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Abstract: The field of additive manufacturing, particularly 3D printing, has ushered in a significant
transformation in the realm of joint arthritis treatment through prosthetic surgery. This innovative
technology allows for the creation of bespoke prosthetic devices that are tailored to meet the specific
needs of individual patients. These devices are constructed using high-performance materials,
including titanium and cobalt-chrome alloys. Nevertheless, the routine physical activities of patients,
such as walking, sitting, and running, can induce wear and tear on the materials comprising these
prosthetic devices, subsequently diminishing their functionality and durability. In response to this
challenge, this research has endeavored to leverage novel techniques. The primary focus of this
study lies in the development of an algorithm designed to optimize hip replacement procedures
via the mechanical design of the prosthesis. This optimization process exploits the capabilities of
machine learning algorithms, multi-body dynamics, and finite element method (FEM) simulations.
The paramount innovation in this methodology is the capacity to design a prosthetic system that
intricately adapts to the distinctive characteristics of each patient (weight, height, gait cycle). The
primary objective of this research is to enhance the performance and longevity of prosthetic devices
by improving their fatigue strength. The evaluation of load distribution on the prosthetic device,
facilitated by FEM simulations, anticipates a substantial augmentation in the useful life of the
prosthetic system. This research holds promise as a notable advancement in prosthetic technology,
offering a more efficacious treatment option for patients suffering from joint arthritis. The aim of this
research is to make meaningful contributions to the enhancement of patient quality of life and the
long-term performance of prosthetic devices.

Keywords: finite element analysis; human multi-body model; hip prosthesis optimization; human
pose markerless detection

1. Introduction

The World Health Organization (WHO) estimates that approximately 1.5 million total
hip replacement (THR) surgeries are performed each year globally, with over 500,000 in
the US and around 100,000 in Russia [1]. Since their introduction in 1975, the use of Burch–
Schneider cages has steadily increased, with more than 125,000 cages implanted by 2006.
The need for primary THR causes an increase in the need for revision THR. In most clinical
cases, bone mass or fragment loss is found during revision surgery [2,3].

According to Deere et al. [4], the THR has a follow-up of about 10 years, which involves
a revision of the prosthesis to check if there are any wear or other problems.

The use of additive manufacturing (AM) techniques in prosthetic surgery has rev-
olutionized the clinical treatment of patients with joint arthritis, rheumatoid arthritis,
post-traumatic arthrosis, and congenital dysplasia. Three-dimensional printing has made it
possible to create customized prostheses based on the individual needs of patients using
high-performance materials such as 316L stainless steel [5]. However, wear caused by regu-
lar activities such as walking, sitting, or running can lead to deterioration of the materials
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used in the joint [6–8]. To overcome this problem, researchers are increasingly turning
to more advanced materials [9–11] and numerical techniques, such as the finite element
method (FEM), to improve the functionality and lifespan of prostheses [12–20]. Human
models are also used to simulate the influence of prosthetic design on human comfort and
biomechanics [21–24]. Researchers are increasingly shifting their focus towards developing
models that simulate the entire body rather than being restricted to small and specific
segments [25]. Multibody simulations have found excellent application in sports biome-
chanics and in the analysis of the interaction between human exoskeletons [26,27]. Motion
capture, also known as mocap, is a technology that captures the movement of objects or
people. The potential benefits of motion capture include the ability to accurately capture
complex movements for use in various applications such as animation, video games, and
virtual reality. Additionally, motion capture enables the creation of realistic movements for
characters in a more efficient and cost-effective manner than traditional animation tech-
niques. However, motion capture also has several limitations. One of the main limitations
is the requirement for specialized equipment and a controlled environment, which can be
expensive and time-consuming to set up. Additionally, motion capture relies on markers
or sensors attached to the subject, which can limit the range of motion and restrict natural
movements. Finally, motion capture data may require significant post-processing to be
usable in the desired application, which can be time-consuming and complex. Markerless
motion capture is a type of motion capture that uses computer vision and machine learning
algorithms to track the movements of objects or people without the use of markers or
sensors. Compared to traditional motion capture, markerless motion capture offers several
advantages:

• Flexibility: Markerless motion capture does not require the use of markers or sen-
sors, which allows for greater freedom of movement and a more natural capture
of movements.

• Cost-effectiveness: Markerless motion capture eliminates the need for specialized
equipment and the associated costs, making it a more cost-effective solution for
many applications.

• Easy setup: Markerless motion capture can be set up in a more straightforward manner
than traditional motion capture, reducing the time and effort required for setup.

• Portability: Markerless motion capture can be performed on location, eliminating
the need for a controlled environment, which can be useful in various real-world
applications such as sports analysis or rehabilitation.

• Improved accuracy: Markerless motion capture can use multiple cameras and machine
learning algorithms to track movements as accurately as traditional motion capture
using markers [28,29].

The current research aims to develop an algorithm that optimizes hip replacement
mechanically using a machine learning algorithm coupled with multibody and FEM sim-
ulations. The innovative aspect is represented by using artificial intelligence to evaluate
human kinematics, a humanoid model in the ADAMS® environment, and the FEM model,
which allows for the optimization of the prosthesis and suggests the best geometry. This
model extracts loads from the patient and uses them to design a dedicated prosthesis specif-
ically for the subject. This prosthesis is manufactured using additive manufacturing. This
algorithm is not based on analyzing different subjects but on a custom design philosophy,
where the prosthesis shape is optimized based on the loads acting on the system. The
method is unique and tailored to the specific subject.

2. Materials and Methods

The musculoskeletal and nervous systems play a crucial role in the act of walking
for humans. The forces and movements generated by the lower limbs during walking are
transmitted through various joints, ligaments, and muscles to the trunk of the body. Addi-
tionally, the movement of the upper limbs, the spinal joints, and the trunk generate inertial
forces that help balance the body, working in conjunction with the forces generated by the
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lower limbs to achieve the desired movement pattern [30,31]. Walking was specifically
chosen as the movement to optimize prosthetics for, as it is a common and essential activity
in daily life. To optimize the hip prosthesis, an algorithm was established consisting of five
phases: motion capture, joint angle extraction, creation of a human model, finite element
analysis of the prosthesis, and optimization of results using the gradient descent method.

2.1. Characterizing Human Movement through Joint Angle Extraction Using OpenPose

Human pose estimation refers to the task of determining the positions of a subject’s
joints directly from a digital image. This process requires high precision in the detection and
identification of human joints [32–36]. There are two main approaches to pose estimation:
top-down and bottom-up. Top-down approaches [37–40] have a computational cost that is
proportional to the number of individuals present in the image, making them less efficient
when a large number of people are present. On the contrary, bottom-up approaches
provide resilience in the early stages of involvement and possess the capability to reduce
the runtime complexity independently of the number of individuals in the image. However,
these methods do not leverage global contextual cues from other body parts or different
individuals. In practice, previous bottom-up methods [41,42] do not maintain the efficiency
gains, as the final analysis requires a costly global inference. The present study evaluated a
model, OpenPose, for determining the subject’s pose while walking. OpenPose [39,43,44]
is a bottom-up, multi-person human pose detection library that detects key points on the
human body, feet, hands, and face in single images. It can detect 135 vital points of the body
from a digital image through the use of a single convolutional neural network (CNN) for
both key point detection and association. A numerical score between 0 and 1 is assigned to
each key point, with a higher score indicating a greater level of confidence in the estimated
key point. OpenPose was trained to produce three different pose patterns, distinguished by
the number of points identified. The first pose pattern, the MPI (Max Plank Institute), can
estimate a total of 15 key points. The COCO (Common Objects in Context) pose pattern
can estimate a total of 18 points, while the BODY_25 pose pattern can estimate a total of
25 points. Within the exposed pose patterns, the most comprehensive is BODY_25, which,
in addition to the key points estimated by the MPI and COCO models, includes descriptors
for the feet and pelvic center.

As previously reported in the literature [45,46], the OpenPose model has been found to
possess the highest accuracy parameters, making it more precise than the default BODY_25
model and resulting in a reduction of false positives. The model also deviates from MPI in
its definition of key points, specifically in the evaluation of head and neck key points, and
eliminates the key points of the body’s neck and mid-hip found in the BODY_25 model.
To begin the evaluation process, the first step implemented was the classification of all
points captured by the algorithm. To capture the subject’s movement, an action camera
was positioned in front of the subject (Table 1).

Table 1. Camera technical features.

Camera Technical Features

Resolution 1080P (30 fps)
Pixel 20 MP

Dimensions 5.9 × 2.5 × 4 cm; 60 g

In the experiment, the subject stood in front of the camera with a vertical posture,
having an initial pose defined by an angle of 180 degrees between the trunk and legs. The
subject’s walking exercise was recorded with a video camera, and the OpenPose algorithm
was utilized to extract the pose. As described in [47], the knee angle was determined
through vector point calculations.
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2.2. Construction of Hip-Knee-Ankle Vectors for Joint Angle Calculation in Motion Capture

The process of identifying and calculating vectors from the hip, knee, and ankle
coordinates extracted from the pose data is depicted in Figure 1. The joint angles were
then calculated according to Viswakumar et al. [47], and the resulting angle descriptions in
terms of time were used to generate motion laws in Adams.
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Figure 1. Angle measurements from the video frame [48].

At the moment of departure, where both feet are in support, as depicted in Figure 2,
the right foot is in a stance position and the left foot is in a swing position, it is evident
that the movement has started. Finally, the end of the cycle and the beginning of the next
cycle are shown (Figure 2). As outlined above, the defining parameters of walking were
calculated (Table 2).

Table 2. Gait parameters.

Gait Parameters

Step frequencies fP [step/min] 18
Cycle length lc [m] 1.4
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2.3. Bipedal Gait Cycle Load Calculus by Using the Human Mutibody Model

The growth of virtual human models has been driven by the need to understand the
biomechanical aspects of movements and their impact on comfort. Multibody simulations,
according to Young et al. [48], are widely used in sports biomechanics [26], as they consider
the movement of the entire body as a collection of interconnected joints. The critical steps in
biomechanical movement analysis are defining the dynamic equation of human movement
and acquiring the dynamic parameters of human action. The proposed model in this paper
is divided into three main sections: upper limbs, torso, and lower limbs. The dummy has 32
(Table 3) dimensions, as described by Cheng et al. [25]. The model, as described above,
provides for the selection of two macrotypes of humanoids (Figure 3).
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Figure 3. Body selection scheme.

In the first case, all 32 dimensions are known as they represent human percentiles. In
the second case, the subject’s dimensions were evaluated based on the data in Table 4 and
determined through linear regression using known data.

Table 3. Body dimensions.

Reference Number Dimension Reference Number Dimension

0 Weight 16 Hip Breadth, Standing
1 Standing Height 17 Shoulder to Elbow Length
2 Shoulder Height 18 Forearm-Hand Length
3 Armpit Height 19 Biceps Circumference
4 Waist Height 20 Elbow Circumference
5 Seated Height 21 Forearm Circumference
6 Head Length 22 Waist Circumference
7 Head Breadth 23 Knee Height, Seated
8 Head to Chin Height 24 Thigh Circumference
9 Neck Circumference 25 Upper Leg Circumference
10 Shoulder Breadth 26 Knee Circumference
11 Chest Depth 27 Calf Circumference
12 Chest Breadth 28 Ankle Circumference
13 Waist Depth 29 Ankle Height, Outside
14 Waist Breadth 30 Foot Breadth
15 Buttock Depth 31 Foot Length
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Di = G + R + D1x1 + D5x2 + D0x3 + Agex4 (2)

where Di represents the body dimension to be calculated, G is gender, R is race, D1 is
height, D5 is seated height, and D0 is the weight. The dimensions in both cases were
retrieved from the ANSUR II database [49] in the 2012 US Army Anthropometric Survey.
As for the creation of the mannequin with human percentiles, the 32 dimensions come
from the calculation of the percentiles. Table 4 represents the parameters measured on the
subject taken into consideration for the human subject under examination. By employing
these parameters and regression lines, the model implemented within the Adams software
effectively estimated the dimensions of the human subject, thereby generating a mannequin
consistent with the subject’s anthropometric dimensions and possessing comparable masses
and inertias.

Table 4. Subject characteristics.

Human Characteristics

Weight 85 kg
Standing Height 1755 mm

Seated Height 918 mm

Once the Adams mannequin model is defined, as described earlier, the state variables
are established. The set of variables reflects the variations in angle in the three components
of the 25 points identified by the motion capture algorithm (OpenPose). At the same
time, the forces along the three axes of rotation of the spherical joint located in the hip are
calculated as the output, with their three components.

The system acquires real-time positional changes of all twenty-five joints in Cartesian
coordinates (in CSV format). As described in [47], it calculates the angular variations of each
joint of the human body using previously defined equations. Subsequently, the temporal
signals representing angular changes in the joints are employed as state variables to actuate
the movements of the mannequin created within the Adams environment (Figure 4).
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Figure 4. Comparison between keypoints computed using OpenPose and a virtual multibody model
pose created in Adams for gait analysis.

A 60 s gait was calculated, and nine cycles were extracted from it. The values of the
reaction forces calculated at the hip spherical joint were extracted from the multibody
model. The calculated outputs will be utilized as loads acting on the prosthesis to optimize
its shape (Figure 5).



Prosthesis 2024, 6 30

Prosthesis 2024, 6, FOR PEER REVIEW 7 
 

 

actuate the movements of the mannequin created within the Adams environment (Figure 

4). 

 

Figure 4. Comparison between keypoints computed using OpenPose and a virtual multibody 

model pose created in Adams for gait analysis. 

A 60s gait was calculated, and nine cycles were extracted from it. The values of the 

reaction forces calculated at the hip spherical joint were extracted from the multibody 

model. The calculated outputs will be utilized as loads acting on the prosthesis to optimize 

its shape (Figure 5). 

  
(a) (b) 

Figure 5. (a) Vertical forces applied to the hip joint during a 60s gait cycle. (b)Lateral forces ap-

plied to the hip joint during a 60s gait cycle. 

2.4. Shape Optimization Algorithm 

The final phase of the analysis involves the prosthesis optimization process, which 

involves the FMINCON algorithm, a MATLAB® function that finds the minimum of a sca-

lar function of multiple variables within a region defined by linear constraints and 

bounds. A schematic representation of the prosthesis is reported in Figure 6a, while the 

process is outlined in Figure 6b. Three distinct geometric parameters were identified for 

the prosthesis study: the thickness of the prosthesis, P1 (Figure 6c), the length of the pros-

thesis, P2 (Figure 6d), and the length of the prosthesis neck, P3 (Figure 6e). The dimensions 

of the prosthesis under analysis were obtained by some models of prosthesis from Lima 

Figure 5. (a) Vertical forces applied to the hip joint during a 60 s gait cycle. (b) Lateral forces applied
to the hip joint during a 60 s gait cycle.

2.4. Shape Optimization Algorithm

The final phase of the analysis involves the prosthesis optimization process, which
involves the FMINCON algorithm, a MATLAB® function that finds the minimum of a
scalar function of multiple variables within a region defined by linear constraints and
bounds. A schematic representation of the prosthesis is reported in Figure 6a, while the
process is outlined in Figure 6b. Three distinct geometric parameters were identified for the
prosthesis study: the thickness of the prosthesis, P1 (Figure 6c), the length of the prosthesis,
P2 (Figure 6d), and the length of the prosthesis neck, P3 (Figure 6e). The dimensions of
the prosthesis under analysis were obtained by some models of prosthesis from Lima
Corporate S.p.a., an Italian prosthesis manufacturer, with the subject’s measurements taken
into account to find the best fitting option. The catalog provided a range of variations
for the primary dimensions, allowing for a more precise and tailored selection. Careful
consideration was given to the subject’s individual needs to ensure that the chosen prosthe-
sis would provide a comfortable and functional fit. The chosen specifications were then
used to guide the production process, ensuring the final result would meet the subject’s
unique requirements.

Each iteration cycle involved changing one or more parameters simultaneously using
the FMINCON function. After obtaining the new parameter values, the CAD of the
prosthesis is recreated, and the new geometry is simulated with FE analysis. The initial
solution, which included specific prosthetic parameters for the subject under investigation,
was identified as the target. Subsequently, each new solution was compared against this
target, and if the solution from the “i”th iteration results in a lower value than the target,
it replaces the target. The iteration process continues until the minimum of the objective
function is reached.

2.5. FEM Analysis in Detail

The calculation of stress on the prosthesis during the optimization phase involved
determining the maximum load it would be subjected to during the walking cycle. The
loads calculated from the multi-body system were used as inputs in the FEM model. The
model was set up as follows:

• Constraints: The constraints were of the fixed type, applied to the bottom surface of
the prosthesis.

• Loads: Concentrated loads were applied to the horizontal surface of the prosthesis neck.

The constraints are depicted in blue, while the loads are visualized using different
colors based on their lines of action along each axis (Figure 7). The Ansys Workbench
simulation software with a mesh of SOLID187 element type was adopted.
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Figure 7. (a) Load schematization; (b) load and constraints of the system.

A convergence analysis was conducted based on the system displacement values
produced at the output. To ensure accurate results, the mesh density was incrementally
increased until a displacement value of 2% or less relative to the previous simulation was
achieved, as shown in Figure 8.
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The prosthesis was designed using stainless steel (AISI 316L), which is suitable for
custom hip prosthesis production [50,51]. Samples of the steel were obtained according to
the geometry “Continuous radius between end” of the ASTM E 466 standard and subjected
to stress-controlled fatigue tests to assess the fatigue strength of an MTS810 servohydraulic
testing machine (maximum load force 250 kN, testing frequency 10 Hz). The mechanical
properties of AISI 316L are reported in Table 5.

Table 5. AISI 316L properties.

Material Properties

Density [kg/mm3] 7954
Young Modulus [GPa] 195

Poisson Ratio 0.25
Bulk Modulus [GPa] 190
Shear Modulus [GPa] 78
Yield Strength [MPa] 250

Tangent Modulus [MPa] 2091

The S-N curve with stress ratio was identified for the steel (Figure 9).

R =
σmin
σmax

= −1 (3)

As reported in [52,53], the Basquin equation was adopted to fit the experimental
fatigue data.

σA = ANB
f (4)

where σA is the stess amplitude, N f is the number of cycles to failure, and A and B are
fitting coefficients.

The optimized prosthesis was firstly validated considering its static strength by FE anal-
ysis, assuming that the maximum stress of the prosthesis is below the yielding strength of
the material. Once the results from the static simulation were obtained, fatigue validation
was carried out in the most stressed part of the prosthesis. The load history was recon-
structed considering that eighteen single-legged supports are made in 60 s, equivalent to
one step every 3.33 s. A total of 788,400 cycles are performed in 10 years. The forces related
to the load history were applied to the prosthesis, as depicted in Figure 7. After performing
the linear elastic FE simulation to assess the fatigue strength of the prosthesis, stress values
were extrapolated from the most stressed point of the prosthesis. The Rainflow method [54]
was applied to the stress history coming from FE simulation of the prosthesis with initial
and optimized dimensions to obtain simple sinusoidal cycles and compare the results in
terms of fatigue strength (Figure 10).



Prosthesis 2024, 6 33

Prosthesis 2024, 6, FOR PEER REVIEW 10 
 

 

servohydraulic testing machine (maximum load force 250 kN, testing frequency 10 Hz). 

The mechanical properties of AISI 316L are reported in Table 5. 

Table 5. AISI 316L properties. 

Material Properties 

Density [kg/mm3] 7954 

Young Modulus [GPa] 195 

Poisson Ratio 0.25 

Bulk Modulus [GPa] 190 

Shear Modulus [GPa] 78 

Yield Strength [MPa] 250 

Tangent Modulus [MPa] 2091 

The S-N curve with stress ratio was identified for the steel (Figure 9). 

𝑅 =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
= −1 (3) 

As reported in [52,53], the Basquin equation was adopted to fit the experimental fa-

tigue data. 

𝜎𝐴 = 𝐴𝑁𝑓
𝐵 (4) 

where 𝜎𝐴 is the stess amplitude, 𝑁𝑓 is the number of cycles to failure, and A and B are 

fitting coefficients. 

 

Figure 9. Experimental fatigue test results from AISI 316L. 

The optimized prosthesis was firstly validated considering its static strength by FE 

analysis, assuming that the maximum stress of the prosthesis is below the yielding 

strength of the material. Once the results from the static simulation were obtained, fatigue 

validation was carried out in the most stressed part of the prosthesis. The load history was 

reconstructed considering that eighteen single-legged supports are made in 60 s, equiva-

lent to one step every 3.33 s. A total of 788,400 cycles are performed in 10 years. The forces 

related to the load history were applied to the prosthesis, as depicted in Figure 7. After 

performing the linear elastic FE simulation to assess the fatigue strength of the prosthesis, 

stress values were extrapolated from the most stressed point of the prosthesis. The 

Figure 9. Experimental fatigue test results from AISI 316L.

Prosthesis 2024, 6, FOR PEER REVIEW 11 
 

 

Rainflow method [54] was applied to the stress history coming from FE simulation of the 

prosthesis with initial and optimized dimensions to obtain simple sinusoidal cycles and 

compare the results in terms of fatigue strength (Figure 10). 

 

(a) 

 

(b) 

Figure 10. (a) Rainflow histogram of the original prosthesis model stress history; (b) Rainflow his-

togram of the optimized prosthesis model stress history. 

Every sinusoidal cycle is characterized by a specific stress range 𝜎𝑎, a mean stress 

𝜎𝑚, a number of working cycles N, and a load ratio R, which, in the vast majority of cases, 

turned out to be different from 𝑅 = −1. Therefore, to convert all the stress histories into 

an equivalent one at 𝑅 = −1, the Goodman criterion [55] was applied. 

𝜎𝑎

𝜎𝑎𝑟
+

𝜎𝑚

𝜎𝑢
= 1 (5) 

where 𝜎𝑎𝑟 is the equivalent stress referred to as 𝑅 = −1 and 𝜎𝑢 is the ultimate tensile 

stress evaluated from experimental tests. Finally, the cumulative fatigue damage was then 

evaluated using the Palmgren–Miner criterion [56–59]. 

Figure 10. (a) Rainflow histogram of the original prosthesis model stress history; (b) Rainflow
histogram of the optimized prosthesis model stress history.



Prosthesis 2024, 6 34

Every sinusoidal cycle is characterized by a specific stress range σa, a mean stress σm,
a number of working cycles N, and a load ratio R, which, in the vast majority of cases,
turned out to be different from R = −1. Therefore, to convert all the stress histories into an
equivalent one at R = −1, the Goodman criterion [55] was applied.

σa

σar
+

σm

σu
= 1 (5)

where σar is the equivalent stress referred to as R = −1 and σu is the ultimate tensile
stress evaluated from experimental tests. Finally, the cumulative fatigue damage was then
evaluated using the Palmgren–Miner criterion [56–59].

n

∑
i=1

ni
Ni

= 1 (6)

where ni are the working cycles and Ni are the number of cycles to failure.

3. Results

The shape optimization algorithm is a highly efficient tool for finding the best solution
to design a customized prosthesis. In each iteration, it calculates 100 different solutions
within the designated domain. The algorithm then selects the solution that minimizes
von Mises stress, using this as the reference point for the next iteration. Over time, the
algorithm goes through thousands of iterations, each time refining the solution and making
it more accurate and precise. In total, the algorithm calculates 100,000 solutions, of which
only the 60 most characteristics are reported in the results (Figure 11), starting from the
combination that generated the highest von Mises stress until the result that minimizes
the same is achieved (Figure 11, central graph). This allows researchers to identify trends
and patterns quickly and easily and to gain a better understanding of the problem they are
trying to solve.
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Figure 11. Simulation iterations for the customized prosthesis design.

The optimization process resulted in changes to the prosthesis’s mass and dimensions.
During the initial phase of parameter adjustment, it was observed that the prosthesis
increased in thickness, length, and neck strength compared to the original design while
remaining within the manufacturer’s specified range (Table 6).

Table 6. Shape optimization boundary limits.

Shape Optimization

lowest acceptable measures highest acceptable measures
P1 [mm] 10 18
P2 [mm] 110 115
P3 [mm] 25 30
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Table 7 presents a comparison of the sizes between the initial prosthesis and the
optimized version in terms of fatigue resistance.

Table 7. Shape optimization parameters.

Shape Optimization

Original Dimensions Optimized Dimensions
P1 [mm] 15 18.00
P2 [mm] 111 114.78
P3 [mm] 26 25.00

Table 8 highlights the prosthesis’s dimensional changes, focusing on the volume. It
also displays the changes in mass and the difference in the von Mises stress calculated for
the system. The results showed a significant change in the characteristics of the prosthesis.
The volume and mass of the prosthesis increased by approximately 20%, which may
have implications for the overall weight of the device. On the other hand, the maximum
von Mises stress decreased by 39%. Von Mises stress is a measure of the stress on a material
that takes into account both the magnitude and direction of the stress and is commonly used
to assess the mechanical behavior of materials. The decrease in von Mises stress suggests
that the prosthesis may be better able to withstand external loads and deformations, which
could result in improved performance and a longer lifespan of the device. It is important
to note that these results are only a first indication of design; indeed, fatigue testing is
necessary to fully understand the impact of these changes on the prosthesis. The results
may also vary depending on the specific design, materials, and manufacturing process used
in prosthesis production. Nonetheless, these results represent an important step forward in
improving the design and performance of prosthetic devices.

Table 8. Volume and mass variation.

Shape Optimization

Original Dimensions Optimized Dimensions Variation
Volume [mm3] 28,012 35,066 +20%
Mass [kg] 0.22 0.28 +21%
Stress [MPa] 120 72 −39%

The results of the fatigue damage calculation for the two prosthesis models, the subject-
conforming model and the optimized model, are shown in Figure 12. By analyzing the
stress history with the Goodman criterion, it is clear that for the traditional prosthesis
model, using the Palmgren–Miner criterion, there is 43% damage after a 10-year cycle and
85% damage after a 20-year cycle. However, the optimized prosthesis model was designed
for infinite life, and, as a result, no damage was observed.

These results highlight the benefits of using a subject-specific, optimized design for
prosthetic devices, as it can lead to an increase of approximately 20% in both mass and vol-
ume compared to the initial design. However, this increase in mass and volume contributes
to a substantial improvement of approximately 39% in the von Mises stress experienced
by the prosthesis. This underscores the significance of optimizing the design based on
subject-specific parameters, considering trade-offs in mass and volume for a considerable
enhancement in stress distribution. The optimized prosthesis design aims to mitigate stress
concentrations, thereby reducing the likelihood of damage and prolonging the device’s
lifespan. It is important to note that these results are based on simulations and assumptions
made in the analysis. Further testing and validation are necessary to comprehensively un-
derstand the performance of the optimized prosthesis model. Nevertheless, these findings
present a promising outlook for the potential of optimized prosthesis designs to signifi-
cantly enhance the quality of life for patients reliant on prosthetic devices, providing a
more functional and cost-effective solution.
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4. Discussion

The optimization process described in the preceding section exemplifies the application
of advanced computational techniques to enhance prosthetic device design. The utilization
of these techniques holds the promise of delivering more efficient and effective solutions
tailored to the unique needs of each patient. Subject-specific optimization, in particular,
emerges as a pivotal approach, as it takes into account an individual’s distinct anatomy
and requirements.

One of the critical advantages of optimized prosthetic designs is the improvement of
the prosthesis’s alignment with the human joint, ultimately ensuring an extended lifespan
for the prosthetic device. This approach promotes a more precise and enduring integration
of the prosthesis with the patient’s anatomy.

This, in turn, leads to a substantial improvement in the patient’s mobility and, con-
sequently, their overall quality of life. Additionally, optimized designs have the potential
to mitigate complications and discomfort associated with ill-fitting prostheses, including
issues such as skin irritation and pressure sores.

Beyond the immediate advantages to patient well-being, optimized prosthetic de-
signs also hold the promise of reducing the overall economic burden of prosthetic devices.
The integration of computational techniques into the design process streamlines the itera-
tions required to reach a functional and efficient design, thereby significantly decreasing
production costs and timelines. Moreover, by enhancing the durability and longevity of
prosthetic devices, optimized designs can diminish the need for frequent replacements and
maintenance, thus leading to cost savings for both patients and healthcare systems.

Nonetheless, it is essential to acknowledge the limitations and challenges associated
with the adoption of optimized prosthetic designs. Primary among these challenges is the
necessity for accurate and reliable data to inform the optimization process. These data
encompass information on the patient’s anatomy, movement patterns, and other factors
that influence the performance and comfort of the prosthesis. Moreover, the application of
advanced computational techniques requires specialized knowledge and expertise, which
may only be accessible in select healthcare settings. Another limitation is the requirement for
supplementary testing and validation to confirm the safety and effectiveness of optimized
prosthetic designs. While computational simulations provide valuable insights into device
behavior, physical testing remains pivotal to ensuring the design’s safety and efficacy. This
includes mechanical testing, fatigue testing, and various other forms of evaluation.

In conclusion, the implementation of optimized prosthetic designs represents a promis-
ing avenue for enhancing the functionality of prosthetic devices. This approach improves
the integration between the prosthesis and the human body, creating a device that fits more
seamlessly with the joint and ensures the appropriate durability to extend the prosthetic’s



Prosthesis 2024, 6 37

lifespan, thereby reducing the need for surgical interventions while simultaneously di-
minishing the overall cost of care. As computational techniques continue to advance and
more comprehensive datasets become available, the integration of optimized designs is
expected to proliferate within the field of prosthetics. Nonetheless, it is imperative that
researchers, healthcare professionals, and designers remain attuned to the aforementioned
challenges and limitations, actively working to address them as they arise to ensure the
safe and effective implementation of optimized prosthetic solutions.

This revised discussion section (Section 4) provides a more in-depth and academic
approach, addressing the key points while offering a nuanced perspective on the subject of
optimized prosthetic designs.

5. Conclusions

During this research, a multifaceted approach to the design of custom hip replacements
was employed, incorporating state-of-the-art deep learning algorithms in conjunction with
traditional biomechanical techniques. The objective was to establish a benchmark in hip
prosthesis design and to streamline the process for assessing the stresses acting upon the
hip joint during the gait cycle and calculating the resultant stresses on the prosthesis.

The algorithm utilized OpenPose to detect the subject’s pose with a remarkable degree
of accuracy, enabling the evaluation of the forces acting on the hip joint and the specific gait
parameters throughout the gait cycle. The parametric human model, when combined with
the multibody model and OpenPose, has facilitated a comprehensive analysis of the gait
cycle while reducing evaluation times, resulting in a more efficient and precise assessment.

The unique shape optimization algorithm has led to the development of a prosthesis
better equipped to withstand the loads it will encounter, resulting in an up to a 40%
reduction in von Mises stress during static analysis. By testing the prosthetic device on
a loading cycle representative of normal gait, the optimized prosthesis was designed for
an indefinite lifespan, demonstrating stress values consistently below the material’s yield
strength even under the most adverse conditions evaluated by the algorithm. It is important
to point out that clinical considerations and the patient’s specific necessities must be taken
into account to define the correct lifespan of the prosthesis.

In contrast, traditional prostheses are typically expected to last only 10 to 20 years and
often incur significant damage.

The optimized prosthesis eliminates the need for frequent medical supervision and
replacements. In the future, the algorithm will be further refined for dynamic loads and to
address the challenges posed by sudden load variations.

The use of AISI 316 L material was confirmed to be suitable for the manufacturing
of these prostheses, as it can withstand stress levels well below its yield strength and
fatigue limit. This novel approach represents a significant leap forward in the field of hip
replacement design and establishes a new industry standard.
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