseases from the PlantVillage

dataset were used for
recognition. Total number of

images is 54306.

DL classifiers such as VGG net,
ResNet, Inception V4,

DenseNet were used. The DL
models have been fine-tuned

for the process of
Disease Identification.

An accuracy of 99.75% has
been achieved using DenseNet

3. Materials and Methods

This section discusses the dataset, pre-processing of the images, organisation of the
dataset, and the classification methodology adopted for the species recognition and health
condition identification task.

3.1. The Dataset

A data repository [26] of segmented leaf images of 12 different plant species was se-
lected for this purpose. The presence of a wide variety of species in the dataset increases the
variability among it. The acquisition of images was made in a smart enclosed environment
using a Nikon D5300 camera. It has 4503 images in which 2278 images are of healthy leaves,
and 2225 images are of leaves infected with different diseases. Table 2 reflects the details of
the dataset. Figure 3 shows a healthy and diseased leaf image sample of each species.
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Table 2. The number of image samples present in the dataset.

Plant Species Number of Images
(H: Healthy, I: Infected) Plant Species Number of Images

(H: Healthy, I: Infected)

Mango (Mangifera indica) H:170, I:265 Jatropha (Jatropha curcas L.) H:133, I:124
Arjun (Terminalia arjuna) H:220, I:232 Sukh chain (Pongamia Pinnata L.) H:322, I:276

Alstonia (Alstonia scholaris) H:179, I:254 Basil (Ocimum basilicum) H:149, I:0
Guava (Psidium guajava) H:277, I:142 Pomegranate (Punica granatum L.) H:287, I:272

Bael (Aegle marmelos) H:0, I:118 Lemon (Citrus limon) H:159, I:77
Jamun (Syzgium cumini) H:279, I:345 Chinar (Platanus orientalis) H:103, I:120AI 2021, 2, x 5 
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(d) Psidium guajava-H, (e) Syzgium cumini-H, (f) Jatropha curcas L.-H, (g) Pongamia Pinnata L.-D, (h) Ocimum basilicum-H, (i) 
Punica granatum L.-H, (j) Citrus limon-H, (k) Platanus orientalis-H, (l) Mangifera indica-D, (m) Terminalia arjuna-D, (n) Alstonia 
scholaris-D, (o) Psidium guajava-D, (p) Aegle marmelos-D, (q) Syzgium cumini-D, (r) Jatropha curcas L.-D, (s) Pongamia Pinnata 
L.-D, (t) Punica granatum L.-D, (u) Citrus limon-D, (v) Platanus orientalis-D, where H indicates Healthy leaf sample and D 
indicates Diseased leaf. 
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processing stage. The images of the dataset were represented in the red, green and blue 
(RGB) colour model. In the pre-processing stage, representation was changed from RGB 
to the HSV (hue saturation value) colour space. A threshold value is added to the V-value, 
which increases the brightness level of the images. Enhancing brightness makes the dark 
spots on leaves and the infection patches easily differentiable. Figure 4c shows an image 
sample after enhancing brightness. Images were resized to 224 × 224 × 3 before feeding 
them to the classifier. 
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H, (i) Punica granatum L.-H, (j) Citrus limon-H, (k) Platanus orientalis-H, (l) Mangifera indica-D, (m) Terminalia arjuna-D,
(n) Alstonia scholaris-D, (o) Psidium guajava-D, (p) Aegle marmelos-D, (q) Syzgium cumini-D, (r) Jatropha curcas L.-D,
(s) Pongamia Pinnata L.-D, (t) Punica granatum L.-D, (u) Citrus limon-D, (v) Platanus orientalis-D, where H indicates
Healthy leaf sample and D indicates Diseased leaf.
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3.2. Pre-Processing of the Dataset

Figure 4a,b shows samples of healthy and infected leaves before feeding into the
pre-processing stage. The images of the dataset were represented in the red, green and blue
(RGB) colour model. In the pre-processing stage, representation was changed from RGB to
the HSV (hue saturation value) colour space. A threshold value is added to the V-value,
which increases the brightness level of the images. Enhancing brightness makes the dark
spots on leaves and the infection patches easily differentiable. Figure 4c shows an image
sample after enhancing brightness. Images were resized to 224 × 224 × 3 before feeding
them to the classifier.
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3.3. Organization of the Dataset for Training

The dataset was organised as two test cases, as shown in Figure 5. Each of the
healthy and infected sets of data of different plant species were considered a class in
this experiment. Infected lemon had a minimum of 77 image samples, and there was
an average of 205 image samples in all the classes. For the first test case, the dataset
was organised with 77 image samples from every class. The classes with more than 77
image samples were under-sampled through a random sampling method. A dataset was
prepared with 205 image samples from every class in the second case. The classes with
more than 205 image samples were under-sampled, and classes with fewer than 205 images
were provided with artificially generated images using the image augmentation method.
Original images were horizontally or vertically flipped, rotated, shifted, and changed in
their brightness level to create artificial variations, as shown in Figure 4d.

3.4. Classification

AlexNet, GoogLeNet, ResNet, Inception V3, Inception V4, VGG-16, VGG-19, etc., were
some of the popular DL architectures used for classification [27]. There are many criteria
on which a DL model can be selected for a particular application. Canziani et al. (2016)
have done extensive research and analysis comparing the performance of state-of-the-art
DL models on which a model could be selected for practical applications [28]. Inference
time for input data sample on DL architecture and its changes across different batch size is
significant in this context. It has been observed that the number of operations and inference
time have a linear relationship. DL models with low inference time, limited operations
count, and low power consumption are suitable for real-time and resource-constrained
applications. AlexNet, which is also considered the first modern CNN architecture, has
the lowest inference time with increasing batch size, limited operations count, and low
power consumption. Accuracy and utilisation of parameters are criteria that are significant
in determining the performance of the model. ResNet is one such DL network that has
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reported good classification accuracy with standard datasets. It also has a high capacity to
use the parametric space.
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In this article, we have used the residual network (ResNet) (Version 2) based convo-
lutional neural network (CNN) architecture for classification and compared the species
recognition results with AlexNet so that the outcome can be used in a wide variety of
platforms. The generic CNN architecture contains a series of convolutional layers and
filters, pooling layers, fully connected (FC) layers, and a softmax classifier. Convolutional
layers with filters extract features from the input images. Padding is used to fit the fil-
ter into the image. An activation layer is applied after the convolution layer. Generally,
non-linear functions, such as the hyperbolic tangent function, sigmoid, and rectified linear
unit (ReLu), are used to introduce nonlinearity in CNN. In ResNet, the ReLu activation
function is preferred. The pooling layer reduces the number of parameters while retaining
the required information. Fully connected layers convert the output of the previous layers
into a single vector before feeding it to the classifier.

ResNet was first introduced at the ImageNet classification challenge in 2015 [29]. In
the process of classification, deeper networks have been used to improve the classification
performance. He et al. (2016) reported that adding more layers can cause training errors,
resulting in accuracy degradation. The problem is addressed in ResNet by using deep
residual learning. Fitting the stacked layer into residual mapping is easier to optimise than
unreferenced mapping. The building blocks of the residual leaning of improved ResNet (or
ResNet Version 2) is shown in Figure 6 [30]. ResNet introduced the identity path I through
which the input of the block is added to the output of the block, i.e., O(I) = F(I) + I. The
abstractions modelled in the previous layer are forwarded to the next layer through the
identity path. Hence the incremental abstractions are easily built on top of the existing
one. Each building block models only the incremental abstraction F(I) = O(I)− I thus
eliminating the degradation error. In ResNet V2, block normalisation and ReLu activation
are performed before the convolution operation. Figure 7 elaborates the architecture of
ResNet with the convolutional layers having filters and the identity shortcuts. The ResNet
(V2) model follows the form of (6a + 2) number of layers which define the depth of the
network [30]. We have compared for a = (1, 2, 3, 4, and 5) which give a 11, 20-, 29-, 38-, and
47-layer networks.

AlexNet architecture was first introduced in ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) 2012 by Krizhevsky et al. (2016). It has eight learned layers,
i.e., five convolutional layers and three fully connected layers [31]. The input images of
224 × 224 × 3 pixels are filtered with a kernel of dimension 11X11X3 by the first convo-
lutional layer. A total of 96 kernels are used, and the stride of filtering is maintained at
four. The response is normalised, and overlapping pooling is used to create a summarised
kernel map. The second convolutional layer uses 256 kernels of dimension 5 × 5 × 48 for
filtering. The response of the second layer is normalised and max-pooled. The third, fourth,
and fifth convolutional layers use 384 kernels of dimension 3 × 3 × 256, 384 kernels of
dimension 3 × 3 × 192, and 256 kernels of dimension 3 × 3 × 192, respectively, for filtering.
Normalisation or pooling is not applied to the response of the final three convolutional
layers. fully connected layers have 4096, 4096, and 1000 connected neurons, respectively.

We have used five convolutional layers and five fully connected layers (Figure 8).
The fourth fully connected layer has 100 connected neurons. The final layer uses the
softmax function and generates the classification output based on the number of the target
class. AlexNet reported better accuracy in ImageNet classification compared to the existing
algorithm. A rectified linear unit (ReLu) is used as an activation function. It is more
time-efficient hence takes less training time compared to other activation functions such as
sigmoid functions. Overfitting reduces the classification efficiency of deep neural networks.
The concept of dropout is used in AlexNet where the output of an individual neuron is
dropped out based on a certain probability to avoid overfitting.
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Figure 8. AlexNet-based architecture used in the experiment: I: input, C: convolutional layer, F: fully connected later, O: 
output layer with softmax classifier, N: the total number of the class. 

3.5. Implementation 
The proposed methodology has been implemented using Python, which is an inter-

preter based high-level programming language. Keras [32], an open-source neural net-
work library, has been used to implement ResNet. Libraries like Open Cv [33] and Scikit-
Image [34] have been used for other image processing tasks. The entire dataset is passed 
to the neural network in several epochs (a single epoch is a single cycle of learning) to 
complete the learning process. The required number of epochs to achieve the learning 
process varies in different training circumstances. If the model is trained through a greater 
number of epochs, it can result in overfitting, and for fewer epochs, it may go into under-
fitting. Here we have used the Early Stopping method from the Keras library. It stops 
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Figure 8. AlexNet-based architecture used in the experiment: I: input, C: convolutional layer, F: fully connected later,
O: output layer with softmax classifier, N: the total number of the class.

3.5. Implementation

The proposed methodology has been implemented using Python, which is an in-
terpreter based high-level programming language. Keras [32], an open-source neural
network library, has been used to implement ResNet. Libraries like Open Cv [33] and
Scikit-Image [34] have been used for other image processing tasks. The entire dataset is
passed to the neural network in several epochs (a single epoch is a single cycle of learning)
to complete the learning process. The required number of epochs to achieve the learn-
ing process varies in different training circumstances. If the model is trained through a
greater number of epochs, it can result in overfitting, and for fewer epochs, it may go into
underfitting. Here we have used the Early Stopping method from the Keras library. It
stops training whenever the validation process indicates a saturation in the performance of
the model. The ModelCheckpoint callback has also been incorporated into the DL based
classifier to save the best performing model after every epoch.

4. Results, Analysis, and Comparison

Nine different test cases have been designed to perform the following tasks on (1)
species recognition (SR) and (2) identification of healthy and infected leaves (IHIL). For
species recognition, the input datasets are classified into 12 different classes that correspond
to 12 separate species (Table 2). Each of the plant species except Bael and Basil has a set
of healthy and infected images. Hence for the second task, the datasets are classified into
22 different classes. The terminology of the test cases is as follows: UN1_RN2. UA can be
used alternatively with U, and Alex can be used instead of R. The details are elaborated
in Table 3.

Table 3. The terminology of the test cases.

Character/Number Details

U Dataset generated by under-sampling (i.e., Dataset-I)

UA Dataset generated by under-sampling and augmentation
(i.e., Dataset-II, Figure 3)

N1 12 for SR and 22 for IHIL
R ResNet version 2 based DL classifier has been used.

Alex Alexnet based DL classifier has been used.
N2 Indicates depth of Residual Network based classifier.

The input images are classified into one of the n different classes, i.e., Ci where
1 ≤ i ≤ n. The total number of classes is n which is 12 for SR and 22 for IHIL. Figure 9
represents the confusion matrix of a multiclass classification with n classes [35]. The
efficiency of classifiers has been evaluated using confusion matrix-based performance
metrics. The relevant parameters such as tn, tp, fn, and fp are elaborated in Table 4. The
performance metrics relevant for multiclass classification are elaborated in Table 5 [36]. The
parameters such as tpi, tni, fpi, and fni are the counts of true positive, true negative, false
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positive and false negative, respectively, for class Ci. Table 6 lists the value of performance
metrics (macro-average) for each of the test cases. Macro-averaging assigns equal weightage
to all classes, hence, avoids disfavouring Bael and Basil classes for the task of SR. Accuracy
is a better performance metric for symmetric class distribution (i.e., false positives and false
negatives have almost the same cost), for asymmetric class distribution precision, recall
and F1 score reflect the performance better. F1 score is the harmonic mean of precision
and recall. It gives a balanced measure and is more suitable to reflect the performance of
DL model. Hence, F1 score has been given priority in our analysis. ResNet 20 (V2) has
reported the best Accuracy and F1 Score among all test cases.
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Table 4. Relevant parameters used in confusion matrix-based performance metrics.

Relevant Parameters

True positive (tp) The number of class examples that are correctly predicted.

True negative (tn) The number of correctly recognised examples that do not belong
to the class

False positive (fp) The number of predicted class examples that do not truly belong
to the class.

False negative (fn) The number of class examples which the classifier fails to
recognise.
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Table 5. Performance metrics used for analysing the performance of the classifiers.

Metrics Mathematical Expression Remarks

Average accuracy
∑n

i=1(tpi+tni)
∑n

i=1(tpi+tni+ f pi+ f ni)
n

Average of per class ratio of correct prediction to total
test samples

Precision
∑n

i=1 tpi
∑n

i=1(tpi+ f pi)
n

Indicates how accurate the classifier is among those predicted to
be class examples

Recall
∑n

i=1 tpi
∑n

i=1(tpi+ f ni)
n

Indicates how accurate the classifier is for predicting the true
class examples

F1 Score 2 × (Precision × Recall)
Precision + Recall

Indicates the balanced average of both precision and recall

Table 6. Results of all test cases.

Test Cases Task Average Accuracy (in %) Precision_M (in %) Recall_M (in %) F1 Score_M (in %)

U12_R11 SR 85.98 85.99 86.46 85.59
U12_R20 SR 90.53 92.13 90.62 90.89
U12_R29 SR 87.12 87.63 86.81 86.49
U12_R38 SR 89.39 89.38 89.24 89.11
U12_R47 SR 86.36 86.58 86.11 85.53
U22_R20 IHIL 81.44 83.74 81.44 81.13

UA12_R20 SR 91.94 91.84 91.67 91.49
UA22_R20 IHIL 83.14 84.00 83.14 83.19
U12_Alex SR 81.06 76.85 75.32 74.87

An analysis and comparison of the performances of the DL models are reflected
in Figure 10. With increasing the depth of CNN up to a specific limit, the optimisation
capabilities increase. As shown in Figure 10a, the F1 Score gets better up to 20 layers in this
case, beyond which the classifier requires more training data to perform better. Increased
depth also multiplies the time taken per epoch, as shown in Figure 10b. Furthermore,
the time consumption, as shown in Figure 10b is system dependent, and it will vary if
experiments are performed in systems with different specifications. These experiments
have been performed on a system with an i5 CPU @1.60 GHz, 8 Gb RAM.

The task of health condition identification of different plants includes the task of
species recognition. Hence a better F1 Score is reported (as shown in Figure 10c) when the
training data has 12 classes compared to 22 classes. When similar classes are combined
during training, it reduces the number of misclassifications. More training images may
enhance the feature discrimination power of the classifier. To test it, Dataset-I and Dataset-
II have been fed to the same classifier. The test case with Dataset-II reports the best
accuracy and F1 score as shown in Figure 10d, which signifies the importance of the
augmentation method adopted here. AlexNet requires fewer computations hence has a
lower computation time, and it also reports a lower F1 score for SR than ResNet 20 (V2).
The performance comparison of ResNet 20 (V2) and AlexNet are shown in Figure 10e.
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5. Discussion and Conclusions

In this article, species recognition and plant health condition identification have
been performed in different experimental scenarios. A comprehensive analysis of the
performance of DL models was provided using multiclass classification-based performance
metrics. The leaf image dataset had an unequal number of images present in each class,
i.e., a minimum of 77 images and a maximum of 345 images. Under-sampling and data
augmentation methods have been used to deal with the imbalanced dataset and diversify
the training set. The dataset with synthetic images added achieved a higher F1 Score than
the dataset with fewer images, i.e., 0.6% higher in species recognition and 2.06% higher in
health condition identification. The ResNet classifier provides a solution for degradation of
accuracy with deeper networks. ResNet 20 (V2) gave the highest F1 Score of 91.49% for SR
and 83.19% for IHIL. State-of-the-art DL models have shown that with increasing depth,
over parameterisation can cause overfitting. DL models with higher depths than ResNet
20 have recorded lower F1 Scores. If the number of classes is increased without increasing
the training samples, the classifier’s performance may degrade. ResNet 20 (V2) reported
an 8.3% higher F1 Score with 12 classes than with 22 classes. The computational time of
AlexNet was approximately 20 times lower than the ResNet 20 (2) based classifier. On the
other hand, ResNet 20 (V2) provided a 16% higher F1 Score than AlexNet. It can be derived
from the analysis that AlexNet is more suitable for real-time applications and ResNet is
ideal for a high-performance applications. The research and analysis give an insight into
how the performance of the deep learning model changes with the number of classes,
number of images in the training set, depth of the classifier, and computational time in the
context of SR and IHIL. The methodology also provides a suitable solution to deal with an
imbalanced dataset. The analysis does not reflect any idea of power consumption, memory
utilisation, etc., in this context. Moreover, there is scope to analyse how to increase the
detection accuracy further.

The limitations of the methodology indicate the future research prospects in this
field. Real-time plant species identification and health condition analysis for a large-scale
agricultural farm is the need of the hour. The plants are prone to several diseases due to
various factors such as environmental, genetic, inappropriate use of insecticides, etc. The
scarcity of the necessary infrastructure in place to control such infections is also a constraint.
A high-performance DL model with lower computation time, power consumption and
memory requirements will meet the need of a real-time and resource-constrained system.
Further research can propose a deep learning based model suitable for real-time plant
species recognition and health identification.

Deep learning-based classification algorithms have self-learning capabilities, which
may further be enhanced by the inclusion of primary datasets on a classifier trained using
secondary datasets in the context of smart farming. Future smart farming systems both
indoors and outdoors must be trained on a large dataset consisting of both primary and
secondary data, collected in various controlled and uncontrolled environments to achieve
complete automatization. There is also scope to analyse whether adding more augmented
data will enhance the model’s performance. Some of the research has reported better
accuracy in SR and IHIL with larger and balanced datasets. Computer vision-based health
condition detection and analysis of plant diseases and their control in real-time will help in
increasing the yield of farmers in the near future.

The ResNet based deep learning algorithm can provide a better performance measure
for plant phenotyping in the context of smart farming. The inclusion of multiple classes and
evaluating the classifier’s performance with multiclass evaluation parameters reduces false
alarms to achieve robustness in predictions. The present work has the potential to provide
an optimal solution for smart farming systems, which could be achieved by tuning and
augmenting the dataset, designing various test-cases, balancing the depth of the classifier
with that of training examples, trying various training cycles and employing multiclass
evaluation parameters for performance assessment.
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