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Abstract: Fretting corrosion is a known failure mechanism of total hip replacement (THR) that can
lead to revision surgery. Implant retrieval studies have thoroughly documented the occurrence
of fretting corrosion in THR implants and its correlation with implant- and patient-related factors.
Although implant retrieval studies benefit both clinicians and implant manufacturers, the limitations
of these types of studies need to be acknowledged. For example, while some factors are routinely
investigated for a possible correlation with failure due to fretting corrosion, other factors are often
assumed to have no effect. To improve on these limitations, this review investigates the most
significant patient- and implant-related risk factors for fretting corrosion of THR implants for both
published retrieval studies and joint replacement registries. The findings and limitations are discussed
critically. It is concluded that retrieval studies add significant insight into implant failure mechanisms
and should be used in conjunction with joint replacement registry reports. It is suggested that the
development of reliable predictive models based on implant failure risk factors and decision-making
support systems could lead to enhanced implant longevity.
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1. Introduction

Total hip replacement (THR) is the treatment for end-stage hip osteoarthritis [1–4].
Although recent data show that the outcomes of THR have improved over time, a minority
of patients continues to have suboptimal results [5], some of which are related to implant
failures [6]. Implant retrieval studies are used to determine the cause of revision THR
related to implant failures. Fretting corrosion, a complex mechanical wear and corrosion
phenomenon occurring at the interface between modular components (e.g., head-neck
taper junction) due to the cyclic relative micromotions and corrosive environment present
around the joint, is one of the best-documented reasons for implant failure [7–14]. Most
retrieval studies specify the impact of different variables on failed implants using methods
that identify the severity of fretting corrosion on the surface of prostheses [15]. However,
based on the reports of several joint replacement registries, fretting corrosion does not
seem to be an important factor for THR revisions, perhaps due to the reporting methods.
Surgeons are being asked what they think is the primary cause of revision THA, rather
than noting what factors may have contributed to revision. Fretting corrosion is recognized
as a cause for revision independent of other modes of failure and plays an important and
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sometimes even fundamental role in other THR complications. For example, corrosion
products and debris particles can cause osteolysis and loosening, both common causes of
long-term THR failure and revision [16,17]. Given the improvements in polyethylene wear,
fretting corrosion may now be one of the principal causes for osteolysis and loosening in
the long term (defined as >10 years) [18]. This important matter has been raised by authors
of recent retrieval studies reporting on the severity of fretting corrosion damage of the
surface of retrieved implants [11,12,19]. At the same time, retrieval studies can only provide
information about the cohort of implants and patients at hand, with limited additional
information available. As a result, only few factors on a limited number of implants are
investigated for possible correlation with failure, while other factors are assumed to have
no effect or are ignored. Moreover, the common scoring methods are quite subjective. This
may explain why the findings of different retrieval studies do not concur and sometimes
contradict each other [20].

A good implant retrieval study requires a multilevel strategy to address a wide range
of relevant variables. This includes analyzing patient and implant data separately, and then
analyzing their interactions. The key question to ask is how the findings of implant retrieval
studies can be used in the clinical decision-making process of implant selection to improve
implant survivorship while taking into consideration a number of patient characteristics.
Joint replacement registries may be able to address some of these issues given their ability
to analyze big data.

This paper aims to review the existing literature related to THR implant retrieval and
recent reports of joint replacement registries to identify the most significant risk factors for
revision THR. We also discuss correlations between reported outcomes and the limitations
of these studies to better identify their weaknesses.

It is noted that a few other review papers on this topic have been published previ-
ously [20–22]. However, it is important to recognize that fretting corrosion is a dynamic
topic of interest that generates new findings every year. This necessitates frequent review
to help understand the factors that can significantly impact THR outcomes. This work
includes data from both retrieval studies and registry reports.

2. Implant Retrieval Studies

Implant retrieval studies help to enhance our knowledge of length of implantation
(LOI) as a major outcome parameter. A common method for measuring the severity of
fretting corrosion is based on the visual scoring of damage on the surface of the implant
(taper junction), which was introduced by Goldberg et al. in 2002 [15].

Figure 1 shows the four-level scoring method based on predefined visual param-
eters. These include the shape, colour, and reflectivity of the damaged areas where 1
shows no damage, 2 is mild, 3 is moderate, and 4 indicates severe corrosion damage [15].
As of today, this scoring method or modified versions have been used in many hip im-
plant retrieval studies [12,23–26]. For instance, the modified scale of Goldberg includes
an extra score between “no visible” and “mild levels of corrosion damage”. This was
used in a retrieval study for grading the process of corrosion at mating surfaces: no
corrosion = 0; minimal corrosion = 1; mild corrosion = 2; moderate corrosion = 3; and
extensive corrosion = 4 [27]. In addition, the incidence of corrosion has been recently
investigated using image processing methods in order to standardize the scoring process
of implants [28–30].

There are different factors that can affect the outcome of THR, including patient char-
acteristics [31–34]. However, authors are usually limited by the lack of patient information
associated with retrieved implants. In the next section, several published retrieval stud-
ies with available patient data will be reviewed with a focus on identifying important
patient characteristics. It should be noted that distinguishing patient-related variables
from implant-related factors is not trivial. Most studies have only investigated the ef-
fects of implant characteristics on the severity of fretting corrosion without considering
patient-related factors.
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on the fretting corrosion of the head-trunnion surface was studied using retrieved pros-
theses with the same LOI [35]. Taper groups had no differences in age (p = 0.34) and body 
mass index (BMI) (p = 0.29). Gender and time in vivo were also considered as the other 
patient characteristics in this work (Table 1). The Goldberg scale was used by two inde-
pendent observers for scoring fretting and corrosion in three zones (apex, central, and 
base), as shown in Figure 2. The 11/13 taper showed the highest fretting and corrosion 
scores among all groups (DePuy 11/13 (Warsaw, IN, USA), Smith and Nephew 12/14 
(Memphis, TN, USA), Zimmer 12/14 (Warsaw, IN, USA), Depuy 14/16, Stryker 5°38′37″ 
(Kalamazoo, MI, USA), and Stryker 2°52′). The highest corrosion score was recorded at the 
base zone in a zone-specific analysis. 
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Others 3 

Figure 1. An example of the fretting corrosion damage scoring of the trunnion [29].

2.1. Patient Data in Retrieval Studies

There are many challenges around accessing patient data and failed implant reports.
Some research studies have focused on only a small number of patient or implant variables
because of these existing barriers. In many studies, age and gender have been included
to categorize retrieved hip implants [35–37]. For instance, the effect of taper design on
the fretting corrosion of the head-trunnion surface was studied using retrieved prostheses
with the same LOI [35]. Taper groups had no differences in age (p = 0.34) and body mass
index (BMI) (p = 0.29). Gender and time in vivo were also considered as the other patient
characteristics in this work (Table 1). The Goldberg scale was used by two independent
observers for scoring fretting and corrosion in three zones (apex, central, and base), as
shown in Figure 2. The 11/13 taper showed the highest fretting and corrosion scores among
all groups (DePuy 11/13 (Warsaw, IN, USA), Smith and Nephew 12/14 (Memphis, TN,
USA), Zimmer 12/14 (Warsaw, IN, USA), Depuy 14/16, Stryker 5◦38′37′′ (Kalamazoo, MI,
USA), and Stryker 2◦52′). The highest corrosion score was recorded at the base zone in a
zone-specific analysis.

Table 1. An example of patient data and reason for revision in a study population [35].

Demographics Mean

Age at revision (years) 69.4 (±13.5)
BMI (kg/m2) 29.6 (±7.3)

Gender (male:female) 20:24
Time in vivo (years) 8.9 (±3.7)
Reason for revision Number
Aseptic loosening 19
Polyethylene wear 8

Periprosthetic fracture 7
Instability 2
Infection 4

Implant malposition 1
Others 3
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Figure 2. Diagrammatic representation of three concentric zones of the femoral head bore and stem 
tapers; figure reproduced from [38]. 
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In an investigation on patient-related and prosthesis-related factors [26], it was found 
that body weight, flexural rigidity, and stem material are significant variables affecting 
the severity of fretting and corrosion scores in a cohort of patients with ceramic heads. 
Both in vivo and in vitro studies have shown similar results previously [15,41–44]. How-
ever, gender, head size, and lateral offset were not reported as significant predictors of 
corrosion, which is similar to what Carlson et al. found in another study [41]. These results 
did not agree with prior work by Goldberg et al. [15], where lateral offset was found to be 
a cause of severe corrosion. An association between femoral head size and corrosion was 
verified in another retrieval study [45] in which one hundred femoral head-stem pairs 
were used for analyzing corrosion and fretting with visual scoring. The heterogeneity of 
the results found in numerous retrieval studies highlights the need for using large-scale 
data in further studies. This would help to: (a) identify the effect of different variables on 
the fretting and corrosion scores of retrieved implants and (b) create predictive models 
based on these variables. 

Figure 2. Diagrammatic representation of three concentric zones of the femoral head bore and stem
tapers; figure reproduced from [38].
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Tan et al. [39] investigated the effect of implantation time, gender, age, and BMI
(Table 2) on fretting and corrosion. Retrieved prostheses with a total of 52 ceramic heads
from different manufacturers were selected. These were matched to a cobalt–chromium
(CoCr) cohort, according to the neck length, taper design, implantation time, and head
size. A four-point scoring system was used in three zones (base, middle, and apex) by two
observers. Implantation time and taper design were reported as the most significant factors
affecting the severity of fretting corrosion. Taper design had the most significant correlation
with the rate of fretting corrosion in the apex zone (p = 0.04). Implantation time was also
linked to a worse fretting corrosion score in the CoCr cohort when compared to the ceramic
cohort. There are other patient-related metrics that can be assessed to identify fretting
corrosion in THR revisions. A clinical-based paper in 2016 [40] reported that a combination
of patient symptomatology, laboratory values, and imaging findings are required for any
decision in performing revision surgery. Patient symptoms and metal ion levels were
taken into account to assess the presence of an adverse local tissue reaction (ALTR). This
shows the importance of considering individual patient clinical information along with
implant-related factors.

Table 2. Demographics of the CoCr and ceramic cohorts [39].

Demographics Ceramic (Mean) Cobalt–Chromium
(Mean) p Value

Age (year) 57 66 0.001
Male:Female 28:24 33:19 0.32
BMI (kg/m2) 23.4 29.7 0.15

Implantation time (year) 8.6 8.4 0.83

In an investigation on patient-related and prosthesis-related factors [26], it was found
that body weight, flexural rigidity, and stem material are significant variables affecting the
severity of fretting and corrosion scores in a cohort of patients with ceramic heads. Both
in vivo and in vitro studies have shown similar results previously [15,41–44]. However,
gender, head size, and lateral offset were not reported as significant predictors of corrosion,
which is similar to what Carlson et al. found in another study [41]. These results did
not agree with prior work by Goldberg et al. [15], where lateral offset was found to be a
cause of severe corrosion. An association between femoral head size and corrosion was
verified in another retrieval study [45] in which one hundred femoral head-stem pairs were
used for analyzing corrosion and fretting with visual scoring. The heterogeneity of the
results found in numerous retrieval studies highlights the need for using large-scale data
in further studies. This would help to: (a) identify the effect of different variables on the
fretting and corrosion scores of retrieved implants and (b) create predictive models based on
these variables.

A study on Co and Cr ion levels in the blood before revision THR showed that
CoCr-cemented stems are prone to severe corrosion [46]. It is important to note that the
stem–cement interface is the main source of releasing metal ions into the body, even if the
trunnion remains undamaged. At the stem–cement interface, this study highlighted that
fretting corrosion can significantly contribute to high levels of metal ions causing extensive
soft tissue necrosis with the associated tribo-corrosion and tribo-chemical mechanisms. The
patient data used in this study were the same as the previously reviewed paper with the
addition of cup inclination as an implant characteristic. After analysing 36 cemented stems
consisting of CoCr and stainless steel in a series of MoM hips, it was reported that CoCr
stems are the largest potential source of metal ions and that using cemented femoral stems
increases the probability of severe corrosion. High concentrations of cobalt and chromium
in the blood were also reported as a harmful effect of fretting corrosion [47]. This is in
addition to other effects of corrosion such as metal ions and particles at modular taper junc-
tions [48–53], which have been reported as a link to hypersensitivity, lymphatic reactivity,
chromosomal damage, local tissue toxicity, malignant transformation, and impaired renal
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function [54,55]. As a result, more active patients may be prone to more severe corrosion
at modular junctions. Fretting and the increased cyclic loading of the interfaces result in
creating an environment conducive to corrosion. This finding raises a significant concern
for the performance of modular implants in active patients in the long term [56–61].

Overall, the literature indicates that age and the American Society of Anesthesiologists
(ASA) score are proxies for the patients’ level of activity and that, in addition to gender
and BMI, should be selected as the main non-image-based patient data that influence the
outcome of THR (Table 3). The authors believe that increased blood metal ion levels may
not be necessarily used as a biomarker for the severity of corrosion. This is because there
may be issues regarding the reported results, such as the timing of metal ion measurements
in relation to revision surgery and proving the origin of corrosion, which is in fact from
modular junctions and not bearing surfaces.

Table 3. Patient-related risk factors for fretting corrosion.

Risk Factor/Potential Predictor

1 Age
2 Gender
3 BMI
4 ASA score

2.2. Implant Data in Retrieval Studies

In this section, the effect of implant-related characteristics on the severity of fretting
corrosion is reviewed. The selected papers are divided into three parts (design, material,
and manufacturing) based on the implant-related variables that were assessed in the
retrieval studies.

2.2.1. Implant Design

In two similar retrieval studies [38,62], the effect of femoral head size on the severity of
fretting corrosion was investigated in retrieved head-neck tapers. All of the selected Metal-
on-Polyethylene (MoP) implants were in vivo for at least two years. Seventeen femoral
stems with a single taper design (eight Synergy, seven Spectron, and two Echelon from
Smith & Nephew) and 56 of 28 mm heads (neck lengths ranging from −3 mm to +8 mm)
articulating with a polyethylene liner were involved in these studies. Three horizontally
oriented zones were considered for scoring the fretting and corrosion of each taper. The
results showed a greater total fretting score for the longest neck length (+8 mm) compared
with all others (p = 0.03). Increased fretting damage (p = 0.01) was also identified most
in the central zone of the femoral head bore, regardless of the stem offset or neck length.
High-offset femoral stems were associated with greater taper fretting (p = 0.04). As a result,
higher fretting damage was observed in the high-offset femoral stems and longer neck
lengths. Subjective scoring measures and a small range of implant sizes are the significant
limitations of these two studies [38,62]. In these papers, only the 12/14 mm taper design by
Smith & Nephew was studied, even though more than 30 types of head-neck tapers are
commercially available [63]. Some patient information including age, gender, implant side,
BMI, and reason for revision were obtained from the medical records. No accompanying
differences were noted in the taper corrosion scores, while others previously reported that
the distal part of the taper (i.e., base) showed more corrosion than the proximal part (i.e.,
apex) (Figure 2). It was also suggested that the apex region is the most susceptible to
corrosion because of fluid ingress, mechanical loading, and the effects of crevice geometry
at this location.

The outcomes of several studies suggest that large head sizes are associated with
increased severity of corrosion at the head-neck taper; for example, larger heads (i.e.,
36 mm) produce more corrosion than smaller heads (i.e., 28 mm) [38]. However, no relation
between head size and fretting or corrosion scores was previously reported by Goldberg
et al. [15] in a multicentre retrieval study. These inconsistencies were explained by the fact
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that taper designs with a various range of head sizes from several manufacturers were
studied. This may mean that other factors such as the manufacturing processes may play
a role in the outcomes of retrieval studies. As previously mentioned, differences in the
results of various studies can often be justified by exploring their limitations. For example,
evidence of fretting could be masked from the observer in cases with extensive corrosion
debris. Moreover, portions of the implants may also be inaccessible for observers to inspect
properly because of the geometry of the taper. The small number of implants assessed also
proves to be a barrier for detecting important outcomes related to the study of large cohorts
of implants.

The use of additional modularity at the stem-neck junction, which has become more
common over the last 25 years, simplifies adjustments of offset, femoral neck version,
and leg length [64,65]. That said, the initial designs of this increased modularity made of
titanium alloy showed poor performance against fracture risk because of unsuitable fatigue
strength [64,66]. To resolve this issue, cobalt chromium alloy was used in the manufacturing
process to improve implant stiffness. A significant decline in the risk of fracture of dual-
taper modular components was achieved after this change, although the fretting corrosion
of mixed-alloy neck-stem junctions has increased due to increased micromotion [49,58,67].
This generation of corrosion debris at the neck-stem junction seems to be the culprit for
ALTR in many patients with dual-taper femoral components [68–71], which is a distinctly
different entity from the generation of wear debris and corrosion of the bearing surfaces.

In a retrieval study [7] of 60 dual-modular implants (Rejuvenate, Stryker) from
55 patients (20 men and 35 women) with an age range of 45–79 years revised for ALTR,
evidence of fretting corrosion was observed at the neck-stem taper in all implants. However,
fretting corrosion was not seen on all of the head-neck tapers. Severe fretting corrosion
damage at the neck-stem taper was also reported in work by Molloy et al. [72]. Their
outcomes show that the poor long-term performance of neck-stem modular junctions may
be more detrimental than head-neck taper junctions. Furthermore, the use of a specific
beta titanium alloy in the setting of neck-stem taper or the specific design (ABG II, Stryker)
of the modular taper was suggested as the main cause of failure [7]. This illustrates the
importance of identifying and evaluating different variables simultaneously (e.g., design
and material combinations, etc.) to help clarify and understand failure causes.

Some retrieval studies of dual-taper implants have found a correlation between the
severity of fretting corrosion and other parameters such as stem size, neck-shaft angle, and
neck length. Higher corrosion scores are reported in femoral stems paired with long neck
lengths due to cyclic cantilever bending at the neck-stem junction in vivo. In one retrieval
study [7], three implants were graded in eight independent zones. These included the
proximal and distal aspects of the neck tapers, further divided into medial, lateral, anterior,
and posterior regions (Figure 3). A clear pattern of increased fretting corrosion in two
retrieval studies [7,40] with similar mean corrosion scores in different zones suggested the
occurrence of cyclic cantilever bending at the neck-stem junction in vivo. Micromotion
occurs with each step of the gait cycle. The magnitude of this bending moment increases
with increasing the distance from the load axis to the taper junction. Table 4 shows the
mean fretting and corrosion scores for different zones found in one study [7]. In this
paper, a positive correlation between longer neck lengths (34/38 mm) and increased
severity of corrosion (not fretting) on the femoral stem was reported. No correlation was
found between the stem size or neck-shaft angle and fretting or corrosion of the femoral
stem or modular neck. It was also suggested that variables such as the patient’s history,
physical examination, laboratory studies, and imaging including plain radiographs and
metal artifact reduction sequence (MARS) MRI should be considered for further retrieval
analyses. This is further supported by the official recall statement issued by Stryker [73] and
the algorithms for treatment of patients with a modular THR shown by Kwon et al. [74] and
Pivec et al. [75]. Evidence of fretting and corrosion was reported by Kop and Swarts [58] in
6 of 16 retrieved modular hip implants (double-tapered and cone-shaped) at the neck-stem
taper, with only three implants showing corrosion at the head-neck taper. The neck-stem
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junction showed a greater propensity for micromotion because of an increased lever arm
compared to that of the head-neck junction. Similar outcomes with evidence of corrosion
at the neck-stem taper and minimal damage at the head-neck taper were also reported by
Gill et al. [69].
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Table 4. Average fretting and corrosion scores of femoral stem and neck surfaces [7].

Region of Interest
Damage Mode Medial Anterior Lateral Posterior

Fretting (stem) 1.1 ± 0.1 1.2 ± 0.1 1.2 ± 0.1 1.1 ± 0.1
Corrosion (stem) 4.0 ± 0.04 3.8 ± 0.1 3.9 ± 0.1 3.9 ± 0.1

Fretting-proximal (neck) 1.8 ± 0.1 1.1 ± 0.04 1.5 ± 0.1 1.6 ± 0.1
Fretting-distal (neck) 2.2 ± 0.1 1.4 ± 0.1 1.8 ± 0.1 1.9 ± 0.1

Corrosion-proximal (neck) 3.5 ± 0.1 1.8 ± 0.1 2.7 ± 0.1 3.0 ± 0.1
Corrosion-distal (neck) 3.7 ± 0.1 3.2 ± 0.1 3.6 ± 0.1 3.5 ± 0.1

Some studies document corrosion of modular-body hip implants in a large series
of single design components [56,57,76]. In a study on the S-ROM stem (DePuy) [41], the
fretting and corrosion of 78 modular cementless titanium-alloy hip implants with a single
design were evaluated. Since the introduction of the S-ROM stem in 1984, a variety of
proximal body heights and offsets, stem lengths and diameters, calcar spout sizes, and
proximal sleeve diameters have been used as a useful tool to manage complex primary THA.
In this study [41], seven implants with a femoral stem fracture were assessed separately
to identify the reason for failure. The type of material (metal and ceramic) and the use
of similar versus dissimilar alloys for the key components of stem-sleeve and head-neck
junctions were found to play a major role in the severity of damage. This will be discussed
in more detail in the next section which focuses on materials. This study [36] also found that
in vivo duration was not an acceptable predictor of corrosion at the head-neck interface,
but it was a significant factor of predicting stem-sleeve corrosion.

Not all studies reviewed share agreement on the cause of corrosion. The presence of
blood, tissue, and organic fluids in the environment of sleeve engagement was introduced
as the main cause of severe corrosion at the stem-sleeve taper in one group of studies [60].
Other retrieval studies with similar outcomes noted that increased corrosion at the stem-
sleeve interface is because of fluid acting as a conduit for ion exchange within the taper,
which may be present from the first few cycles of motion [76,77]. Another study demon-
strated that the presence of fluid in a taper junction at the time of implantation may act as a
barrier for achieving a friction fit between the two modular components, thereby increasing
the probability of severe fretting corrosion under in vivo loads [8].

Overall, while the use of modular devices in THR is advantageous for both implant
manufacturers and surgeons, the negative effects of fretting corrosion will likely remain
a problem moving forward. However, there is room for significant improvement by
considering patient factors, implant design, and surgical technique. Coupled with this,
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reporting of large-scale retrieval studies needs more attention given the complex interplay
of multiple variables on fretting and corrosion.

2.2.2. Materials Used for THR Implants

By convention, the bearing surface of a THR is named after the material of the femoral
head component, followed by the material of the acetabular liner. Metal-on-polyethylene
(MoP) bearings are the most common combination of materials in THR [78]. In general, the
greatest disadvantage of MoP bearings is the release of polyethylene wear debris. However,
reductions in the release of particulate debris and also wear rates were achieved with
the creation of highly cross-linked polyethylene (HXLPE) [79–81]. Polyethylene has been
shown to be a cost-effective liner option with a predictable lifespan [78,82,83]. MoM has
gone out of favour and are no longer commonly used by surgeons. Large diameter MoM
bearings with poor design, metallurgy, or fixation showed early failure [84–87]. Greater
exposure to metallosis and the potential of carcinogen exposure from MoM bearings were
reported as significant drawbacks from their use in numerous studies [88–90]. The use of
ceramic in ceramic-on-ceramic (CoC) bearings has the benefits of causing minimal tissue
reaction, exhibiting low friction properties, and minimal generation of debris particles. The
downsides of ceramic are its cost, the potential of squeaking in situ, and its requirement
of careful insertion to prevent catastrophic ceramic fracture [91–93]. A low wear rate has
been reported with the use of ceramic bearings, although their brittle nature is a concern
for revision in case of fracture [94,95]. Two studies on CoC THR have demonstrated that
noise from squeaking, rubbing, grinding, and other audible sounds from the hip occur
most frequently (in 10–17%) in patients with CoC bearing surfaces [96,97].

Collier et al. [98] verified that duration-dependent evidence of crevice corrosion was
seen in over half of retrieved mixed-alloy modular junctions while all similar alloy com-
ponents did not show any sign of crevice corrosion. They showed that metal heads cause
more severe corrosion at the head-neck taper when compared to ceramic heads. After
investigating the effect of head material on the severity of fretting corrosion at head-neck
tapers, Hallab and his colleagues found higher fretting in metal–metal than ceramic–metal
head-neck junctions [99].

Referring back to reference [36], the authors analyzed the stem-sleeve junction with
similar alloys and the head-neck junction with dissimilar alloys. They found that damage
at both the stem-sleeve junction (65% fretting; 88% corrosion) and the head-neck junction
(88% fretting; 54% corrosion) was substantial. It was stated that corrosion was correlated
with metal (vs. ceramic) femoral heads, patient activity, and time since implantation, but
was not correlated to the head carbon content. No statistical difference in corrosion was
found by categorizing metal femoral heads into high and low carbon concentrations.

Improvements in material combinations, material composition/metallurgical state,
and metal–metal interfaces may optimize the performance of implants in the future.

2.2.3. Implant Manufacturers

There are several companies that manufacture hip replacement implants. These
companies use a variety of materials with different plastic, metal, and ceramic combinations
to cover a wide range of indications for the needs of specific patients [100,101]. There are
few retrieval studies and references to assess the role of manufacturers in the results of THR.
The general lack of information and the complexity of the interplay between numerous
variables were noted as the reasons for this [102,103].

In THR, surgeons often use various brands of implants. This is in part related to certain
manufacturers not producing a full spectrum of implants. For instance, for a particular
period of time, Midlands Medical Technology (Birmingham, UK) only manufactured a
modular head, without an accompanying femoral stem [104,105]. The National Joint
Registry (NJR) noted that many registered mixed manufacturer (MM) components had
been used in upwards of 15% of cases [106]. Manufacturers test the head and trunnion to
make sure they are compatible and suitable for clinical purposes. However, they highly
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recommend that components should not be MM because of slight differences in the surface
size, and also variations in manufacturing processes and materials [107].

As mentioned above, the pairing of MM components is common. From a legal
perspective, there are studies that suggest mixing components are not advised when other
reasonable choices are available [108]. A potential exists for poorly fitting components
which increases the risk of failure due to the increased rate of wear [102,109,110]. A finite
element study reported that small variations of the trunnion angle may cause a significant
difference in the magnitude of micromotions [111]. DePuy, a well-known manufacturer,
has also stated that the tolerance of their trunnions can affect outcomes [112]. Despite
this, other registry-based research and clinical studies have found that the failure rate of
MM may not be greater than SM [106,113,114], which is in line with the findings from
Whittaker et al. [115]. To complicate the matter, another study found that the influence of
these tolerances on wear rates is associated with the differences in the surface finish of the
components [116].

One study [115] compared the rate of wear and corrosion at the head-neck taper
junction in two groups of retrieved hip implants: same manufacturer (SM) and MM sets.
A total number of 151 large-diameter CoCr retrieved hip implants were studied. These
included 100 sets with seven different head designs paired with stems from the SM and 51
sets of two different head designs paired with stems from MM. No significant difference was
found in the material loss and corrosion scores of the two groups. This implies that pairing
stems with heads from different manufacturers does not have any negative impact on the
implant’s fretting corrosion levels. It is noteworthy that head designs from two different
manufacturers (Birmingham Hip Resurfacing (Midland Medical Technologies, Birmingham,
UK) and Adept (Finsbury, Leatherhead, UK)), and stem models of different companies
(CPT, CLS and Alloclassic from Zimmer; Synergy and CPCS from Smith and Nephew; CBH
and Twinsys from Mathys; Corail from DePuy; Lubinus MP Reconstruction Prosthesis
from Link; Freeman from Finsbury; MS-30 from Sulzer; Furlong from JRI; Taperloc from
Biomet; and Metha from Aesculap) were included in this study. Trying to assess materials
in manufacturer-specific implants in the analysis of fretting and corrosion is unlikely to
be fruitful. The manufacturing of THR components is a massive global industry, and the
legal implications of intellectual property and patents make obtaining data for advanced
analyses and materials difficult.

A review of the three aspects (design, material, and manufacturing) of implant-related
variables (Table 5) showed that head size is the main parameter contributing to severe
tribocorrosion damage at the taper junction in the most commonly used implants [24].
Material properties and bearing surfaces should be noted as the second most significant
group of factors. Metallurgical state, microstructures, and the carbide distribution of
implants may also be associated with fretting corrosion [117,118].

Table 5. Implant-related risk factors for fretting corrosion.

Risk Factor/Potential Predictor

1 Head size
2 Modularity
3 Fixation method (Cemented/Cementless/Hybrid)
4 Materials combination
5 Material composition and metallurgical state
6 Flexural rigidity of the neck
7 Surface finish
8 Taper geometry and tolerances
9 Presence of multiple metal–metal interfaces
10 Stem design
11 Bearing design
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3. Risk Factors from a Joint Registries (JRs) Perspective

As noted previously, implant retrieval studies have been used predominantly to
examine modes of failure in THR. However, the field of retrieval analysis suffers from
the lack of consistent information on surgical operations because there is no means of
tracking the number of implantations or failures of devices until problems arise. Many
issues with implants are related to the method of implantation or the surrounding biologic
environment of each specific patient, rather than the device itself. A traditional hypothesis-
driven study with high statistical power is often not a practical approach in these cases.
It is not necessarily an effective tool to compare implants due to the presence of many
prosthesis- and patient-related factors at play. A good implant retrieval study requires a
multilevel strategy to address all relevant variables. This includes analyzing patient and
implant data separately and in combination, as each can have a substantial role in the
failure of an implant.

In orthopaedics, JRs record data on joint replacements to closely observe their effective-
ness [119]. These registries can identify issues with implants and surgical methods through
statistical analyses [120–122]. This is especially important in the field of joint replacement,
which has consistently had to aim to enhance the longevity of medical implants and mini-
mize failure and revision rates for patients. For this purpose, significant collaborations at an
international level should be developed between various research groups and registries. As
a clinical subject, big data has been recently used in healthcare applications for developing
predictive models and clinical decision support systems, as well as for predicting disease
and safety surveillance [4,123–128].

The incidence of fretting and corrosion is likely largely underestimated in registry
reports. Corrosion products and debris particles may cause pain [129], infection [130,131],
and the aseptic loosening of implants [132–136]. One suggestion to improve this under-
estimation would be to request specific information about the intraoperative evidence of
fretting and corrosion from surgeons when completing registry forms. Given the substan-
tial role of joint replacement registries in monitoring arthroplasty outcomes, this would
give us a much better idea of the true incidence of fretting and corrosion in revision total
joint arthroplasty.

Patient factors that affect the result of THR are being gathered by the AOANJRR [6,137,138].
ASA score and BMI have been collected since 2012 and 2015, respectively. No differences
were reported in revision rates of the underweight or pre-obese patient groups. Revision
rates increased for the obese class 1, obese class 2, and obese class 3 groups. It is also noted
that the rate of revision changes with patient characteristics and the follow-up time. For
example, patients aged 75 years or older have a lower rate of revision than those aged
<55 years after 3 months, between 55 and 64 after 6 months, and 65–74 years after 4 years.
Gender is another factor that plays a role in revision rates as they were found to decline for
females with increasing age [6]. These findings corroborate those of prior retrieval studies,
further underlining the importance of analyzing the two together.

The American Academy of Orthopaedic Surgeons (AAOS) states that metal ion levels
are influenced by confounding factors such as implant materials, type, design, positioning
of implant, and diameter of bearings [139]. From a clinical perspective, the AAOS also
suggests that while metal ion level is a useful parameter for assessing MoM hip arthroplasty,
there are limitations in terms of its role for clinical assessment purposes. As such, metal
ion levels cannot be solely relied on as a significant parameter to conclude clinical recom-
mendations as there is confounding in the interpretation of metal ion levels in patients
with bilateral MoM total hip. Data from a randomized clinical trial showed no indication
of severe trunnion corrosion in the head-neck taper with low metal ion levels in blood
(medians < 0.3 µg/L) [140]. Høl et al. also found no difference in blood ion levels with the
use of Oxinium femoral heads compared to CoCr or stainless steel heads at the 10-year
follow-up [141]. In another study, metal ion levels with modular 28 mm, 36 mm, and 40 mm
CoCr femoral heads indicated no difference in CoCr with increasing femoral head sizes
after the 10-year follow-up [141].
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Implant characteristics related to design, material combination, and type of fixation
were also analyzed in the report [6]. The method of fixation was reported as a significant
factor for rate of revision. Cementless fixation had a higher rate of revision than hybrid
fixation and cemented fixation at different times following the index surgery. The 2022
report of the NJR [106] showed that cementless implants are still the most commonly
used, although there is a downward trend in their use. The rate of revision for cemented
THR was lower than that of cementless THR. The Swedish registry report [142] also
revealed a similar trend. Cementless fixation was reported as the preferred method in
younger and more active patients. Surprisingly, no significant difference was found in
survival rates of cementless and cemented implants. Also, the outcome of 881 total hip
arthroplasties in 747 aged between 9 to 21 from Norwegian, Danish, Swedish, and Finish
hip arthroplasty registries merged with the dataset from the Nordic Arthroplasty Register
Association (NARA) showed that both cemented and uncemented fixations seem to be a
viable option in this age group, but with a lower implant survival when compared to older
patient groups [143]. The AOANJRR reported that the popularity of cementless fixation
has increased, leading to a decrease in the use of cemented fixation [6]. Hybrid fixation,
including cemented femoral and cementless acetabular components, showed a lower rate
of revision compared with cementless or all-cemented fixation. Overall, big data from
the joint registries suggests that cemented fixation performs better for the >75-year-old
population, but cementless and hybrid fixation performs better in younger patients [6].

The Swedish registry suggests that a head size of <32 mm has the lowest failure rate
for an MoP articulation, although a 32 mm head size shows the lowest failure rate for
CoP bearing surfaces. By contrast, the highest rate of failure was reported in 36 mm metal
or ceramic heads with a cemented monoblock acetabular component. The outcome of
44 mm heads in MoP articulations was reported worst for cementless THRs. The 28 mm
and 36 mm heads showed the worst rates of failure in CoP articulations with a cementless
acetabular component [142]. The AOANJRR reports that head size affects revision rates in
CoC THRs. Lower revision rates were found for a 32 mm head size compared with a 28 mm
head size or less, but no difference was found between a 32 mm and 36 mm or 38 mm head
in the rate of revision. The AOANJRR data is in favour of using 32 mm heads with XLPE
liners. It seems that this head size or smaller shows better outcomes for standard MoP
articulations, while the use of 32 mm heads is recommended for CoP articulations over
smaller or larger head sizes [6].

The combination of metal with XLPE remains the most common bearing surface based
on the recent Swedish registry report, although there was an upward trend of ceramic
on XLPE use. Data from the Swedish registry [142] shows that MoP remains a popular
bearing surface for different methods of THR including cemented, cementless, hybrid, and
reverse hybrid. These days, the use of MoM bearings is limited due to the high revision
rate [86]. CoC remains a popular choice for cementless THR. The 2022 NJR report [106]
supports the use of CoP bearings in THR, irrespective of implant fixation method. The
use of a CoP bearing is becoming more common and seems to be a better choice for
hybrid hip replacement, as evidenced by low revision rates (specifically over the long
term). The AOANJRR reported that modern bearings, including XLPE with metal, ceramic,
or ceramicized metal heads, added to mixed ceramic on ceramic, have lower revision
rates, particularly in the long term [6]. A comparison between XLPE with non-XLPE also
showed that XPLE had lower rates of revision regardless of which type of femoral head
was used [6,124,144,145].

It can be concluded from recent registry reports that MoP bearings provide better
outcomes in the elderly population, while the use of ceramic-on-XLPE is more favourable in
younger patients. In addition, registry data are biased towards the use of bearing surfaces
other than CoCs [142].
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4. Summary

Implant retrieval studies and joint registry data analysis of THR are multidisciplinary
areas that require contributions from clinicians, engineers, and scientists. A future global
direction in joint arthroplasty should aim to enhance the longevity of medical implants
and minimize failures and revision rates by supporting surgeons in their decision making.
Accordingly, this paper reviewed relevant retrieval studies with a focus on the effects of
fretting corrosion and national joint registry reports from different countries to identify the
most significant risk factors for failure in THR.

Critical patient-related risk factors such as age, gender, BMI, and ASA score were
identified from our reviewed sources and presented in Table 3. The publications reviewed
were selected based on parameters considered important by the authors in both retrieval
studies and reports of national joint registries. Image-based parameters and factors related
to patient history were not discussed in this review paper due to the lack of information in
retrieval studies and joint registry reports.

We also found a large number of implant-related variables that may influence failure
rates, especially by affecting the corrosion rate (Table 5). The most important implant
factors affecting the results of THR are related to head size, material combination, and
method of fixation. From a patient standpoint, age, gender, and BMI should be highlighted
as the most significant patient-related factors that can cause early implant failure due to the
effects of fretting corrosion. The role of manufacturers was also reviewed through limited
available references. Based on these sources, we did not find any significant contributions
to our review. Many other retrieval study factors were not analyzed due to the lack of
information and, therefore, other important considerations may have been overlooked.
To date, joint replacement registries have not collected a number of patient-history-based
and image-based data. In the near future, it is projected that a number of other factors
related to imaging data and patient reported outcome measures (PROMs) will be added to
joint registries around the world to support clinicians and researchers in making evidence-
based decisions in THR. The authors acknowledge the efforts by a few joint registries
to implement collecting this type of data at specific follow-up timepoints following joint
arthroplasty surgeries.
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