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Abstract: Prosthetics and orthotics research, studies, and technologies have been evolving through
the years. According to World Health Organization (WHO) data, it is estimated that, globally,
35–40 million people require prosthetics and orthotics usage in daily life. Prosthetics and orthotics
demand is increasing due to certain factors. One of the factors is vascular-related disease, which
leads to amputation. Prosthetic usage can increase an amputee’s quality of life. Therefore, studies
of the ergonomic design of prosthetics are important. The ergonomic factor in design delivers
prosthetic products that are comfortable for daily use. One way to incorporate the ergonomic design
of prosthetics is by studying the human walking gait. This paper presents a multiclassification of
human walking gait based on electromyography (EMG) signals using a machine learning method.
An EMG sensor was attached to the bicep femoris longus and gastrocnemius lateral head to acquire
the EMG signal. The experiment was conducted by volunteers during normal walking activity at
various speeds and the movements were segmented as initial contact, which was labeled as initial
gait; loading response to the terminal stance, which was labeled as mid-gait; and pre-swing to
terminal swing, which was labeled as final gait. The EMG signal was then characterized using an
artificial neural network (ANN) and compared to six training accuracy methods, i.e., the Levenberg–
Marquardt backpropagation training algorithm, quasi-Newton training method, Bayesian regulation
backpropagation training method, gradient descent backpropagation, gradient descent with adaptive
learning rate backpropagation, and one-step secant backpropagation. The machine learning study
performed well in the classification of three classes of human walking gait with an overall accuracy
(training, testing, and validation) of 96% for Levenberg–Marquardt backpropagation. The gait data
will be used to explore the design of lower limb prosthetics in future research.

Keywords: artificial neural network; EMG; gait analysis; prosthesis

1. Introduction

Lower limb amputation, whether due to accidents or illnesses such as diabetes, pe-
ripheral vascular disease, and gangrene [1], can be traumatic both for the patient and
caregiver. Lower limb amputation affects physical, psychological, emotional, and social
aspects of individuals’ lives, especially activities related to the human leg, which is an
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important limb. The use of lower limb prosthesis for amputation can help increase life
quality for patients. Previous studies showed higher scores in quality of life for amputation
patients who used prostheses than patients who did not use prosthetics in the physical,
psychological, and environmental domains [2]. Amputation patients in Indonesia, where
this study was conducted, mainly used conventional, low-cost, below-limb prosthetics [3].
These conventional lower limb prosthetics commonly consist of fixed and passive struc-
tures where the ability to walk is still possible, although patients must overcome certain
difficulties [4]. This study mentions that the ability to successfully walk using prosthetics
was an important factor contributing to amputation patients’ quality of life [5]. Thus, it is
very important to develop active lower limb prosthetics with ergonomic considerations
to increase amputation patients’ quality of life. Motorized lower limb prosthetics can be
achieved by using a bionic lower limb, incorporating a motor as the driving force. Motor
control using signal measurement from electromyography (EMG) has been widely used for
upper limb prosthesis. On the contrary, EMG control for bionic lower limb prosthesis is still
in the early stage of research due to the practical use of motorized robotic lower limbs [6].

This research was a preliminary study on the development of a bionic below-limb
prosthesis. An EMG sensor called Myomes was used to record research participants’ muscle
signals while walking on a treadmill at different speeds. EMG signals were obtained, then
separated into three gaits and classified using the ANN machine learning method. Six
training algorithms were used in this ANN method for gait classification. The preliminary
results of this study will help researchers understand how the human gait works, and
the best training method and classification results. In a future project, the best training
method will be used for amputation patients training for bionic below-limb prosthetic
customization. Patient signals will be recorded using Myomes and then fed back into
the motor.

Research related to EMG signal recording and classification has been carried out
extensively using different variations, methods, and purposes, i.e., rehabilitation and
EMG data collections for various gaits [7–12]. Some of these studies recorded below-limb
EMG signals statically where the participants were not moving or walking [7,8]. The
current study contributes to the literature on EMG measurements that were conducted
while participants were walking at various speeds on a treadmill. Another study [9,10,12]
collected EMG signals where all the participants were of the male gender. This research
collected EMG samples from both male and female genders. A recent study noted that
EMG recording activities were conducted during a ground-walking experiment in five
environments, i.e., flat ground, upstairs, downstairs, uphill, and downhill [12]; another
study recorded EMG signals while participants walked on level ground [11]. This study
contributes to the knowledge of EMG signal recordings where participants walk in a
controlled environment in which a treadmill runs at different speeds. Most of the previous
research classified gait into two classes: stance and swing phase [7–12]. This study classified
gait into three classes. Several methods were applied to human gait classification, including
deep learning [11,12], utilizing an ANN combined with Levenberg–Marquardt as a training
algorithm. This study classified other training algorithms (quasi-Newton method, Bayesian
regulation backpropagation, gradient descent backpropagation, gradient descent with
adaptive learning rate backpropagation, and one-step secant backpropagation), indicating
that different algorithms result in different levels of accuracy.

2. Experimental Setup and Data Acquisition
2.1. Experimental Setup

EMG signal acquisition was carried out utilizing Myomes, an EMG meter that was
developed at the Center for Biomechanics, Biomaterial, Biomechatronics, and Biosignal
processing (CBIOM3S) laboratory of Universitas Diponegoro located in Semarang City,
Central Java, Indonesia. CBIOM3S is a research center in the field of biomedical engineering.
The researchers in the CBIOM3S carried out diversity research related to health technologies
such as artificial hip joint [13], voice-based Parkinson’s disease diagnosis kit [14], low-cost
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bionic hand [15], prosthesis material [16], orthotic shoes [17], biomaterial implant [18] and
an EMG-research-based Myomes sensor [19].

Myomes is a non-invasive, compact, and mobile EMG meter. Myomes is a compact
EMG sensor kit with 220 mm length, 115 mm width, and 65 mm height dimensions.
Myomes works at a range of 50–150 Hz frequency; this value suits the consideration of
several authors, who suggest that the highest-frequency component of EMG was between
400 and 500 Hz [20–22]. The EMG signal amplitude of Myomes ranges between 1 and
10 mv when converted into percentage units. The frequency sampling used in this research
was 1000 Hz. This frequency sampling number is selected to avoid signal distortion [22,23].

The Myomes sensor kit used in this study is presented in Figure 1a. 1. EMG electrode
(label number 5) is attached to the patient’s skin using a rubber band (label number 1). The
extended cable (label number 4) is added to the sensor when necessary. The signal recording
and communication with the computer is carried out using a cable (label number 2),
transmitter is used to transmit the EMG signal (label number 3), and EMG electrode
presented in Figure 1b.

Figure 1. Myomes, EMG meter: (a) Parts and (b) electrode.

The diameter and size of the EMG sensor affect the inter−electrode distance as pre-
sented in the previous study [24]. The larger the EMG’s diameter and size, the more
the inter-electrode distance increases. This size results in large EMG signals and volume
detected. This can cause crosstalk phenomena, where a signal is detected on a targeted
muscle, which is generated by the other unit of muscle. This potentially leads to misin-
terpretation and incorrect analysis. The Myomes used a 1 × 3 surface array electrode,
which recorded muscle potential for the 1–2 cm range, which is the best selection to avoid
crosstalk phenomena.

2.2. Data Acquisition

The present study consists of three main procedures: (i) data acquisition, (ii) fea-
ture extraction, and (iii) gait classification using the ANN method. The first procedure,
i.e., gait data acquisition, comprises four sequential steps: first, myomes are connected
to the computer; second, myomes are attached to the participant’s feet; third, partici-
pants are requested to walk on the treadmill at a speed ranging from 1 to 5, i.e., speed
1 (7.26 m/min), speed 2 (20.80 m/min), speed 3 (35.76 m/min), speed 4 (50.61 m/min) and
speed 5 (65.32 m/min); and fourth, EMG data acquisition begins and a video is recorded
while the participant walks on the treadmill.

EMG data collection was carried out on healthy subjects. The first subjects were males
aged between 20 and 30 years old, the second subjects were males aged between 30 and
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40 years old, the third subject was a female aged 20–30 years old, and the last subject
was females aged 30–40 years old. The selection of the participants was based on the
subjects’ daily activity and health level. All non-smokers and non-alcohol-drinker subjects
were selected and completed physical activities during their daily routine. None of the
participants have undergone surgery or suffered below-limb joint pain or a pathological
condition that affects the mechanics and gait of the lower limb. Details of the subjects
involved in the study are presented in Table 1. The subjects’ data, such as height, weight,
Body Mass Index (BMI), and age, are also presented.

Table 1. Participants’ data.

Participants Sex Age
(Years Old) Height (cm) Weight (kg) BMI

Subject 1 Male 25 168 71.5 25

Subject 2 Male 32 170 73.3 24

Subject 3 Female 22 160 61.44 24

Subject 4 Female 34 155 53.5 22

A myomes electrode was attached on the gastrocnemius lateral head and biceps
femoris longus muscle, as presented in Figure 2a,b, using a hypafix, as illustrated in
Figure 2c. Electrode placement was based on the suggestion of surface electromyography
for the non-invasive assessment of muscles (SENIAM) and the results presented in the
previous study [25]. The authors in [25] reported that the signal quality and global muscle
classification is excellent when the EMG electrode is attached to gastrocnemius lateral head
muscle and biceps femoris longus muscle.

Figure 2. Muscle location of myomes’ attachment: (a) gastrocnemius lateral head; (b) biceps’ femoris
longus; (c) electrode attachment.

3. Feature Extraction and Classification Method

The feature extraction step is carried out utilizing 12 features: 8 time-domain features
and 4 frequency-domain features. The time domain features include the integrated EMG
(IEMG), mean absolute value (MAV), the variance of EMG (VAR), root mean square (RMS),
log detector (LOG), waveform length (WL), kurtosis, and skewness. The frequency-domain
features include mean frequency (MNF), median frequency (MF), total power (TTP), and
mean power (MNP).

Data collection videos were played and the raw EMG signal was segmented into
three signals based on the selected phases. An illustration of the three phase categories
of gait cycle for ANN classification is presented in Figure 3 [26]. Many previous studies
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adopted two phases of human gait partition, i.e., stance and swing phase [7–12]. However,
other studies adopted a larger number of phases, such as three [27–31], four [32], five, and
more [33–35]. Future work will investigate the possible use of a motor control feedback
signal for bionic below-limb prosthetics in which the EMG signals are segmented into three
classes [27].

Figure 3. Three gait segmentation for classification.

Figure 4 shows the segmented EMG Myomes signals into three categories, i.e., (i) Initial
contact, which is labeled as initial gait, (ii) Loading response to the terminal stance which is
labeled as mid−gait and (iii) Preswing to terminal swing which is labeled as final gait.

Figure 4a presents the segmented EMG signal on initial contact phase. It represents
a gait cycle initiation and contact point that the gravity body center is maximum in this
phase which shows an existence of the muscle activity. In addition, Figure 4a shows the
Myomes EMG signal amplitude of approximately 18%. Figure 4b presents the segmented
EMG signal from loading response to a terminal stance where the foot plantar surface
touched the treadmill. There were minimal activities to the muscle due to the single limb
stance. The highest EMG activities were recorded from preswing to terminal swing which
amplitude approximately of 35% as presented in Figure 4c. The segmentation EMG signal
is also based on previous research [27] that used an adaptive controller for active ankle foot
prosthetics signals.

In ANN gait classification, the EMG data are divided as follows: 70% for training, 15%
for validation, and 15% for testing. The present study used two layers: a feed-forward
network with a tangent−sigmoid transfer function for the hidden layer and a softmax
transfer function for the output layer, as presented in Figure 5.

According to Figure 5, the hidden layer can be presented in Equation (1), as follows:

a1 = tf 1 (IWx + b1) (1)

where a1 denotes the output vector in the hidden layer, x is an n-length input vector, and
IW denotes the weight matrix input layer. The transfer function of the input layer and
hidden layer bias vector is stated in tf 1 and b1. Equation (2) illustrates the output layer of
the first output neuron.

a2 = tf 2(LW(tf 1(IWx + b1)) + b2) (2)

where a2 is the hidden layer output vector, LW is weight matrix output layer.
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Figure 4. EMG signal gait partition: (a) initial contact to mid stance (initial gait), (b) terminal stance
to preswing (mid−gait), and (c) initial swing to terminal swing (final gait).

Figure 5. ANN network structure [17].
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There are six training methods used as the training algorithm, i.e., Levenberg−Marquardt
back propagation with the second-order training speed approach, the quasi-Newton
method, Bayesian regulation backpropagation, gradient descent backpropagation, gradient
descent with adaptive learning rate backpropagation and one-step secant backpropagation.
The prediction error was calculated using mean square error (MSE). A smaller MSE value
indicates that the ANN classification accuracy is higher.

Figure 6 illustrated the ANN model with 12 features calculated as input, 25 neurons in
the hidden layer, and 3 outputs which represent each class, i.e., the initial gait, mid-gait
and final gait.

Figure 6. ANN model and network structure used in this study.

4. Results
4.1. Myomes EMG Signal Acquisition

EMG signal was acquired using Myomes EMG sensor kit with 1000 sampling fre-
quency and gain set at 3. Data acquisition was carried out while participants walked on the
treadmill at various paces. Figure 7 shows the EMG signals of one participant acquired at
different paces using different EMG sensor attachments. The EMG signal was recorded
based on the different pace setups of the treadmill. The signal was recorded from subject
1, a male participant with an age range of 20–30 years old on the gastrocnemius lateral
head and biceps femoris longus muscle. The unit of the y-axis in Figure 7 is denoted into
percentage units because Myomes output EMG signals were already being processed into
percentage values, which can be notated with defined upper and lower limits.

The maximum amplitude of the EMG signal when the participant walks on a treadmill
at a normal pace (pace 1) was 87% on the gastrocnemius lateral head muscle, as presented in
Figure 7a, and 49% on the biceps femoris longus, as presented in Figure 7b. The maximum
EMG signal amplitude increased to 100% on the gastrocnemius lateral head muscle, as
presented in Figure 7c, and increased to 55% on the biceps femoris longus, as presented
in Figure 7d, when the participant walks at pace 2. For pace 3, the maximum EMG
signal amplitude showed 100% for the gastrocnemius lateral head muscle, as presented
in Figure 7e, and 48% for the biceps femoris longus, as presented in Figure 7f. In general,
Figure 7 indicates that the faster the treadmill pace, the higher the EMG signals acquired
for both muscles. A higher EMG signal amplitude represents the muscle activity on the
gastrocnemius lateral head muscle and biceps femoris longus.
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Figure 7. EMG signal recorded from male study participant (Subject 1), gastrocnemius lateral head:
(a) Pace 1, (c) Pace 2, (e) Pace 3, (g) Pace 4, (i) Pace 5; and biceps femoris longus: (b) Pace 1, (d) Pace 2,
(f) Pace 3, (h) Pace 4, (j) Pace 5.



Prosthesis 2023, 5 655

4.2. Classification Result of EMG Signals Using ANN

EMG signals that are processed in the feature calculation stage consist of 360 pieces of
data. For ANN classification model calculation, the EMG signals are divided as follows:
70% for training, consisting of 252 pieces of data, and 15% for both testing and validation,
consisting of 54 pieces of data. Table 2 shows the training accuracy and confusion matrix
for each participant, using different training algorithms. The Levenberg−Marquardt
backpropagation training algorithm is labeled as LM, the quasi−Newton training method
is labeled as QN, the Bayesian regulation backpropagation training method is labeled as
BY, gradient descent backpropagation is labeled as GD, gradient descent with adaptive
learning rate backpropagation is labeled as GDA, and one-step secant backpropagation is
labeled as OSS. For the classification label, initial gait is labeled as IG, midpgait is labeled
as MG, and final gait is labeled as FG.

Table 2. Training accuracy and confusion matrix comparison between research participants.

Subject 1

Training Algorithm LM QN BY GD GDA OSS

Actual Class IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG

IG 6 0 0 7 1 1 10 3 3 30 2 2 25 2 2 21 4 4

MG 1 2 1 2 9 0 0 7 0 0 27 1 0 23 1 3 23 5

FG 0 0 5 1 0 9 0 0 7 0 1 27 5 5 27 6 3 21

Accuracy (%) 85 100 83 70 90 90 100 30 30 100 90 90 83 77 90 70 77 70

Total accuracy (%) 93 83 80 93 83 74

Subject 2

Training algorithm LM QN BY GD GDA OSS

Actual class IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG

IG 29 1 0 28 2 0 23 1 2 29 1 1 25 11 5 29 8 13

MG 0 27 0 2 25 3 4 29 3 0 29 0 3 19 3 1 22 0

FG 1 2 30 0 3 27 3 0 25 1 0 29 2 0 22 0 0 17

Accuracy (%) 97 90 100 93 83 90 77 97 83 97 97 97 83 63 73 97 73 57

Total accuracy (%) 96 89 86 97 73 76

Subject 3

Training algorithm LM QN BY GD GDA OSS

Actual class IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG

IG 27 1 1 20 2 1 27 3 1 28 2 2 27 7 7 24 4 3

MG 0 29 1 2 25 2 2 25 2 1 27 0 3 23 0 3 20 5

FG 3 0 28 8 3 27 1 2 27 1 1 28 0 0 23 3 6 22

Accuracy (%) 90 97 93 67 83 90 90 83 90 93 90 93 90 77 90 80 67 73

Total accuracy (%) 93 80 88 92 86 73

Subject 4

Training algorithm LM QN BY GD GDA OSS

Actual class IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG

IG 27 1 1 23 3 1 28 2 3 26 1 1 23 9 6 25 8 2

MG 2 29 3 7 26 5 2 26 2 4 27 0 6 20 2 3 22 4

FG 1 0 26 0 1 24 0 2 25 2 2 29 1 1 22 2 0 24

Accuracy (%) 90 97 87 77 87 80 93 87 83 87 90 97 77 67 73 83 73 80

Total accuracy (%) 91 81 88 91 72 79
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Table 2 shows the classification accuracy and confusion matrix of each participant. It
shows that the Levenberg−Marquardt backpropagation training algorithm and gradient de-
scent backpropagation were consistent, with the highest accuracy for individual participants.

Table 3 presents the training accuracy for all participants. The result shows that
Levenberg−Marquardt backpropagation and gradient descent backpropagation for the
training model have a higher accuracy than other methods. This result is consistent with
the result from Table 2.

Table 3. Training accuracy and confusion matrix comparison for all participants.

Training Algorithm LM QN BY GD GDA OSS

Actual Class IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG

IG 112 3 5 108 8 6 110 10 7 100 0 3 105 11 6 90 14 9

MG 5 117 7 4 100 8 4 102 6 9 115 4 0 99 1 16 99 11

FG 3 0 108 8 12 106 6 8 107 11 5 113 15 10 113 14 7 100

Accuracy (%) 93 98 90 90 83 88 92 85 89 83 96 94 88 83 94 75 83 83

Total accuracy (%) 94 87 89 91 88 80

Table 4 denotes the overall accuracy (training, testing, and validation) for all six
training algorithm methods and each research participant. The overall accuracy (train-
ing, testing, and validation) shown in Table 4 indicate that the Levenberg−Marquardt
backpropagation resultsoutperform other methods.

Table 4. Overall accuracy (training, testing, and validation) and confusion matrix comparison
between each participant.

Subject 1

Training Algorithm LM QN BY GD GDA OSS

Actual Class IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG

IG 7 0 0 6 1 1 8 1 0 23 2 1 15 1 0 19 1 4

MG 0 4 1 1 7 0 0 7 2 0 15 2 4 14 2 1 14 0

FG 0 0 8 0 0 3 0 1 6 0 1 18 1 0 16 0 3 17

Accuracy (%) 100 100 89 75 88 75 100 78 75 100 83 86 75 93 89 95 78 81

Total accuracy (%) 95 80 84 90 85 85

Subject 2

Training algorithm LM QN BY GD GDA OSS

Actual class IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG

IG 21 2 1 18 7 1 14 0 0 18 1 1 19 2 0 18 2 1

MG 0 20 1 2 15 0 3 28 1 1 20 1 0 15 5 1 18 4

FG 0 0 17 0 1 18 4 0 26 1 0 19 0 3 18 0 3 15

Accuracy (%) 100 91 89 90 65 95 67 100 96 90 95 90 100 75 78 95 78 75

Total accuracy (%) 94 82 89 92 84 82
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Table 4. Cont.

Subject 3

Training algorithm LM QN BY GD GDA OSS

Actual class IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG

IG 19 2 2 18 2 0 24 2 2 20 1 0 17 3 4 13 1 1

MG 0 18 1 5 13 2 0 23 4 1 17 3 1 21 3 1 19 3

FG 0 0 20 0 2 20 0 1 20 0 1 19 0 1 12 6 2 16

Accuracy (%) 100 90 87 78 76 91 100 88 77 95 89 86 94 84 63 65 86 80

Total accuracy (%) 92 82 88 90 81 77

Subject 4

Training algorithm LM QN BY GD GDA OSS

Actual class IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG

IG 21 3 1 16 2 0 20 1 1 18 2 1 17 3 1 17 1 2

MG 0 19 1 2 20 3 2 24 3 1 19 1 2 17 1 3 16 0

FG 1 0 16 1 1 18 1 1 23 1 0 19 1 0 20 1 2 20

Accuracy (%) 95 86 89 84 91 86 87 92 85 90 90 90 85 85 91 81 84 91

Total accuracy (%) 90 87 88 90 87 85

Table 5 shows the overall accuracy (training, testing, and validation) for all six training
algorithm methods. Table 5 shows that Levenberg−Marquardt backpropagation had the
best result for overall accuracy.

Table 5. Overall accuracy (training, testing and validation) and confusion matrix comparison for
all participants.

Training Algorithm LM QN BY GD GDA OSS

Actual Class IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG IG MG FG

IG 75 0 2 78 1 4 8 4 2 74 6 2 70 5 8 70 5 12

MG 1 98 1 6 64 6 10 98 8 7 85 4 7 84 1 6 72 1

FG 3 3 79 2 18 73 6 3 87 4 1 69 3 5 69 7 10 69

Accuracy (%) 95 97 96 91 77 88 85 93 90 87 92 92 88 89 88 84 83 84

Total accuracy (%) 96 85 89 90 88 84

4.3. Mean Square Error

ANN performance is represented by the MSE value of the training, validation, and test-
ing steps. Figure 8 shows the MSE value for the Levenberg−Marquardt backpropagation
training algorithm, quasi-Newton training method, Bayesian regulation backpropaga-
tion training method, gradient descent backpropagation, gradient descent with adaptive
learning rate backpropagation, and one-step secant backpropagation.

The best training, validation, and testing performance can be measured using the
MSE value. Lower MSE values indicate that the model has the best accuracy performance.
Figure 8a shows the best accuracy performance for the Levenberg−Marquardt backprop-
agation algorithm, at 0.10733 MSE value. This value can be compared to Figure 8b−f
with the quasi-Newton method training algorithm, which has the best performance results
with a 0.20509 MSE value; Bayesian regulation backpropagation training method with
0.20251 MSE value; gradient descent backpropagation with 0.20222 MSE value; gradient
descent with adaptive learning rate backpropagation with 0.2045 MSE value; and one-step
secant backpropagation with 0.22234 MSE value.
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Figure 8. MSE value: (a) Levenberg−Marquardt backpropagation training algorithm, (b) quasi−Newton
training method, (c) Bayesian regulation backpropagation training method, (d) gradient descent back-
propagation, (e) gradient descent with adaptive learning rate backpropagation and (f) one-step se-
cant backpropagation.

4.4. Testing Set Regression Diagram

In order to provide a visualization of the ANN classification, a regression plot is
presented in Figure 9. The purpose of the regression diagram is to illustrate the correlation
between predicted output and target output. Figure 9 shows the regression diagram for all
training methods using a testing sample.
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Figure 9. Regression diagram: (a) Levenberg−Marquardt backpropagation training algorithm;
(b) quasi−Newton training method; (c) Bayesian regulation backpropagation training method;
(d) gradient descent backpropagation; (e) gradient descent with adaptive learning rate backpropaga-
tion; (f) one-step secant backpropagation.

Testing sets were collected for 10 samples in each class. Figure 9a,c,d shows that three
samples were not classified correctly into true (targeted) class. Meanwhile, Figure 9e shows
four samples that were misclassified into another class, and in Figure 9b,f, five samples
were not classified correctly into true (target) class. This regression plot is a visualization of
the overall accuracy presented in Table 5
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5. Discussion

Gait classification and pattern recognition was conducted with different machine
learning methods and different types of sensor. Some research used gait analysis to detect
people with gait disorders [36], understand the biomechanics of muscle for pre-disease
diagnosis, and design lower limb prosthetics [37]. The present study analyzed human gait
with the aim of obtaining a better understanding and a better design for lower limb pros-
thetics. Various sensors were used as data acquisition kits, such as accelerometers [36–38].
In the present study, an EMG meter named Myomes was used to collect the participant
data. Table 6 summarizes previous research in EMG signal classification compared to the
present study. Most studies using gait signals from EMG measurements classified the sig-
nals into two classes using various machine learning methods [10,11]; meanwhile, another
study classified human gait into eight classes using only one machine learning method,
linear discriminant analysis (LDA), with Bayesian information criteria as the optimization
method [39]. The present study classified human gait into three classes using ANN with
various training algorithms to find which training algorithm had the best result. A compar-
ison of previous research in Table 6 could be a consideration in future improvements to
the research.

Table 6. Comparison between this research and previous research regarding EMG signal classification
using the machine learning method.

Research Muscle Measurement Class Machine Learning
Method Accuracy

Morbidoni, et al. [11]

Tibialis anterior,
gastrocnemius lateralis,
hamstring, and
vastus lateralis

2 classes (stance and
swing phase)

ANN with
architectures variation 94.9%

Ghalyan, et al. [10]

Soleus, tibialis anterior,
gastrocnemius lateralis,
vastus lateralis, rectus
femoris, biceps femoris and
gluteus maximus

2 classes (stance and
swing phase)

SVM with a
median filter 95.3%

Logistic regression with
RMS filter 72.9%

KNN with a
median filter 99.8%

Decision tree with
median filter 98.4%

Random forest with
median filter 97.2%

Joshi, et al. [39]
Quadriceps, hamstring,
tibialis anterior,
gastrocnemius

8 classes (initial contact,
loading response, mid
stance, terminal stance,
preswing, initial swing,
mid swing, and
terminal swig)

LDA with Bayesian
information
criteria (BIC)

93.83%

This study Gastrocnemius lateral head
and biceps femoris longus

3 classes (initial contact,
which is labeled as
initial gait, loading
response to the
terminal stance, which
is labeled as mid-gait,
and preswing to
terminal swing, which
is labelled as final-gait

ANN with
various training
algorithm methods

96%
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The paper [11] showed that ANN, with a number of architectural variations, affected
the system accuracy. This was consistent with this study, where variations in the training
algorithm affected the system accuracy, although both studies utilized different variations
in the experiment. Paper [11] showed the accuracy of unseen subjects (US) consisting of
a single subject and learned subject (LS), with 22 unlearned subjects. According to the
accuracy results, LS subjects have a better value, at 94.49% (further information regarding
this accuracy result can be found in Ref. [11]). This is also consistent with this study, where
overall accuracy was higher than each subject’s accuracy and both studies suggest that
walking patterns might be unique, as presented in Table 6. Table 6 also shows that a number
of machine learning methods have been used in EMG pattern recognition studies. The
machine learning model with fewer classes has higher accuracy compared to those with a
higher number of classes.

Study [10] showed higher accuracy than previous research [11]; however, the re-
search [10] only classified below-limb EMG signals into two classes. A further consid-
eration of this study could be to improve data in the future by embedding a number of
muscles where EMG signals are recorded. Another machine learning method could also be
considered. However, the ANN has been proven as a potential embedded machine learning
method for hardware implementation. This is the main reason why the ANN is selected
in present study. The future work of the present study is to develop an embedded system
in which the ANN will be embedded into a certain microcontroller for bionic below-limb
prosthesis. In previous research, the EMG signals were segmented into eight classes where
the human gait was identified [39]. This will be taken into consideration for future studies,
as more classes for human gait might result in a better ergonomic design.

A previous study concluded that the ANN training algorithm’s determination depends
on many factors, such as the complexity of problems, amount of data in the training set,
weight and biases in the networks, the error goal, and machine learning purposes, i.e., for
pattern recognition or approximation [40]. Table 5 showed that the Levenberg−Marquardt
backpropagation training algorithm resulted in the best and higher accuracy among other
training algorithms, at 96% overall accuracy. This result is consistent with a previous
study [41] that concluded that the Levenberg−Marquardt backpropagation training algo-
rithm showed good potential in gait mechanics’ estimation. The Levenberg−Marquardt
backpropagation training algorithm performed well with a low weight because convergent
results can be obtained in a short time and a lower error rate can be generated [40].

ANN training algorithm variations were used in other studies, as presented in Table 7.
Table 7 shows a comparison between the other studies that used the ANN training algorithm
variation and the present study. According to Table 7, it can be concluded that different
datasets and classes result in different accuracies for ANN classification. Further details
of the classification accuracy can be found in the references presented in Table 7. Table 7
shows the ANN method machine learning method used in various dataset, including non-
biomedical datasets such as car evaluation [42] and biomedical datasets, i.e., Parkinson’s,
cardiotography I, cardiotography II [42], length of stay (LOS) for hospitalized patients with
COVID-19 [40], and heart disease patients [43].

Some research [40,42] found that the Bayesian regulation backpropagation training
algorithm has the highest accuracy. The results related to how the Bayesian regulation
backpropagation training algorithm updates the weights and biases in ANN networks
using the Levenberg−Marquardt backpropagation training algorithm as optimisation
method. The Bayesian regulation backpropagation training algorithm leads to a high-
generalizability model [40] that is suitable for function approximation and did not perform
well in classification or pattern recognition. This finding is consistent with the results of the
present study, where the Bayesian regulation backpropagation training algorithm had a
lower accuracy than other training algorithm, at 89% overall accuracy, which can be seen
in Table 5.
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Table 7. ANN training algorithm variation for classification.

Research Dataset Classes Best Training Algorithm Accuracy

Baptista, et al. [42]

Parkinson’s 1 Bathp (recursive version of
backpropagation) 84%

Car Evaluation 4 Trainoss (one-step secant
backpropagation) 90%

Cardiotography I 3 Conjugate gradient 95%

Cardiotography II 10 Trainbr (Bayesian regulation
backpropagation) 80%

Orooji [40]
Length of stay in
hospitalized patients
with COVID 19

1 Trainbr (Bayesian regulation
backpropagation) 98.7%

Karim, et al. [43] Heart disease patients 3
Trainlm
(Levenberg−Marquardt
backpropagation)

91.75%

This study Below-limb
EMG signals 3

Trainlm
(Levenberg−Marquardt
backpropagation)

96%

Previous research [43] is consistent with the present study, and study [41] reached
the same conclusion, that the Levenberg−Marquardt backpropagation training algorithm
performed best when used in the ANN model for classification and pattern recognition,
although study [43] used a different dataset to the present study and study [41].

The Levenberg−Marquardt backpropagation training algorithm used a second-order
training speed without Hessian matrix computation so that the algorithm is fast and
efficient. However, the Levenberg−Marquardt backpropagation training algorithm is not
suitable for a very large number of data. One of the setbacks of the Levenberg−Marquardt
backpropagation training algorithm is that the algorithm needs a large amount of storage
for the derived matrices, which can be quite large for some complex problems and data [43].
To date, the Levenberg−Marquardt backpropagation training algorithm has performed
well in pattern recognition [41,43].

In the future, this study will be used as the basis for the development of a robotic
lower limb prosthesis conducted in CBIOM3S, Universitas Diponegoro, in collaboration
with a neurosurgeon affiliated with Dr. Kariadi General Hospital, Central Java, Indonesia.
The signal results for muscle strength measurements using Myomes will be recorded to
train the robotic lower limb prosthesis user and customize them to create an ergonomic
product. Comfortable prosthesis may increase amputees’ quality of life.

6. Conclusions

A study on EMG signal pattern recognition, acquired from three general lower limb
human gait movements, was presented. A two-layer feed-forward ANN network was
selected as the machine learning method to classify three classes. Three classes, i.e., initial
contact, which is labeled as initial gait, loading response to the terminal stance, which is
labeled as mid-gait, and pre-swing to terminal swing, which is labeled as final gait, were
associated with the segmented EMG signals. The ANN algorithm used and compared
six training accuracy methods, i.e., the Levenberg−Marquardt backpropagation training
algorithm, quasi−Newton training method, Bayesian regulation backpropagation train-
ing method, gradient descent backpropagation, gradient descent with adaptive learning
rate backpropagation and one-step secant backpropagation. The machine learning study
performs well, classifying three classes of human walking gait with an overall accuracy
(training, testing, and validation) of 96% for Levenberg−Marquardt backpropagation,
respectively. According to the accuracy results, Levenberg-Marquardt backpropagation
outperformed other methods. This result can be used as a preliminary study for lower-
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limb prosthesis to improve its ergonomic factor. In future works, other machine learning
methods will be examined and compared with the presently proposed method.

Human gait classification using EMG signals, as presented in this study, has potential
application as a form of motor control related to robotic lower limb prosthesis. Gait
classification and EMG signal measurement can be used to develop a customized lower
limb prosthesis for each subject, as people walk at different speeds.

Future works related to this research will include another means of gait measurement
using myomes, such as ease of walking, climbing up and down the stairs and walking on
an uphill terrain. This study will also evaluate myomes using the future myomes channel
and filter, aiming to perfect these so they can be used as a measurement tool for robotic
lower limb prosthetics. These have been developing in CBIOM3S.
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